NPDES Phase II: Annual Stormwater Monitoring Summary

Prepared for Ada County Highway District Boise, Idaho

January 3, 2020

NPDES Phase II: Annual Stormwater Monitoring Summary for WY 2019

Prepared for Ada County Highway District Boise, Idaho

January 3, 2020

950 West Bannock Street, Suite 350 Boise, Idaho 83702

Table of Contents

List	of Tab	les		ii
List	of Figu	ures		ii
Acro	nyms			iii
Exe	cutive	Summa	у	1
1.			·	
2.	WY 20	019 Moi	nitored Storms	2-1
	2.1	March-	April 2019 Monitoring Period	2-2
	2.2	May-Ju	ne 2019 Monitoring Period	2-3
	2.3	July-Au	gust 2019 Monitoring Period	2-3
	2.4	Septerr	ber-October 2019 Monitoring Period	2-4
	2.5	Supple	mental Monitoring (November–February)	2-5
3.	Storm	nwater Q	uality Monitoring Summary	3-1
	3.1	Permit-	Defined Analyses and Field Parameters	3-1
	3.2	WY 201	.9 Analytical Results	3-1
		3.2.1	WY 2019 Analytical Results	3-2
	3.3	Monito	ing Program Statistics	3-3
		3.3.1	Summary Statistics	3-3
		Edgewo	od	3-3
			ld	
4.	Flow		Gauge Data	
	4.1	Flow Su	immary	
		4.1.1	Edgewood	
		4.1.2	Chrisfield	
	4.2		ation Summary	
5.			ding Estimates	
	5.1		g Estimate Calculations	
	5.2		.9 Loading Estimates	
			d Conclusions	
7.	Refer	ences		7-1
Tab	les			TAB-1
Figu	res			FIG-1
Арр	endix /	A: Site N	aps	A
App	endix l	B: Water	Year 2019 Monitoring Period Summaries and Hydrographs	В

Brown AND Caldwell

Appendix C: Lab Analytical ReportsC

List of Tables

Table 1. Monitoring Program Sample Count Table 2. Field and Analytical Data: Edgewood Table 3. Field and Analytical Data: Chrisfield Table 4. Statistical Summary by Monitoring Period for WY 2011 through WY 2019: Edgewood Table 5. Statistical Summary by Monitoring Period for WY 2011 through WY 2019: Chrisfield Table 6. Program Statistical Summary Table 7. Edgewood Discharge Data Summary Table 8. Chrisfield Discharge Data Summary Table 9. Precipitation Summary Table 10. Pollutant Loading Estimates: Edgewood Table 11. Pollutant Loading Estimates: Chrisfield Table 12. Pollutant Loading Estimates: Eagle Table 13. Pollutant Loading Estimates: Meridian

List of Figures

- Figure 1. Nitrogen Concentrations: Edgewood
- Figure 2. TSS Concentrations: Edgewood
- Figure 3. TP Concentrations: Edgewood
- Figure 4. E. coli Concentrations: Edgewood
- Figure 5. Nitrogen Concentrations: Chrisfield
- Figure 6. TSS Concentrations: Chrisfield
- Figure 7. TP Concentrations: Chrisfield
- Figure 8. E. coli Concentrations: Chrisfield
- Figure 9. Edgewood Flow Summary
- Figure 10. Chrisfield Flow Summary
- Figure 11. Edgewood Precipitation Summary
- Figure 12. Chrisfield Precipitation Summary

Acronyms

°C	degrees Celsius
-	-
µS/cm	microSiemens per centimeter
ACHD	Ada County Highway District
DO	dissolved oxygen
DOP	dissolved orthophosphate
EPA	United States Environmental Protection Agency
lbs.	pounds
mg/L	milligrams per liter
Monitoring Plan	Storm Water Monitoring Plan NPDES Phase II Permit Meridian and Eagle, Idaho
MPN/100 mL	most probable number per 100 milliliters
MS4	Municipal Separate Storm Sewer System
Ν	nitrogen
NPDES	National Pollutant Discharge Elimination System
NWS	National Weather Service
Permit	Phase II Stormwater Permit
QA/QC	quality assurance/quality control
QAPP	Quality Assurance Project Plan
S.U.	Standard Units
TKN	total Kjeldahl nitrogen
TP	total phosphorus
TSS	total suspended solids
WQL	Boise City Water Quality Laboratory
WY	water year

Executive Summary

Ada County Highway District (ACHD) was issued a National Pollutant Discharge Elimination System municipal separate storm sewer system (MS4) permit (Permit) for stormwater discharge from the MS4 in the areas of Meridian and Eagle, Idaho. The United States Environmental Protection Agency issued the Permit to ACHD (Permit number IDS-028185) on September 4, 2009, effective October 15, 2009. ACHD began conducting stormwater monitoring activities as defined in the Permit on October 15, 2010. Data from these monitoring activities are used to characterize local stormwater discharges, pollutant loads, and trends for water quality and quantity.

Water Year (WY) 2019 is the ninth year of stormwater quality monitoring under the Permit, which has been administratively extended since its expiration in 2014. This report presents monitoring data collected for WY 2019 and summarizes data collected from WYs 2011 through 2019 in the context of general statistics and pollutant loading estimates.

The Permit requires collecting stormwater quality data from four storm events each year during Permit-defined monitoring periods. The Permit-defined monitoring periods are listed below:

- March–April
- May-June
- July–August
- September-October

In situations where a stormwater sample cannot be collected and analyzed during the monitoring period, a supplemental sample is to be collected during the November (2018) through February timeframe, outside of one of the predefined monitoring periods.

Monitoring is conducted at two monitoring sites selected to represent the area covered by the Permit. These sites, Edgewood and Chrisfield, represent stormwater runoff from the MS4 in the Eagle and Meridian areas, respectively. Table 1 is a program summary of monitoring efforts for the duration of the Permit. Dry weather grab sample collection and instream sample collection upstream of the Chrisfield outfall were discontinued at the end of WY 2016.

In September 2018, both Edgewood and Chrisfield monitoring stations were equipped with ISCO 6712 portable samplers. Starting at the beginning of WY 2019, stormwater sampling was modified to include composite sample collection. Composite samples include permit-defined analyses (except *E.coli*), and additional common stormwater constituents described in Section 3.1. *E.coli* is still collected as a grab sample. The monitoring station flowmeters trigger the associated autosamplers to collect flow-proportional composite stormwater runoff samples during storm events. This is the first year composite sampling has been attempted under this Permit.

Stormwater samples were collected during a total of six storm events during WY 2019. All samples were submitted to the Boise City Water Quality Laboratory in Boise, Idaho, for analysis of selected constituents. Additionally, ACHD collected field parameter measurements accompanying all analytical grab samples. Due to equipment and sampling errors stormwater quality sampling data requirements were not met during WY 2019, despite also collecting discrete grab samples for all analytes for the last two monitoring periods in case of equipment failure. Laboratory analytical and field parameter results for grab samples are discussed in Section 3.2 and summarized in Tables 2 and 3. Summary statistics for each constituent over the duration of the monitoring program are presented in Tables 4 through 6. Results are also presented graphically in Figures 1 through 8.

Continuous flow data measurement was conducted at both sites for the duration of WY 2019, with some data gaps due to connection issues, firmware issues, and damage to the monitoring equipment. Discharge data from the monitored outfalls is summarized in Tables 7 and 8 and Figures 9 and 10. Rain data is collected at site-specific rain gauges maintained by ACHD near the monitoring stations. This data is presented in Table 9 and Figures 11 and 12. All data collected for WY 2019 and a summary of data collected during WYs 2011 through 2019 are included in this annual report. Section 4 includes a description of flow and rain data.

Pollutant loading estimates were calculated annually and by monitoring period for both monitored drainages and the Eagle and Meridian MS4s. Pollutant loading estimates are presented in Tables 10 through 13 and discussed in Section 5.

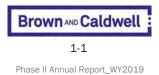
Section 6 presents conclusions and recommendations based on the multi-year analysis.

Section 1 Introduction

On September 4, 2009, the United States Environmental Protection Agency (EPA) issued a signed Municipal Separate Storm Sewer System (MS4) Phase II Stormwater Permit (permit number IDS–028185) (Permit) to Ada County Highway District (ACHD) effective October 15, 2009. The Permit requires developing and implementing a stormwater quality monitoring program throughout the 5-year term of the Permit. This report entitled *National Pollutant Discharge Elimination System* [*NPDES*] *Phase II: Annual Stormwater Monitoring Summary for Water Year 2018* serves as the Storm Water Discharge Monitoring Report required by the Permit to be included in the *ACHD Phase II NPDES MS4 Annual Report*.

ACHD is required to determine whether stormwater discharges are contributing pollutants of concern, either directly or indirectly, to the Boise River or any associated tributaries. This report also summarizes the monitoring data collected as defined in the *Storm Water Monitoring Plan NPDES Phase II Permit Meridian and Eagle, Idaho* (Monitoring Plan) (MSE, 2012).

ACHD has selected two stormwater monitoring sites to meet Permit requirements: Edgewood and Chrisfield. The contributing area to the Edgewood site changed due to construction activities during Water Year (WY) 2015 and is now 55.9 acres (formerly 25.2 acres) and discharges to Eagle Drain, a tributary to the lower Boise River. The site was selected to represent the MS4 in the Eagle area. The Chrisfield site was selected to represent the MS4 in the Meridian area. In September of 2018 the 12-acre Chrisfield subwatershed was rerouted to discharge to a stormwater detention pond that overflows to Fivemile Creek. The two stormwater monitoring sites are described in detail in the Monitoring Plan. Site maps and Phase II area maps are included in Appendix A.


The Permit requires that one storm event be monitored during each of four monitoring periods throughout the water year. The Permit-defined monitoring periods are listed below:

- March–April
- May–June
- July–August
- September-October

In order to document and track stormwater monitoring progress, ACHD completes a stormwater monitoring period summary for each monitoring period during the water year. The results of these reports are compiled in this annual stormwater monitoring report for WY 2019. Monitoring period summaries, including monthly hydrographs for WY 2019, are included for reference in Appendix B.

For WY 2019, this annual report includes a summary of the individual stormwater monitoring periods and the data collected in the supplemental period (November 2018–February 2019). As required by the Permit, this annual report contains the following information:

- · Dates of sample collection and analysis
- · Results of analytical samples collected
- Sampling locations
- Estimated monthly pollutant loads for each pollutant at each sample location

 An annual cumulative estimate of pollutant loading for each parameter at each sample location and an overall estimate of the contribution of pollutants from all stormwater discharging from the MS4

This annual report also summarizes data collected over the course of the monitoring program (WYs 2011 through 2019). Stormwater quality results, runoff volumes, precipitation data, and pollutant loading estimates are included for WYs 2011 through 2019. Summary statistics for stormwater quality data are presented in Tables 4 through 6. Comparative summaries of flow and rain data are shown in Tables 7, 8, and 9.

The Permit defines a storm event using the following criteria:

- The depth of precipitation must be greater than 0.10 inch of accumulation.
- The storm must be preceded by at least 72 hours of dry weather.

In addition to these criteria, the Permit requires that the grab samples be collected within the first 120 minutes of the initiation of measured flow to capture the "first flush."

Variability in weather patterns in the Phase II MS4 area has necessitated that ACHD establish additional storm targeting criteria including a targeted minimum probability of precipitation, expected precipitation depth or quantitative precipitation forecast, and antecedent dry period. The additional storm targeting criteria justification is included in the *Storm Water Monitoring Plan NPDES Phase II Permit Meridian and Eagle, Idaho* (ACHD Appendix D, 2014).

Starting at the beginning of WY 2019, the stormwater sampling program was modified to facilitate collection of composite samples for event mean concentration results. Composite samples include permit-defined analyses (except *E.coli*), and additional common stormwater constituents described in Section 3.1. *E.coli* is still collected as a grab sample. Edgewood and Chrisfield monitoring stations were equipped with ISCO 6712 portable samplers. Each autosampler is equipped with, and programmed to fill, one 15-liter low-density polyethylene carboy for flow-weighted composite sample collection. The submerged area velocity sensors and sample intakes are mounted on the inverts of existing stormwater pipes. The new composite sampling methods, along with various issues with equipment firmware and equipment failures, prevented full composite sample collection several times. Seven events were targeted for composite samples throughout WY 2019; only one composite sample at Edgewood and two at Chrisfield were successful. Because of the difficulty obtaining successful composite samples, discrete grab samples for permit-defined analytes were collected concurrently with composite samples for the last two monitoring periods.

If samples cannot be collected in the specified monitoring periods, the Permit states that samples may be collected during other months as necessary to meet the minimum of four samples per year. These additional samples and corresponding data are referred to in this program as supplemental samples. Supplemental samples are used frequently throughout WY 2019 at both monitoring stations due to equipment and sampling errors.

The Permit requires that samples collected from each site be analyzed for selected constituents listed in Permit Table IV.A. The Permit-required analytical data presented in this report includes grab samples collected within the first 2 hours of storm flow.

Field and laboratory activities were conducted according to the *Quality Assurance Program Plan for NPDES Phase II Stormwater Permit Monitoring, Meridian and Eagle, Idaho* (QAPP) (ACHD Appendix E, 2014). Field quality assurance/quality control (QA/QC) samples were collected and analyzed to help identify potential sources of introduced error in the stormwater sampling process. Laboratory analyses were performed by the Boise City Water Quality Laboratory (WQL) and are included as Appendix C.

Data quality objectives are outlined in the QAPP. All data collection, handling, results management, and interpretation follow the established data quality objectives defined for this program. The data collected as part of the sampling program include rainfall data, runoff volumes, field analytical data, laboratory analytical data, and QA/QC results. All data collected as part of this monitoring program is stored in ACHD's stormwater database, DataSight.

Section 2 WY 2019 Monitored Storms

During WY 2019, ACHD targeted seven storm events for Phase II monitoring. Successful E.coli grab samples were collected in all monitoring periods except July – August at both Edgewood and Chrisfield. Samples submitted for permit-defined analyses were successfully collected during the November–February and the September–October monitoring periods at Edgewood. At Chrisfield, samples submitted for permit-defined analyses were successfully collected during the May–June and September–October monitoring periods. Sample collection methods and approaches are described in further detail in Section 3. There was no rain event that met the program target criteria for the July–August period.

Occurrence of equipment errors and firmware issues with new composite samplers prevented successful composite samples in several monitoring periods. Seven events were targeted for composite samples throughout WY 2019; only one composite sample at Edgewood and two at Chrisfield were successful. From the May-June monitoring period through the end of the water year, grab samples for the permit-defined analyses were collected concurrently with targeted composite samples. This supplement provided another full sample for both sites. Before this change, grab samples were only collected for *E. coli* analysis since composite samples are not analyzed for *E. coli*.

Some of the monitoring period summaries included in Appendix B do not present pollutant loads due to no available storm event data. For this report, we use supplemental data from later in the year to calculate these loads. The list below describes how supplemental events were applied to monitoring periods during WY 2019.

- November-February monitoring period
 - Edgewood: 11/27/2018 event
 - Chrisfield: 10/19/2019 event
- March-April monitoring period
 - Edgewood: 11/27/2018 event
 - Chrisfield: 5/16/2019 event
- May–June monitoring period
 - Edgewood: 11/27/2018 event
 - Chrisfield: 5/16/2019 event
- July–August monitoring period
 - Edgewood: 9/6/2019 event
 - Chrisfield: 9/6/2019 event
- September–October monitoring period
 - Edgewood: 9/6/2019 event
 - Chrisfield: 10/19/2019 event

Targeted storms are summarized by monitoring period below. Detailed site and equipment background information can be found in the Monitoring Plan. Complete monitoring period

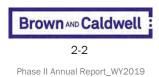
summaries including monthly hydrographs for WY 2019 are included for reference in Appendix B. Laboratory analytical reports are included as Appendix C.

2.1 March-April 2019 Monitoring Period

National Weather Service Summary March-April

The National Weather Service (NWS) prepares a summary of precipitation observations each month for inclusion in an overall monthly climate summary. The NWS monthly climate summary is made available through the local Boise Weather Forecast Office on the NWS website. The following precipitation summaries from the NWS are included for each monitoring period.

The average temperature for March 2019 was only slightly below normal. Total precipitation was very close to normal, at 1.31 inches. No records were equaled or exceeded. On the 23rd a low-pressure trough approaching from the coast brought light showers, the first measurable precipitation since the 12th. On the 24th the trough was over our area, and more than half an inch of rain was measured at the airport. While not a record, it was the first significant precipitation since late February. On the 26th moist unstable air associated with an offshore low-pressure trough contributed to late afternoon thunderstorms which developed along a cold front. One of these storms was accompanied by brief heavy showers, and even small hail in some parts of Boise. As it moved inland, the trough brought more showers from the 27th through the 30th. A high-pressure ridge over the coast provided dry sunny weather on the 31st.


April 2019 was wetter and slightly warmer than normal, with a total precipitation of 1.99 inches. Measurable precipitation fell on 14 days. An upper-level high pressure ridge kept temperatures above normal through the 5th. Disturbances moving through the ridge brought nearly daily showers. After the ridge shifted east, relatively mild temperatures were maintained by southwest flow aloft ahead of an approaching upper-level low pressure trough. Daily showers continued. Heavier showers on the 8th dropped nearly half an inch of rain at the airport. Another system resulted in rainfall totaling over half an inch on the 14th and 15th. On the 20th a strong cold front in advance of an upper-level trough triggered thunderstorms. One such storm dumped nearly a quarter inch of rain in 20 minutes at the airport.

Stormwater Monitoring Summary

Flow and rain data were collected continuously during the March–April period from the Edgewood and Chrisfield monitoring stations. One storm was targeted during the March–April monitoring period on April 13, 2019, resulting in successful grab samples (*E.coli* only) at both monitoring stations. Composite samples were attempted but were unsuccessful. A narrative for the April 13 event is included below. Pollutant loading estimates for the Edgewood and Chrisfield monitoring stations for the March–April monitoring period were calculated using the November 27, 2018, storm event for Edgewood and the May 16, 2019, storm event for Chrisfield. Field parameters and *E. coli* analytical results are included in Tables 2 and 3.

April 13, 2019

On Friday afternoon, April 12, the NWS issued a forecast for rain showers in the Boise area from Saturday evening to Sunday morning. The chance of precipitation was 65–75 percent; a total precipitation of 0.14 inch was forecasted. Setup was conducted Friday afternoon. Precipitation

started around 2200 on Saturday evening, April 13, 2019, and light showers continued through Sunday morning around 0900. Precipitation totals were 0.48 inch at both Edgewood and Chrisfield.

2.2 May–June 2019 Monitoring Period

NWS Summary May–June

The NWS monthly climate summaries for May and June follow.

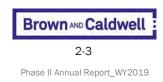
May 2019 was the wettest May since 2005, and the 6th wettest on record, with a total of 3.98 inches. In addition, the period from January 1 through May 31 is the wettest on record at the Boise airport, at 12.07 inches. It ranks in second place for the entire period of record in the Boise area (behind 1896 at 14.27 inches), and even exceeds Boise's average annual precipitation of 11.73 inches. No rain fell during the first two weeks of the month. During the rest of the month most days had measurable rain. The moist and unstable air provided favorable conditions for daily rounds of showers and thunderstorms, some of which produced locally heavy showers.

June 2019 was the second driest June at the Boise airport, with only 0.04 inch of precipitation. Measurable rain fell on only two days. The average temperature for the month was very close to normal. June began with above normal temperatures, with highs in the 80s. On the 26th an upper level trough had arrived off the Washington-Oregon coast. As the trough edged farther east that day, thunderstorms developed in northeast Oregon along a weak cold front, but they never got as far as Boise, and that night the front produced no precipitation.

Stormwater Monitoring Summary

Flow and rain data were collected continuously during the May–June period from the Edgewood and Chrisfield monitoring stations. One storm was targeted during the May–June monitoring period. Grab samples (*E. coli* only) were collected at both sites on May 16, 2019. Grab samples are qualified for holding time. The time between collection time and analysis time was 37 hours. A successful composite sample was collected at Chrisfield, but the composite sample at Edgewood was unsuccessful due to equipment failure. A narrative for this event is included below.

May 16, 2019


On Wednesday afternoon, May 15, the NWS issued a forecast for rain showers in the Boise area from mid-day Thursday continuing through Friday afternoon. The chance of precipitation was 80–85 percent, with a total of 0.64 inch of precipitation forecasted. Setup was conducted Wednesday afternoon. An expected precipitation depth of 0.19 inch was used to set trigger volumes at Edgewood and Chrisfield. Precipitation started around 1500 on Thursday afternoon, May 16, 2019, and continued steadily through the afternoon until around 1900. Precipitation totals were 0.15 at Chrisfield and 0.21 at Edgewood.

2.3 July-August 2019 Monitoring Period

NWS Summary July-August

The NWS summary for the July–August monitoring period follows.

July and August are normally the driest months of the year, and this year was no different. Only 0.01 inch of rain fell in July. As is common this time of year, upper

level troughs from the north Pacific weakened as they encountered the strong summer high pressure ridge over the western United States. The ridge diverted these systems too far north to bring measurable rain to the Boise area.

August 2019 resulted in three days of measurable precipitation, totaling 0.09 inch. Precipitation for June, July, and August only totaled 0.14 inch at the airport, making this the second driest summer on record. Southerly flow aloft brought enough moisture for light showers on the 2nd and again on the 8th. On the 9th and 10th, a low pressure trough moved inland, which triggered thunderstorms that produced light but measurable precipitation and gusty outflow winds.

Stormwater Monitoring

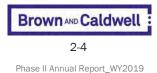
No samples were collected during the July–August monitoring period. Both months were hot and dry with no rain events that met sampling criteria. For this monitoring period, pollutant loads were calculated using water quality results from a storm on September 6, 2019.

2.4 September–October 2019 Monitoring Period

NWS Summary September-October

The NWS summary for the September–October monitoring period follows.

September brought a total precipitation of 0.84 inch to the Boise area, a quarter inch above normal. Airflow from the southwest brought enough monsoon moisture for isolated thunderstorms on the 5th and 6th. A Pacific cold front generated more precipitation on the 8th. Unseasonable cool weather at the end of the month compensated for hot weather at the beginning and middle of September, making the average temperature a normal 64.9.


October 2019 was unseasonably cool, with an average temperature of 46.1 degrees. Overall, October was a dry month, with measurable precipitation falling on only five days. On the 19th, a broad jet stream over the north Pacific pushed a fast-moving upper level trough inland across Idaho. There was enough moisture and energy with this system to produce a thunderstorm and nearly a quarter inch of rain. Winter weather arrived very early during the final week of the month.

Stormwater Monitoring

Two events were targeted during the September–October monitoring period on September 6 and October 19. Grab samples (permit-defined analyses) were collected at both sites on September 6. Composite samplers were set up at both sites for both events, but due to equipment errors, only one composite sample was successful at Chrisfield on October 19. Grab samples collected at Edgewood on October 19 were rejected due to a sampling location error.

September 6, 2019

On Thursday morning, September 5, the NWS issued a forecast for isolated showers and thunderstorms in the Boise area from Thursday evening continuing through Friday. The chance of precipitation was 80 percent, with as much as 0.25 inch of precipitation forecasted. Setup was conducted Thursday afternoon. An expected precipitation depth of 0.11 inch was used to set trigger volumes at Edgewood and Chrisfield. Precipitation started around 1000 on Friday morning, September 6, 2019, and continued heavily in isolated areas for a few hours. Precipitation data was lost at both sites due to equipment errors.

October 19, 2019

The morning of Friday, October 18, the NWS issued a forecast for isolated rain showers and thunderstorms in the Boise area from Friday evening through Saturday afternoon. The chance of precipitation was 95 percent, with as much as 0.35 inch of precipitation forecasted in localized areas. An expected precipitation depth of 0.11 inch was used to set trigger volumes at Edgewood and Chrisfield. Precipitation started around 0730 on Saturday morning October 19, 2019. Two intense and localized waves of precipitation came at 0900 and 1200, producing two clear flow peaks.

2.5 Supplemental Monitoring (November-February)

NWS Summary November 2018–February 2019

The NWS summary for the November–February monitoring period follows.

The average temperature for November 2018 was near normal. Precipitation totaled 0.80 inch, 60 percent of normal, most falling during the last nine days of the month. There was no measurable precipitation from the 5th through the 21st. But despite the wet weather at the end of the month, it still ranks among the driest 25 percent of Novembers at the airport. The first snow of the season fell at the airport in the early morning hours of the 24th. Weak winds at all levels kept warm air from mixing down to the surface, so temperatures in the valley averaged a few degrees below normal. The change to a progressive flow pattern which began on the 21st broke the inversion, allowing temperatures to warm to near or above normal for the rest of the month.

The average temperature for December 2018 was slightly warmer than normal, although the month started out cold, with the temperature staying below freezing from the 5th through the 8th. The rest of the month was relatively mild, with daily averages near or above normal. Precipitation was near normal, totaling 1.4 inches, but total snowfall was slightly below normal at 4.9 inches. Half of the total precipitation fell on the first two days of the month, when a deep upper level trough from the north Pacific crossed the area. On the 17th and the 18th two closely spaced Pacific weather systems brought nearly a third of an inch of rain.

January 2019 ranked 14th warmest in the 80 years of airport records. Precipitation was a third of an inch below normal, totaling 1.08 inches. Most of it fell in one day on the 19th, when three quarters of an inch fell at the airport. On the 23rd a high-pressure ridge was building near the coast. A weak disturbance rounding the north portion of the ridge crossed the Boise area, bringing another light snowfall. The rest of the month stayed mild and dry as the ridge gradually shifted inland.

After a relatively mild and nearly snow-free January, February 2019 brought a return to winter. February, with an average temperature only a couple of degrees below normal, was colder than January. The low of 10 degrees on the 22nd was the coldest temperature of the winter. Brief periods of southwest flow aloft enabled temperatures to reach or exceed normal values for a few days at the beginning, middle, and end of the month. The warm spells were accompanied by the wettest weather of the month, due to disturbances embedded in the flow picking up moisture from off the California coast. Measurable precipitation was recorded on all but four days, for a February total precipitation of 3.71 inches. It was the wettest February since precipitation records began in 1878. It was the 9th snowiest February on

record, with 11.6 inches falling during the month. The greatest depth of snow for the month and the winter was 5 inches on the 21st.

Stormwater Monitoring

Three storms were targeted during the November–February monitoring period. Grab samples (*E. coli* only) were collected at Chrisfield on November 23, 2018, and at both sites on November 27, 2018. A composite sample was collected at Edgewood on November 27, 2018. Both sites were targeted for composite samples on February 2, 2019, but both were unsuccessful. A successful composite sample was not collected at Chrisfield during the November–February monitoring period. Narratives for each event are included below. More information on flow and rain data collection is included in Section 4.

November 23, 2018

On Wednesday morning, November 21, the NWS issued a forecast for rain showers in the Boise area from late morning Friday into the afternoon and evening. Setup was accomplished Wednesday afternoon to collect composite samples at both Chrisfield and Edgewood. An expected precipitation depth of 0.22 inch was used to set trigger volumes at both monitoring sites. Precipitation started around 1545 Friday afternoon and continued lightly throughout the evening. Precipitation totaled 0.30 inch at Chrisfield, and Edgewood's rain gauge data was not available for this storm event.

November 27, 2018

On Monday morning, November 26, the NWS issued a forecast for rain showers in the Boise area from late morning Tuesday into the afternoon and evening. The chance of precipitation was 100 percent for Tuesday evening; a total precipitation of 0.20 inch was predicted. Setup was accomplished Monday afternoon to collect composite samples at both Chrisfield and Edgewood. An expected precipitation depth of 0.11 inch was used to set trigger volumes at both monitoring sites. Precipitation started around 1700 on Tuesday evening, and small amounts continued until around 2200. Precipitation totals were 0.11 inch at Chrisfield and 0.14 inch at Edgewood.

Brown AND Caldwell

Section 3

Stormwater Quality Monitoring Summary

WY 2019 was the ninth year of data collection for NPDES Phase II stormwater monitoring. Samples collected during WYs 2011 through 2019 include grab samples collected from both the Edgewood and Chrisfield sample locations, as well as composite samples collected in WY 2019. Table 1 presents a summary of analytical sample and field parameter collection by monitoring period.

3.1 Permit-Defined Analyses and Field Parameters

The permit requires that the following stormwater parameters be collected during the monitoring periods identified in Section 2:

- Flow (cubic feet per second)
- Total suspended solids (TSS) (milligrams per liter [mg/L])
- Total phosphorus, as P (TP) (mg/L)
- Total nitrogen, as N (N) (mg/L)
- E. coli (most probable number per 100 milliliters [MPN/100 mL])

Total nitrogen is reported in this document as the sum of total Kjeldahl nitrogen (TKN) and nitrate + nitrite as N. This is described in further detail in the Monitoring Plan. Composite samples are analyzed for additional common stormwater constituents including: biological oxygen demand, chemical oxygen demand, total dissolved solids, total arsenic, total cadmium, total lead, total mercury, dissolved cadmium, dissolved copper, dissolved lead, dissolved zinc, turbidity, and hardness. Reported results for these additional analytes are included in Appendix C only.

In addition to the Permit-defined analyses, the following parameters were collected during all targeted events:

- Temperature (°C)
- Conductivity (microSiemens per centimeter [µS/cm])
- Dissolved oxygen (DO) (mg/L)
- pH (standard units [S.U.])
- Dissolved orthophosphate, as P (DOP) (mg/L)
- Rain (inches)

Section 3.2 presents the permit-defined sample analytical results for WY 2019, and summary statistics for results from WY 2011 through WY 2019 are included in Section 3.3.

3.2 WY 2019 Analytical Results

Field and analytical parameters for WY 2019 have been added to the comprehensive list of results from WYs 2011 through 2019 in Tables 2 and 3 for Edgewood samples and Chrisfield samples, respectively. Samples were analyzed (for the parameters noted in Section 3.1) by the WQL. Results for all WY 2019 samples are summarized in sections 3.2.1 and 3.2.2 below.

3.2.1 WY 2019 Analytical Results

Stormwater samples were collected at both monitoring stations during WY 2019. This section summarizes the ranges for each of the monitored field parameters (pH, DO, conductivity, and temperature) and laboratory analytical constituents (nitrate + nitrite, TKN, TSS, TP, DOP, and *E. coli*) as reported in Table 2 for Edgewood and Table 3 for Chrisfield.

Field Parameters

DO concentrations ranged from 7.33 to 9.89 mg/L in samples collected at Edgewood and from 7.50 to 12.63 mg/L at Chrisfield.

Temperature values were recorded at the time of measurement of each field parameter. Temperature values recorded at Edgewood ranged from 10.1 to 23.01°C and from 5.3 to 24.07°C at Chrisfield.

pH measurements in samples from the Edgewood location ranged from 7.40 to 7.94 S.U, and concentrations from the Chrisfield monitoring location ranged from 7.01 to 9.01 S.U.

Conductivity measurements in samples from the Edgewood location ranged from 59.7 to 167.9 μ S/cm, and concentrations from the Chrisfield monitoring location ranged from 0.3 to 205.0 μ S/cm.

Laboratory Results

Nitrate + nitrite was detected in all Edgewood and Chrisfield samples. Concentrations in samples from the Edgewood location ranged from 1.21 to 1.26 mg/L, and concentrations from the Chrisfield station ranged from 0.298 to 0.695 mg/L.

TKN was detected in all Edgewood and Chrisfield samples. TKN concentrations ranged from 0.862 mg/L to 2.05 mg/L at Edgewood and 4.23 to 6.71 mg/L at Chrisfield.

TSS was detected in all Edgewood and Chrisfield samples. TSS concentrations in samples from Edgewood ranged from 26.2 to 64.9 mg/L. Concentrations at Chrisfield ranged from 75 to 165 mg/L.

TP was detected in all Edgewood and Chrisfield samples. TP concentrations in samples from the Edgewood location ranged from 0.227 to 0.369 mg/L, while TP concentrations from the Chrisfield station ranged from 0.501 to 0.789 mg/L.

DOP was detected in all Edgewood and Chrisfield samples. DOP concentrations at Edgewood ranged from 0.132 to 0.218 mg/L, while concentrations at Chrisfield ranged from 0.249 to 0.356 mg/L.

E. coli was detected in all Edgewood and Chrisfield samples. *E. coli* concentrations in samples from Edgewood ranged from 105.0 to 2,419.6 MPN/100 mL. *E. coli* concentrations reported at Chrisfield ranged from 307.6 to 6440 MPN/100 mL.

QA/QC samples collected during WY 2019 included two field blank samples (*E.coli* only) and two field duplicate samples. There were no *E. coli* detections in the field blank samples.

A field duplicate sample for *E. coli* was collected at the Chrisfield monitoring station during the November 23, 2018, storm event. The calculated relative percent difference between the field duplicate and the parent sample met the program data quality target of less than 20 percent for *E. coli*.

A field duplicate sample for all permit-defined analyses was collected at the Edgewood monitoring station during the September 6, 2019, storm event. The calculated relative percent difference between the field duplicate and the parent sample met the program data quality target of less than 20 percent for all constituents except *E. coli* (49.5 percent). The *E. coli* result reported for the September 6, 2019, sample collected from Edgewood is considered an estimate.

Brown AND Caldwell

3-2

Phase II Annual Report_WY2019

Section 3

3.3 Monitoring Program Statistics

Summary statistics for all samples collected for the duration of the Permit are included in Tables 4, 5, and 6. Each table includes statistical summaries of results for each monitoring period, including the minimum, maximum, mean (geometric mean for *E. coli*), and median concentrations; range of concentrations reported; and standard deviation of each dataset. Table 4 summarizes samples from Edgewood and Table 5 the samples from Chrisfield. Table 6 provides summary statistics for all reported values for each site during the monitoring program. Analytical results are presented by monitoring location for WYs 2011 through 2019 in Figures 1 through 8. The scatter plots present recorded monthly concentrations and include a mean line that indicates the mean concentration over the duration of the monitoring program.

3.3.1 Summary Statistics

Summary statistics were calculated for both Chrisfield and Edgewood for all monitoring periods; the July–August monitoring period was not included for Edgewood since only one sample has been collected. Summary statistics are included in Tables 4, 5, and 6, and a list of monitoring period and overall mean and median concentrations is included below.

Edgewood


- Nitrate + nitrite
 - Highest mean value: 1.02 mg/L in November-February
 - Lowest mean value: 0.91 mg/L in March-April
 - Program mean: 1.00 mg/L
- TKN
 - Highest mean value: 1.89 mg/L in March-April
 - Lowest mean value: 1.35 mg/L in May–June
 - Program mean: 1.56 mg/L
- TSS
 - Highest mean value: 57.92 mg/L in March-April
 - Lowest mean value: 17.01 mg/L in September-October
 - Program mean: 38.13 mg/L
- TP
 - Highest mean value: 0.31 mg/L in November-February
 - Lowest mean value: 0.21 mg/L in May–June
 - Program mean: 0.26 mg/L
- E. coli
 - Highest geomean value: 716.51 MPN/100 mL in September-October
 - Lowest geomean value: 35.06 MPN/100 mL in November-February
 - Program geomean: 130.75 MPN/100 mL

Chrisfield

- Nitrate + nitrite
 - Highest mean value: 0.87 mg/L in September-October

- Lowest mean value: 0.29 mg/L in November-February
- Program mean: 0.55 mg/L
- TKN
 - Highest mean value: 7.35 mg/L in July-August
 - Lowest mean value: 2.64 mg/L in November-February
 - Program mean: 4.61 mg/L
- TSS
 - Highest mean value: 161.00 mg/L in July-August.
 - Lowest mean value: 42.59 mg/L in November-February
 - Program mean: 66.0 mg/L
- TP
 - Highest mean value: 0.73 mg/L in September-October
 - Lowest mean value: 0.32 mg/L in March-April
 - Program mean: 0.54 mg/L
- E. coli
 - Highest geomean value: 3,068.01 MPN/100 mL in July-August.
 - Lowest geomean value: 27.44 MPN/100 mL in March-April
 - Program geomean: 203.29 MPN/100 mL

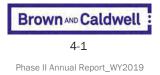
Section 4 Flow and Rain Gauge Data

Flow and rainfall data were collected continuously throughout the year at both the Edgewood and Chrisfield sampling locations. ISCO 2150 flow modules were used for flow monitoring in WY 2019. Rainfall data was collected using a Global Water Rain Gauge at both monitoring stations. Rain information was recorded continuously using ISCO 2105 Interface Modules. During WY 2019, the DataSight stormwater database was used to store flow and rain data for the Phase II monitoring program. Annual hydrographs for each monitoring station are included at the beginning of Appendix B.

Estimated Flow and Rain Measurements during WY 2019

Throughout WY 2019, there were instances in which precipitation and/or flow data was only available at one site. During these dates, precipitation data from the available site was used to supplement the site lacking data. This data was then used to estimate runoff volumes used in pollutant loading calculations as described in Section 5.1.

During dates where both sites were lacking rain data, data from the Boise, Idaho, AgriMet Weather Station rain gauge maintained by the U.S. Bureau of Reclamation was used for precipitation data for calculated flow estimates. The AgriMet Weather Station rain gauge is located at the Boise Fairgrounds, which is approximately 4 miles southeast of the Edgewood monitoring station and 6 miles northeast of the Chrisfield monitoring station.


Measured Flow and Rain

Measured flow and rainfall data are processed in spreadsheets that contain calculations that relate measured flow recorded at the monitoring stations with measured rain to help differentiate between stormwater runoff (rain induced discharge) and background flow (groundwater flow or irrigation runoff). The calculation is based on the average of the previous 25 flow measurements. If the data point exceeds the average, the equation then references the values in the rain amount column for that period. If there is rain in the column associated with the flow measurement, the value above the mean is identified as stormwater runoff. This process allows for consistent differentiation between background flow measurement and the influence of rain in the conveyance system.

Reported runoff totals represent a combination of all flow measured at flowmeters and flow values estimated using rain gauge data to fill in gaps. Additionally, site-specific hydrographs that include flow measurements, 24-hour rain totals, and sample dates are included for each month of WY 2019 in Appendix B, along with an annual hydrograph for each site.

4.1 Flow Summary

All flow data recorded at Edgewood and Chrisfield are summarized in Tables 7 and 8, respectively. These tables present stormwater runoff volumes, non-stormwater background flow volumes, and total discharge volumes for each monitoring period by water year. Flow data for all years at each monitoring station is also represented graphically in Figures 9 and 10.

4.1.1 Edgewood

Background flow was present throughout WY 2019, with the highest background flows observed in the summer months. Dry weather, non-stormwater flows at Edgewood were mostly attributed to groundwater. Groundwater is thought to enter the Edgewood storm drain through drains from a detention pond near the intersection of Hill Road and Edgewood Lane and from infiltration through cracks and joints in the concrete storm drain pipe. An analysis of dry weather flows conducted in WY 2017 found that some dry weather flows may also be the result of irrigation overflows, and field surveys by ACHD staff confirmed the connection of one distribution ditch flowing into the Edgewood storm drain.

Background dry weather flow accounts for the majority of discharge from the Edgewood outfall, which is typical for this site. Data also shows that stormwater runoff totals are generally highest November through February while background flow is usually lowest during this period. May through June brought more precipitation than normal, so stormwater flows were also high during this period.

4.1.2 Chrisfield

Flow and rain measurements collected at Chrisfield over the course of the monitoring program indicate that stormwater runoff constitutes the majority of total annual discharge at the Chrisfield outfall, typically around 94 percent or more. The most common source of background flow in the Chrisfield drainage area may be irrigation runoff from overwatering and/or overspray, though substantial background flow has been recorded outside of the typical lawn and garden irrigation season. May through June had the highest amount of background flow, indicating irrigation was the source of the majority of background flow.

4.2 Precipitation Summary

Measured rainfall amounts are recorded at site-specific rain gauges for this program. A summary of annual precipitation recorded at each rain gauge for WYs 2011 through 2019 is included in Table 9. Table 9 also includes precipitation records from the NWS rain gauge located at the Boise airport. Figure 11 shows precipitation totals by monitoring period as measured at the Edgewood rain gauge, and Figure 12 provides the same analysis for data from the Chrisfield rain gauge.

Figures 11 and 12 show fluctuations in precipitation distribution throughout each year of monitoring. Rainfall was below normal during the winter and summer months of WY 2019. The wettest monitoring period was March–April (excluding the supplemental November to February period), and the driest monitoring period was July–August, with only trace amounts of rainfall recorded.

Section 5 Pollutant Loading Estimates

Pollutant loading estimates were calculated for stormwater flows for the contributing drainage area at each monitoring station. Pollutant loading estimates are based on analytical monitoring results for samples collected during each monitoring period and supplemental samples where no sample was collected during a monitoring period. Pollutant loading estimates (as pounds) were calculated for nitrate + nitrite as N, TSS, TKN, and TP. The analytical results for *E. coli* are provided as most probable numbers; therefore, a pollutant loading mass is not included.

Monitored concentrations and measured/estimated flow at each site are used to calculate sitespecific pollutant loading estimates. In the event the analytical result is below the detection limit for the laboratory, the value of half the detection limit is used. In calculating pollutant loads, contaminant concentrations are converted from mg/L to pounds per cubic foot. The measured flow is combined with the converted concentration and results in an estimate of pounds of pollutants discharged from the monitored drainage area.

5.1 Loading Estimate Calculations

Pollutant loading estimates were calculated based on measured runoff at each monitoring station and reported concentrations representative of each monitoring period. As the estimated pollutant load is extrapolated for larger parcels of land, the estimate becomes less accurate. Section 5.2 presents pollutant loading estimates for each monitoring period and for the water year as a whole.

The loading estimate represents the stormwater runoff discharged at the outfall and does not identify reductions from stormwater management measures installed in the system. For example, a common management practice in the Phase II permit area is the use of infiltration best management practices, which would remove a significant amount of stormwater runoff volume and associated pollutant load from the surface water system.

In situations where flow is estimated, the pollutant loading calculation loses resolution. In these instances, the EPA Simple Method is used to estimate the pollutant load using the formulas below for runoff calculation and loading extrapolation. The Simple Method has been approved by the EPA for simple pollutant loading estimations for urban stormwater.

Simple Method

$$L = 0.226 * R * C * A$$

Where:

L = event load

- R = event runoff (inches)
- C = pollutant concentration (mg/L)
- A = area (acres)
- 0.226 = unit conversion factor

Annual Runoff Calculation

$$R = P * Pj * Rv$$

Where:

R = runoff (inches)

P = rainfall (inches)

- Pj = fraction of annual rainfall events that produce runoff (0.9)
- Rv = runoff coefficient

Initially, runoff coefficients were calculated for each monitoring station drainage area based on the percentage of impervious land cover in each area. This result was then multiplied by the fraction of rainfall events that produce runoff (assumed 0.90) and the depth of rainfall. This calculation did not take into account effective impervious area or all of the effects of storage or canopy interception and evapotranspiration in the subwatersheds. Runoff coefficients were revised in WY 2018 using monitoring data (specifically the relationship between measured rainfall and measured runoff) to develop empirically derived runoff coefficients that more accurately predict runoff volumes, thereby improving pollutant loading estimates. The revised runoff coefficients for the Edgewood and Chrisfield drainage areas are 0.206 and 0.119, respectively. WY 2019 pollutant load estimates were calculated using these updated coefficients.

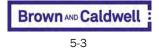
Annual pollutant loading values represented in this report are rough estimates based on a sum of monthly loads as calculated each water year. The extrapolation of inputs from monitoring data to represent the MS4 in the Eagle and Meridian areas as a whole assumes that the runoff from the sites is representative of the MS4 in its entirety. Pollutant loading estimates lose resolution as they are extrapolated to reflect the MS4 in each municipal area instead of the defined monitoring location drainage area.

5.2 WY 2019 Loading Estimates

Monthly and annual pollutant loading estimates for both monitored drainage areas are included in Tables 10 and 11, and extrapolated loading estimates for the MS4 in the areas of Eagle and Meridian are provided in Tables 12 and 13, respectively. Pollutant loading estimates are presented as a result of the measured or estimated runoff and measured concentration for site-specific loading.

Nitrate + nitrite loading estimates from the monitoring locations were estimated to be 33.85 pounds (lbs.) at the Edgewood site and 3.60 lbs. at the Chrisfield site for WY 2019. The largest pollutant loading estimate was reported for the month of February at Edgewood and May at Chrisfield. Nitrate + nitrite loading estimates for the year emanating from the MS4 in the Eagle and Meridian areas were estimated to be 13,794 and 7,012 lbs. for WY 2019, respectively.

TSS loading estimates from the monitoring locations were estimated to be 794.93 lbs. at the Edgewood site and 972.91 lbs. at the Chrisfield site. The largest pollutant loading estimate was reported for the month of February at both sites. TSS loading estimates for the year from the MS4 in the Eagle and Meridian areas were estimated to be 323,966 and 2,035,819 lbs. for WY 2019, respectively.


Annual TKN loading estimates from the monitoring locations were estimated to be 25.96 lbs. at the Edgewood site and 45.62 lbs. at the Chrisfield site for WY 2019. The largest pollutant loading estimate was reported for the month of February for Edgewood and the month of May for Chrisfield. Annual TKN loading estimates for the year emanating from the MS4 in the Eagle and Meridian areas were estimated to be 10,579 and 89,993 lbs., respectively.

TP loading estimates from the monitoring locations were estimated to be 6.44 lbs. at the Edgewood site and 5.69 lbs. at the Chrisfield site. The largest pollutant loading estimate was reported for the month of February for Edgewood and the month of May for Chrisfield. TP loading estimates for WY 2019 emanating from the MS4 in the Eagle and Meridian areas were estimated to be 2,627 and 11,311 lbs., respectively.

DOP loading estimates from the monitoring locations were estimated to be 3.74 lbs. at the Edgewood site and 2.66 lbs. at the Chrisfield site. The largest pollutant loading estimate was reported for the month of February at Edgewood and Chrisfield. DOP loading estimates for WY 2019 emanating from the MS4 in the Eagle and Meridian areas were estimated to be 1,530 and 5,468 lbs., respectively.

Pollutant loading estimates were not estimated for *E. coli* because the *E. coli* value produced by the lab is a most probable number and not a mass equivalent.

Section 6 Discussion and Conclusions

Storm event monitoring efforts in WY 2019 were hampered by equipment and sampling errors that resulted in collection of fewer than the four required samples at either monitoring station. Specific issues are described in detail in Section 5 of the individual monitoring period summary reports included in Appendix B. For redundancy during WY 2020, grab sample collection will include all permit-defined analytical parameters to avoid incomplete sampling events until ACHD is confident in the reliability of composite sample collection.

Reported concentrations for the pollutants of concern, when analyzed by monitoring period, do not immediately indicate higher concentrations associated with any one monitoring period. Overall, the number of data points per monitoring period is fairly small, with no more than ten data points available in any one monitoring period, resulting in high variability within each dataset. However, some trends are noticeable.

E. coli concentrations at both sites appear to be higher during summer and fall months and may be attributable to more biotic activity associated with seasonally warm temperatures. Nitrogen levels at Chrisfield are elevated in the summer and fall months. During the summer and beginning of fall, rain events are more infrequent; built up fertilizers and pet waste from the summer may be a source of higher nitrogen concentrations in stormwater runoff. TSS results for Edgewood are typically lower in samples collected from May through October. One likely explanation is that dry weather flows are highest during these months, so background flow makes up a larger percentage of grab samples collected. Additionally, TSS, TP, and TKN results for Chrisfield are typically higher from May through October.

Dry weather flows observed at the Edgewood monitoring station are typical of background flows discharging from the MS4 in this region. Agricultural return flows, irrigation overflows, and groundwater interact with the conveyances of the MS4 and influence the quality and quantity of the MS4 discharges during wet and dry weather conditions.

Volumes of stormwater runoff (estimated and measured) and dry weather discharges can vary by orders of magnitude from year to year for the same monitoring period. While there is some bias throughout the dataset due to gaps and estimated volumes, weather patterns and variations in background flow appear to influence the dataset the most.

Pollutant loading estimates in this report reflect a rough estimate of pollutant loads, particularly when applied to the entire MS4. Annual estimates presented in this report are based on the sum of monthly loads, rather than an annual cumulative estimate based on the geometric mean of pollutant concentrations.

Section 7 References

Ada County Highway District. Phase II Stormwater Management Plan, 2014.

- Ada County Highway District and Millennium Science and Engineering, Inc. Stormwater Monitoring Plan NPDES Phase II Permit Meridian and Eagle, Idaho, Version 1.1. Ada County Highway District, Revised by Brown and Caldwell, 2012.
- Ada County Highway District and Millennium Science and Engineering, Inc. Quality Assurance Program Plan for NPDES Phase II Stormwater Permit Monitoring Meridian and Eagle, Idaho, Version 1.1. Ada County Highway District, Revised by Brown and Caldwell, 2012.
- MSE. Storm Water Monitoring Plan NPDES Phase II Permit Meridian and Eagle, Idaho, 2012.
- National Weather Service (2017). National Weather Service Forecast Office Boise, Idaho. Retrieved from http://www.nws.noaa.gov/climate/index.php?wfo=boi.
- National Weather Service Boise Forecast Office. (2018). Monthly Weather Summary. Retrieved November 29, 2018, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi
- U.S. Environmental Protection Agency. Ada County Highway District Permit No. IDS-028185. U.S. Environmental Protection Agency. 2009.
- U.S. Environmental Protection Agency. 1992. NPDES Stormwater Sampling Guidance Document, Office of Water, Washington, D.C. EPA 833-B-92-001.

Tables

- Table 1. Monitoring Program Sample Count
- Table 2. Field and Analytical Data: Edgewood
- Table 3. Field and Analytical Data: Chrisfield
- Table 4. Statistical Summary by Monitoring Period for WY 2011 through WY 2019: Edgewood
- Table 5. Statistical Summary by Monitoring Period for WY 2011 through WY 2019: Chrisfield
- Table 6. Program Statistical Summary
- Table 7. Edgewood Discharge Data Summary
- Table 8. Chrisfield Discharge Data Summary
- Table 9. Precipitation Summary
- Table 10. Pollutant Loading Estimates: Edgewood
- Table 11. Pollutant Loading Estimates: Chrisfield
- Table 12. Pollutant Loading Estimates: Eagle
- Table 13. Pollutant Loading Estimates: Meridian

	Table 1. Monitoring Program Sample Count (WY 2011 - WY 2019)												
Monitoring Period	March	–April	May-	May-June		July-August		r-October	November-February				
Station	Edgewood	Chrisfield	Edgewood	Chrisfield	Edgewood	Chrisfield	Edgewood	Chrisfield	Edgewood	Chrisfield			
Bacteria and field parameters ¹	10	11	8	8	1	2	9	10	9	9			
Permit-defined analytes ²	9	10	7	7	1	2	9	9	8	7			
Composite sample constiuents ³	0	0	0	1	0	0	0	1	1	0			
QA/QC	4	5	3	2	0	2	1	3	6	2			

 $^{\rm 1}$ Includes: E. coli, conductivity, dissolved oxygen, pH, and temperature

 $^{\rm 2}$ Includes: TSS, TP, DOP, TKN, and nitrate + nitrite as N

³ Includes: permit-defined analytes plus biological oxygen demand, chemical oxygen demand, total dissolved solids, total arsenic, total cadmium, total lead, total mercury, dissolved cadmium, dissolved copper, dissolved lead, dissolved zinc, turbidity, and hardness

					Table 2	. Wet Weather Field Edgewood	d and Analytical Da	ita					
				Field	Parameters	Eugewoou	Data			Analytical Pa	arameters		
Storm Event	Water Year	Dissolved Oxygen	Temperature (DO)	рН	Temperature (pH)	Conductivity	Temperature (Cond.)	Nitrate+Nitrite as N	TSS	TKN	DOP	TP	E. coli
		mg/L	С	S.U.	С	uS/cm	С	mg/L	mg/L	mg/L	mg/L	mg/L	MPN/100 mL
March 10, 2011 ¹		8.44	8.9	6.57	8.6	100.6	8.9	0.71	68.2	1.29	-	0.192	10.9
April 5, 2011	2011	8.16	9.7	6.29	10.1	41.3	9.7	0.33	25.7	1.04	-	0.1034	45.9
May 8, 2011	2011	8.58	9.6	6.65	10.3	100.4	14.6	0.47	13.7	0.55	-	0.0774	95.9
October 5, 2011	1	6.83	16	6.86	16.4	124.3	16	0.53	4.6	<0.25	-	0.0743	410.6
December 28, 2011		6.78	9.7	7.5	10	848	9.6	1.4	30.8	5.2	-	0.379	3.1
March 25, 2012	1	8.6	10.3	7.4	10.5	163.3	10.3	1.85	18.3	2.1	-	0.2293	9.7
May 3, 2012 ¹	2012	7.54	12.7	5.82	13.7	163.3	12.7	1.02	12.2	1	-	0.158	461.1
May 25, 2012 ¹	1	9.04	11.4	5.88	11.8	86.8	11.4	0.45	128	2.5	-	0.345	2,590
October 16, 2012	1	5.48	18.8	7.56	17.3	120.5	18.8	1.034	24.2	1.9	-	0.333	347.6
February 22, 2013		8.45	7.5	7.86	7.7	1178	7.7	0.642	765 ^{2J}	3	-	0.898	4.1
March 20, 2013 ¹		7.88	9.7	8.02	9.9	254.1	9.8	0.817	82.7	3.5	-	0.482	8.4
June 24, 2013 ¹	2013	7.5	16.3	7.55	17.2	109.5	16.3	0.41	10.3	0.3	-	0.104	579.4
September 3, 2013		5.72	20.1	7.35	20.2	102.3	20.1	0.4	12.3	1	-	0.142	1,986.30
November 16, 2013		9.27	9.6	7.57	9.1	79.8	9.6	0.481	75.2	1.7	-	0.329	58.8
March 9, 2014 ¹	2014	8.38	10.4	8.27	10.5	76.0	10.3	0.265	18.5	1.1	-	0.154	101
April 22, 2014		8.4	11.5	7.53	11.4	96.6	11.5	0.945	52.4	1.3	-	0.209	816.4
May 8, 2014		8.93	13.9	7.32	13.8	85.8	13.9	0.603	156	2.8	-	0.477	3,230
October 21, 2014	1	5.42	14	6.2	13	115	-	0.517	7.6	1.5	0.242	0.299	1,880
December 19, 2014		8.99	8.8	7.83	8.9	61.3	8.8	0.348	58.1	0.5	0.0984	0.188	90.6
March 24, 2015	2015	9.79	9.2	7.39	9	80.5	9.2	0.683	73.1	1.4	0.1538	0.241	1
September 15, 2015	2015	5.62	17.5	7.17	17.3	166.2	17.5	0.987	8.15	1.43	0.199	0.228	131.4
October 28, 2015	1	4.55	15	7.38	14.6	158.2	14.9	1.02	4.17	0.659	0.133	0.161	167
November 19, 2015		7.16	12	8.47	11.3	145.2	11.8	1.09	4.07	0.495	0.178	0.138	11
January 28, 2016	0040	8.77	8.7	7.91	8.3	137.1	8.7	1.41	30.2	0.604	0.104	0.162	40.8 ^{3J}
April 23,2016	2016	7.75	12.5	7.83	12.9	201.8	12.9	1.26	32.8	3.95	0.181	0.825	387
July 10, 2016		5.44	16.8	7.03	16.4	187.3	16.8	1.89	8	0.714	0.168	0.177	139.6
March 3, 2017		7.75	8.8	8.14	8.7	273.5	8.8	1.79	139	1.26	0.128	0.164	4.1
May 16, 2017	2017	5.88	13.2	6.72	13.2	195.8	13.3	2.32	6.93	0.742	0.102	0.142	365.4
October 20, 2017	1	4.45	13.3	7.17	12.5	209.6	13.3	1.55	8.17	0.897	0.139	0.19	727
November 3, 2017		6.75	11.6	7.74	11.2	153.4	11.5	1.25	10.3	1.19	0.217	0.313	1,299.7
January 18, 2018	1	10.02	8.3	7.20	8.1	136.2	8.3	1.31	22.9	0.418	0.0884	0.136	19.3
March 21, 2018	2018	9.01	11.6	7.51	11.6	137.7	11.9	0.493	68.5	1.98	0.181	0.233	547.5
June 17, 2018	-	5.84	15.8	7.31	15.4	202.1	15.7	1.43	9.43	1.55	0.165	0.194	64.4
October 4, 2018	1	5.22	15.8	8.00	15.7	195.9	15.9	1.67	19.0	3.49	0.273 ^{4J}	0.376	2,419.6
November 27, 2018 5		9.89	10.1	7.94	10.1	167.9	10.1	1.26	26.2	0.862	0.132	0.227	105.0
April 13, 2019	-	8.11	12.0	7.75	12.3	59.7	12.0	-	-	-	-	-	248.1
May 16, 2019	2019	7.33	15.57	7.40	15.57	123.2	15.57	-	-	-	-	-	6,090.0 ^{3J}
September 6. 2019	-	7.47	23.01	7.45	23.01	113.96	23.01	1.21	64.9	2.05	0.218	0.369	2.419.6

- = no sample.

J Analytical value qualified as estimated.

¹ Results are associated with a targeted event that did not meet the precipitation criteria (greater than 0.10 inch) at the local rain gauge.

^{2J} Qualified value left out of statistical analysis.

^{3J} Samples was analyzed outside of regulatory holding time. Results not used in statistical summary.

^{4J} Relative percent difference between field duplicate sample and parent sample is outside acceptable range. Value is considered an estimate.

⁵ Results are from composite samples and therefore represent event mean concentrations.

					Tab		Field and Analytical Data ield Data									
			Field Parameters Analytical Parameters													
Storm Event	Water Year	Dissolved Oxygen	Temperature (DO)	pH	Temperature (pH)	Conductivity	Temperature (Cond.)	Nitrate+Nitrite as N	TSS	TKN	DOP	TP	E. coli			
		mg/L	C	S.U.	C "	uS/cm	C C	mg/L	mg/L	mg/L	mg/L	mg/L	MPN/100 mL			
March 10, 2011 ¹		10.62	7.2	6.27	6.8	24.3	7.2	< 0.05	23.2	1.02	-	0.1286	5.1			
April 5, 2011	0011	8.7	9.3	6.84	10	90.4	9.3	1.61	28.3	4.04	-	0.336	117.8			
May 8, 2011 ¹	2011	7.67	12.1	6.68	12.4	47.4	12.1	0.31	46	2	-	0.263	>2,419.62			
October 4, 2011		7.07	17	6.85	16.9	194.2	17	1.42	17.2	6.2	-	0.783	816.4			
December 28, 2011		11.11	4	7.97	4.8	85.9	4	0.56	25.3	4.5	-	0.455	8.6			
March 25, 2012		8.27	13	7.67	12.8	56	12.9	0.65	17.2	2.4	-	0.153	6.2			
May 3, 2012 ¹	2012	6.12	14.8	5	15.5	130.7	14.8	0.47	28.2	4.4	-	0.706	1,229.70			
May 25, 2012		9.25	12.9	5.41	13.5	38.1	12.9	0.28	16.8	2	-	0.281	866.4			
October 16, 2012		7.16	18.5	7.47	17	66.7	18.5	0.375	23	2.5	-	0.422	151.5			
February 22, 2013		9.67	5.9	8.14	6.1	114.1	6	0.19	75.5	1.6	-	0.224	42.4			
March 20, 2013		7.35	9.4	8.07	9.4	144.3	9.5	0.574	133	4.5	-	0.448	178.5			
June 19, 2013	2013	8.16	17	8.11	16.9	35.7	16.9	0.248	227	3.3	-	0.446	1,119.90			
September 3, 2013 ¹		6.4	21.2	6.85	21.1	240.9	21.2	2.16	97	17	-	1.205	980			
November 16, 2013		3.52	9.5	7.1	9.2	7.6	9.5	0.173	18.4	3.3	-	0.553	1,100			
April 22, 2014		2.57	12.9	7.09	12.6	194.5	12.9	0.355	14	5.2	-	0.748	313			
May 8, 2014	2014	5.1	16	7.21	16	163.6	16	0.572	22.1	6.8	-	0.867	633.1			
October 21, 2014		7.93	12.9	5.84	12.8	61.5	12.9	0.282	33	4.3	0.335	0.472	22.1			
December 19, 2014		10.86	6.4	8.25	6.6	25.7	6.4	0.133	30	1	0.0883	0.14	547.5			
March 24, 2015		10.59	8	7.71	7.8	68.1	8	0.490	43.2	3.6	0.2922	0.413	8.6			
July 11, 2015	2015	5.99	27.7	7.6	27.2	63.9	27.7	0.550	178	3.7	0.2	0.374	4,730.00			
September 15, 2015		9.3	16	7.32	16	150.1	16	1.440	142	9.88	0.635	0.931	435.2			
November 19, 2015 ¹		7.1	8.4	8.74	5.9	75.5	8.4	0.25	17.5	2.25	0.307	0.477	22.3 ^{3J}			
March 21, 2016	2016	6.17	17.6	8.63	17.1	31	17.5	0.201 ^{4J}	61.8	1.92 ^{4J}	0.0842	0.166	4.1 ^{3J}			
July 10, 2016		7.96	15.9	6.94	15.8	109.6	15.9	0.746	144	11	0.555	0.914	1,990			
March 24, 2017		9.6	11.2	7.63	11	128.7	11.2	0.556	82.5	5.31	0.267	0.473	45.7			
April 14, 2017		12.4	8.4	8.71	8.5	36.4	8.4	0.198	23.7	0.857	0.0827	0.132	64.5			
May 16, 2017	2017	6.72	14.4	6.54	14.1	221.1	13.9	0.74	48.7	4.04	0.29	0.493	7,540			
October 13, 2017		9.61	12.7	7.5	12.3	60.7	12.7	0.3	51.2	2.41	0.223	0.359	57.8			
October 20, 2017		7.31	11.3	7.62	11	179.8	10.9	0.437	23.8	3.34	0.371	0.542	307.6			
November 3, 2017		9.85	9.5	7.52	9.4	97.7	9.5	0.382	27.4	4.26	0.856	1.17	3.0			
January 18, 2018		9.94	7.4	7.75	7.4	59.8	7.5	0.332	104	1.60	0.0689	0.212	70.0			
March 21, 2018	2018	8.98	14.1	7.87	14.0	71.9	14.1	0.276	114	2.51	0.0887	0.231	1.0			
June 17, 2018		2.99	18.3	7.55	17.8	329.0	18.3	0.752	11.6	4.81	0.449	0.633	387.3			
October 4, 2018		8.97	13.8	8.04	13.2	160.7	13.8	1.27	86.8	12.0	1.01	1.50	2560.0			
November 23, 2018		7.50	10.55	8.22	10.55	205	10.55	-	-	-	-	-	235.9			
November 27, 2018		12.63	5.3	8.49	5.4	8.49	5.3	-	-	-	-	-	1580.0			
April 13, 2019		8.33	14.4	8.05	14.2	0.3	14.4	-	-	-	-	-	307.6			
May 16, 2019 5	2019	8.38	17.18	9.01	17.18	71.7	17.18	0.57	75.0	6.71	0.249	0.789	3410.0 ^{3J}			
September 6, 2019		7.52	24.07	7.74	24.07	114.6	24.07	0.695	165.0	5.57	0.243	0.501	6440.0			
October 19, 2019 5	-	8.8	7.0	7.01	7.0	-	7.0	0.298	143	4.23	0.356	0.567	344.8			

– = no sample.

¹Results are associated with a targeted event that did not meet the precipitation criteria (greater than 0.10 inch) at the local rain gauge.

² Outlier value left out of statistical analysis.

^{3J} Samples was analyzed outside of regulatory holding time. Results not used in statistical summary.

^{4J} Samples were not preserved to pH less than 2 within 15 minutes of collection, as required by the approved EPA test method.

⁵Results are from composite samples and therefore represent event mean concentrations.

			Table 4.	Wet Weather St		by Monitoring Period fo ewood Data	r WY 2011 through	WY 2019			
			Field Pa	rameters				Analytical P	arameters		
Monitoring Period ¹	Summary Statistics	Dissolved Oxygen	Temperature ²	рН	Conductivity	Nitrate+Nitrite as N	TSS	TKN	DOP	TP	E. coli ³
		mg/L	С	S.U.	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	MPN/100 ml
	Minimum	6.75	7.50	7.20	61.30	0.35	4.07	0.42	0.09	0.14	3.10
	Maximum	10.02	12.00	8.47	1178.00	1.41	75.20	5.20	0.22	0.90	1299.70
November-February	Mean	8.45	9.59	7.78	322.99	1.02	32.22	1.55	0.14	0.31	35.06
November-rebluary	Median	8.77	9.60	7.83	145.20	1.25	28.20	0.86	0.12	0.23	40.80
	Range	3.27	4.50	1.27	1116.70	1.06	71.13	4.78	0.13	0.76	1296.60
	Standard Deviation	1.27	1.48	0.35	401.27	0.42	23.66	1.60	0.05	0.24	421.01
	Minimum	7.75	8.80	6.29	41.30	0.27	18.30	1.04	0.13	0.10	1.00
	Maximum	9.79	12.50	8.27	273.50	1.85	139.00	3.95	0.18	0.83	816.40
March-April	Mean	8.39	10.42	7.52	135.01	0.91	57.92	1.89	0.16	0.28	42.04
Marcii-Aprii	Median	8.38	10.30	7.53	100.60	0.76	60.30	1.35	0.17	0.22	45.90
	Range	2.04	3.70	1.98	232.20	1.59	120.70	2.91	0.05	0.72	815.40
	Standard Deviation	0.60	1.30	0.62	78.86	0.56	37.21	1.03	0.03	0.22	275.37
	Minimum	5.84	9.60	5.82	85.80	0.41	6.93	0.30	0.10	0.08	64.40
	Maximum	9.04	16.30	7.55	202.10	2.32	156.00	2.80	0.17	0.48	3230.00
May lung	Mean	7.58	13.56	6.83	133.36	0.96	48.08	1.35	0.13	0.21	469.70
May-June	Median	7.52	13.55	7.02	116.35	0.60	12.20	1.00	0.13	0.16	461.10
	Range	3.20	6.70	1.73	116.30	1.91	149.07	2.50	0.06	0.40	3165.60
	Standard Deviation	1.25	2.33	0.68	47.37	0.71	64.70	0.97	0.04	0.14	1293.73
	Minimum	5.44	16.80	7.03	187.30	1.89	8.00	0.71	0.17	0.18	139.60
	Maximum	5.44	16.80	7.03	187.30	1.89	8.00	0.71	0.17	0.18	139.60
July August	Mean	5.44	16.80	7.03	187.30	1.89	8.00	0.71	0.17	0.18	139.60
July-August	Median	5.44	16.80	7.03	187.30	1.89	8.00	0.71	0.17	0.18	139.60
	Range	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Standard Deviation	-	-	-	-	-	-	-	-	-	-
	Minimum	4.45	13.30	6.20	102.30	0.40	4.17	0.13	0.13	0.07	131.40
	Maximum	7.47	23.01	8.00	209.60	1.67	64.90	3.49	0.27	0.38	2419.60
Contomber Ostation	Mean	5.64	17.06	7.24	145.11	0.99	17.01	1.45	0.20	0.24	716.51
September-October	Median	5.48	16.00	7.35	124.30	1.02	8.17	1.43	0.21	0.23	727.00
	Range	3.02	9.71	1.80	107.30	1.27	60.73	3.37	0.14	0.30	2288.20
	Standard Deviation	0.98	3.13	0.50	38.90	0.45	19.16	0.98	0.06	0.11	989.14

¹ For nondetect results, a value of half the method detection limit is used in this analysis.

² Temperature value recorded during D0 measurement is used for summary statistics because this is the first temperature measurement recorded for each sample.

³ Mean values for E. coli are represented as the geometric mean of the dataset.

			Table 5.	Wet Weather St		by Monitoring Period W field Data	Y 2011 through WY	2019			
			Field Pa	rameters				Analytical Pa	arameters		
Monitoring Period ¹	Summary Statistics	Dissolved Oxygen	Temperature ²	рН	Conductivity	Nitrate+Nitrite as N	TSS	TKN	DOP	TP	E. coli ³
		mg/L	С	S.U.	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	MPN/100 mL
	Minimum	3.52	4.00	7.10	7.60	0.13	17.50	1.00	0.07	0.14	3.00
	Maximum	12.63	10.55	8.74	205.00	0.56	104.00	4.50	0.86	1.17	1580.00
November February	Mean	9.13	7.44	8.02	75.53	0.29	42.59	2.64	0.33	0.46	89.89
November–February	Median	9.85	7.40	8.14	75.50	0.25	27.40	2.25	0.20	0.46	70.00
	Range	9.11	6.55	1.64	197.40	0.43	86.50	3.50	0.79	1.03	1577.00
	Standard Deviation	2.71	2.21	0.50	61.94	0.15	33.56	1.39	0.37	0.35	572.42
	Minimum	2.57	7.20	6.27	0.30	0.03	14.00	0.86	0.08	0.13	1.00
	Maximum	12.40	17.60	8.71	194.50	1.61	133.00	5.31	0.29	0.75	313.00
	Mean	8.51	11.41	7.69	76.90	0.49	54.09	3.14	0.16	0.32	27.44
March-April	Median	8.70	11.20	7.71	68.10	0.42	35.75	3.06	0.09	0.28	45.70
	Range	9.83	10.40	2.44	194.20	1.59	119.00	4.45	0.21	0.62	312.00
	Standard Deviation	2.60	3.26	0.73	58.45	0.44	42.57	1.63	0.11	0.20	120.04
	Minimum	2.99	12.10	5.00	35.70	0.25	11.60	2.00	0.25	0.26	387.30
	Maximum	9.25	18.30	9.01	329.00	0.75	227.00	6.80	0.45	0.87	7540.00
	Mean	6.80	15.34	6.94	129.66	0.49	59.43	4.26	0.33	0.56	1270.25
May-June	Median	7.20	15.40	6.95	101.20	0.52	37.10	4.22	0.29	0.56	1119.90
	Range	6.26	6.20	4.01	293.30	0.50	215.40	4.80	NA	0.60	7152.70
	Standard Deviation	2.03	2.17	1.33	104.60	0.20	70.80	1.85	0.11	0.23	2516.08
	Minimum	5.99	15.90	6.94	63.90	0.55	144.00	3.70	0.20	0.37	1990.00
	Maximum	7.96	27.70	7.60	109.60	0.75	178.00	11.00	0.56	0.91	4730.00
	Mean	6.98	21.80	7.27	86.75	0.65	161.00	7.35	0.38	0.64	3068.01
July-August	Median	6.98	21.80	7.27	86.75	0.65	161.00	7.35	0.38	0.64	3360.00
	Range	1.97	11.80	0.66	45.70	0.20	34.00	7.30	0.36	0.54	2740.00
	Standard Deviation	1.39	8.34	0.47	32.31	0.14	24.04	5.16	0.25	0.38	1937.47
	Minimum	6.40	7.00	5.84	60.70	0.28	17.20	2.41	0.22	0.36	22.10
	Maximum	9.61	24.07	8.04	240.90	2.16	165.00	17.00	1.01	1.50	6440.00
	Mean	8.01	15.45	7.22	136.58	0.87	72.51	6.78	0.45	0.73	404.69
September-October	Median	7.73	14.90	7.40	150.10	0.57	68.65	5.11	0.34	0.56	390.00
	Range	3.21	17.07	2.20	180.20	1.88	147.80	14.59	0.79	1.14	6417.90
	Standard Deviation	1.09	5.00	0.62	64.80	0.66	51.93	4.75	0.28	0.38	1983.42

¹For nondetect results, a value of half the method detection limit is used in this analysis.

² Temperature value recorded during DO measurement is used for summary statistics because this is the first temperature measurement recorded for each sample.

³Mean values for E. coli are represented as the geometric mean of the dataset.

				Table 6. Progra	m Statistical Sum	mary for WY 2011 thre	ough WY 2019						
	Summary Statistics ¹		Field Pa	irameters		Analytical Parameters							
Monitoring Period		Dissolved Oxygen	Temperature	pН	Conductivity	Nitrate+Nitrite as N	TSS	TKN	DOP	TP	E. coli ²		
		mg/L	С	S.U.	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	MPN/100 mL		
	Minimum	4.45	7.50	5.82	41.30	0.27	4.07	0.13	0.088	0.07	1.00		
	Maximum	10.02	23.01	8.47	1,178.0	2.32	156.00	5.20	0.273	0.90	3,230.0		
Edgewood	Mean	7.51	12.62	7.36	182.95	1.00	38.13	1.56	0.163	0.26	130.75		
Eugewood	Median	7.75	11.80	7.43	136.65	1.00	22.90	1.28	0.165	0.20	139.60		
	Range	5.57	15.51	2.65	1,136.7	2.06	151.93	5.08	0.185	0.82	3,229.0		
	Standard Deviation	1.54	3.63	0.62	208.76	0.53	39.94	1.14	0.051	0.18	880.90		
	Minimum	2.57	4.00	5.00	0.30	0.03	11.60	0.86	0.069	0.13	1.00		
	Maximum	12.63	27.70	9.01	329.0	2.16	227.00	17.00	1.010	1.50	7,540.0		
Chrisfield	Mean	8.02	13.07	7.52	104.08	0.55	66.00	4.61	0.335	0.54	203.29		
Cimsileia	Median	8.22	12.90	7.61	75.50	0.44	43.20	4.04	0.290	0.47	307.60		
	Range	10.06	23.70	4.01	328.70	2.14	215.40	16.14	0.941	1.37	7,539.0		
	Standard Deviation	2.24	5.15	0.87	73.74	0.46	54.50	3.34	0.250	0.32	1,709.67		

¹For nondetect results a value of half the method detection limit is used in this analysis.

 $^{2}\,\mathrm{Mean}$ values for E. coli are represented as the geometric mean of the dataset.

			Table 7. Edgewood	Discharge Data Summa	ry		
	Monitoring Period	November–February	March-April	May-June	July-August	September-October	Annual
	Stormwater runoff (cf)	9,205 ¹	121,514	251,948	14,886	183,262	580,814
WY 11	Background discharge (cf)	347,546	1,165,790	1,821,362	4,048,513	2,325,691	9,708,902
**1 11	Total discharge (cf)	356,751	1,287,303	2,073,310	4,063,399	2,508,953	10,289,716
	Storm flow percent	2.6%	9.4%	12%	0.37%	7.3%	5.6%
	Stormwater runoff (cf)	279,961 ¹	88,727	24,273	0	18,991	411,952
WY 12	Background discharge (cf)	576,641	320,649	1,564,717	3,806,335	2,346,960	8,615,302
WT 12	Total discharge (cf)	856,602	409,376	1,588,990	3,806,335	2,365,951	9,027,254
	Storm flow percent	32.68%	22%	1.52%	0%	0.80%	4.56%
	Stormwater runoff (cf)	72,705	20,052	37,001	6,799	48,641	185,198
WY 13	Background discharge (cf)	376,871	454,111	2,697,952	2,686,876	1,508,852	7,724,662
WI 13	Total discharge (cf)	449,576	474,163	2,734,953	2,693,675	1,557,493	7,909,860
	Storm flow percent	16%	4.2%	1.4%	0.25%	3.1%	2.3%
	Stormwater runoff (cf)	81,419	83,563 ¹	25,747	9,738	17,605	218,072
	Background discharge (cf)	523,273	-	1,728,602	2,445,304	956,170	-
WY 14	Total discharge (cf)	604,692	-	1,754,349	2,455,042	973,775	-
	Storm flow percent	13%	-	1.5%	0.40%	1.8%	-
	Stormwater runoff (cf)	98,595	12,829	29,540	41,651	20,238	190,024
	Background discharge (cf)	407,906	189,196	2,021,221	3,629,899	1,765,556	8,013,778
WY 15	Total discharge (cf)	506,502	202,025	2,050,762	3,671,550	1,785,794	8,216,633
	Storm flow percent	19%	6%	1.0%	1.0%	1.0%	2.3%
	Stormwater runoff (cf)	108,616 ¹	96,960 ¹	12,700	9,405	71,354 ¹	299,034 ¹
	Background discharge (cf)	-	-	793,628	1,626,475	-	-
WY 16	Total discharge (cf)	-	-	806,328	1,635,880	-	-
	Storm flow percent	-	-	1.6%	0.57%	-	-
	Stormwater runoff (cf)	507,536 ¹	108,907	51,073	0	8,514	676,030
	Background discharge (cf)	-	641,189	1,409,951	1,425,708	901,134	-
WY 17	Total discharge (cf)	-	750,096	1,461,024	1,425,708	909,648	-
	Storm flow percent	-	15%	3%	0%	1.00%	-
	Stormwater runoff (cf)	54,713	65,344	26,280 ¹	0	6,516	156,558
140/ 4.0	Background discharge (cf)	739,447	105,296	889,200 ²	1,683,000	1,041,120	4,481,067
WY 18	Total discharge (cf)	794,160	170,640 ^{1,2}	915,480 ^{1,2}	1,683,000	1,047,636 1,2	4,637,625
	Storm flow percent	6.9%	38%	3%	0%	1%	3.4%
	Stormwater runoff (cf)	229,023 ¹	99,994	46,080 ¹	1,213	36,188 ¹	413,179
	Background discharge (cf)	1,304,721 ²	598,010	831,993 ²	1,286,327	1,371,416 ²	5,392,467
WY 19	Total discharge (cf)	1,533,744 ^{1,2}	698,004	878,756 ^{1,2}	1,287,540	1,407,604 ^{1,2}	5,805,646
	Storm flow percent	15%	14%	15%	0%	3%	7.1%

- = not calculated or recorded due to data gaps.

¹Stormwater runoff volumes estimated using the EPA Simple Method are used to complete flow summaries for periods without a complete measured flow history.

² Volume does not include dates with missing data.

			Table 8. Chrisfield	Discharge Data Summa	ny		
	Monitoring Period	November-February	March-April	May-June	July-August	September-October	Annual
	Stormwater runoff (cf)	5,198 ¹	33,800	16,942	626	17,348	73,914
WY 11	Background discharge (cf)	0	2,520	0	194	792	3,506
**1 11	Total discharge (cf)	5,198	36,320	16,942	820	18,140	77,420
	Storm flow percent	-	93.1%	100.0%	76.3%	95.6%	95.5%
	Stormwater runoff (cf)	44,292	32,853	7,856	1,269	4,286	90,556
WY 12	Background discharge (cf)	9,158	1,105	940	842	842	12,887
VVT 12	Total discharge (cf)	53,450	33,958	8,796	2,111	5,128	103,443
	Storm flow percent	82.9%	96.7%	89.3%	60.1%	83.6%	87.5%
	Stormwater runoff (cf)	19,487	5,004	14,432	50	27,801 ¹	66,774
WY 13	Background discharge (cf)	35,402	8,212	2,333	230	173	46,350
	Total discharge (cf)	54,889	13,216	16,765	280	27,974	113,124
	Storm flow percent	35.5%	37.9%	86.1%	17.6%	99.0%	59.0%
	Stormwater runoff (cf)	74,343 ¹	60,703 ¹	8,928	6,041	10,768	160,782
WY 14	Background discharge (cf)	-	-	630	2,887	3,125	-
VVI 14	Total discharge (cf)	-	-	9,558	8,928	13,892	-
	Storm flow percent	-	-	93.4%	67.7%	77.5%	-
	Stormwater runoff (cf)	47,776	6,408	10,541	7,853	10,015	76,185
WY 15	Background discharge (cf)	2,876	1,904	4,331	8,437	8,932	26,480
WI 15	Total discharge (cf)	50,652	8,312	14,872	16,290	18,947	109,073
	Storm flow percent	94%	77%	71%	48%	53%	69.8%
	Stormwater runoff (cf)	86,000 ¹	35,154 ¹	18,442 ¹	11,142 ¹	11,288 ¹	162,026 ¹
WY 16	Background discharge (cf)	-	-	-	-	-	-
WI 10	Total discharge (cf)	-	-	-	-	-	-
	Storm flow percent	-	-	-	-	-	-
	Stormwater runoff (cf)	184,224 ¹	25,020	15,588	720	4,320	229,872
WY 17	Background discharge (cf)	-	1,116	180	72	2,052	-
VVI 11	Total discharge (cf)	-	26,136	15,768	792	6,372	-
	Storm flow percent	-	96%	99%	91%	68%	-
	Stormwater runoff (cf)	22,248	17,476 ¹	13,716	0	8,238 ¹	61,135
WY 18	Background discharge (cf)	7,164	2,448 ²	36	-	684 ²	10,800
WI 10	Total discharge (cf)	29,412	19,924	13,752	-	9,390	71,935
	Storm flow percent	79%	88%	100%	0%	88%	85%
	Stormwater runoff (cf)	64,026 ¹	27,872 ¹	32,076 ¹	648	12,780	137,402
WY 19	Background discharge (cf)	1,602 ²	0	4,752 ²	216	1,548	8,118
	Total discharge (cf)	65,628 ^{1,2}	27,872 ¹	36,828 ^{1,2}	864	14,328	145,520
	Storm flow percent	98%	100%	87%	75%	89%	94%

- = not calculated or recorded due to data gaps.

¹Stormwater runoff volumes estimated using the EPA Simple Method are used to complete flow summaries for periods without a complete measured flow history.

 $^{2}\,\mathrm{Background}$ discharge volume does not include dates with missing data.

							Ta	able 9. Preci	pitation Su	mmary								
Monitoring Period	Nov	ember-Febr	uary		March-April			May-June			July-August		Sep	tember-Octo	ber		Annual Total	
Rain Gauge	Edgewood	Chrisfield	NWS	Edgewood	Chrisfield	NWS	Edgewood	Chrisfield	NWS	Edgewood	Chrisfield	NWS	Edgewood	Chrisfield	NWS	Edgewood	Chrisfield	NWS
WY 2011 precipitation (in)	4.59	4.14	6.67	4.59	4.14	3.78	2.95	2.56	2.27	0.04	0.12	0.02	2.11	1.94	1.88	14.28	12.9	14.62
WY 2012 precipitation (in)	3.68	3.47	4.08	4.59	4.45	4.17	0.94	1.09	1.09	0.01	0.09	0.07	0.96	0.82	1.03	10.18	9.92	10.44
WY 2013 precipitation (in)	2.99	2.66 ²	3.51	0.96	0.74 ²	1.31	1.29	1.53	1.18	0.08	0.02	0.58	2.20	2.68	2.51	7.52	7.63	9.09
WY 2014 precipitation (in)	4.44	3.87 ²	5.18	3.5	3.16 ²	4.49	0.78	0.87	0.87	0.44	0.41	0.24	1.17	1.29	1.32	10.33	9.60	12.10
WY 2015 precipitation (in)	7.48	6.93	7.79	0.94	0.91	1.10	1.96	1.05	1.67	1.46	0.77	1.15	1.14	1.12	1.43	12.98	10.78	13.14
WY 2016 precipitation (in)	5.47	4.77	4.92	2.28	1.83	2.15	0.84	0.96	1.05	0.58	0.58	0.27	1.44	0.99	1.49	10.61	9.13	9.88
WY 2017 precipitation (in)	5.47	5.04 ³	6.4	4.83	4.98	4.87	2.26	1.84	2.14	0	0.09	0.23	0.84	0.81	1.16	12.97	12.76	14.8
WY 2018 precipitation (in)	4.34	3.83	4.71	2.5	2.3	2.90	0.95	1.58	2.13	0	0	0.11	0.29 ²	1.02	1.41	8.08	8.73	11.26
WY 2019 precipitation (in)	8.04 ³	6.88 ³	6.99	3.14	2.62	3.30	2.81 ⁴	2.58 ⁵	4.02	0.12	0.09	0.1	1.14 ³	1.21 ³	1.13	15.25	13.38	15.54

¹ Precipitation depths are presented in inches.

² Debris on the rain gauge funnel may have interfered with data collection during this period.

³ Monthly precipitation data contains data from the Boise, Idaho, AgriMet Weather Station rain gauge.

⁴ Hourly rainfall data are supplemented with available hourly rainfall data from Chrisfield.

⁵ Hourly rainfall data are supplemented with available hourly rainfall data from Edgewood.

					T	able 10. Wet	Weather Pollu Edgew	itant Loading I ood	Estimates ¹					
					Permit Requi	red Monitoring	ţ				Supplement	al Monitoring		Annual Cumulative Estimate
Analyte ²	Water Year	March	April	May	June	July	August	September	October	November	December	January	February	Sum of Monthly Loads
	2011	2	.38	2.	18	0	.00	1	76		5.	12		11.44
	2012	4.23	5.37	0.34	0.36	0.11	0.00	0.10	0.09		0.	.08		10.69
	2013	0.13	0.89	0.41	0.54	0.27	0.00	0.84	0.38	0.89	0.53	0.73	0.77	6.38
	2014	2.84	2.94	0.66	0.31	0.06	0.23	0.34	0.22	0.54	0.08	0.58	1.25	10.06
Nitrate+Nitrite as N (Ibs)	2015	0.14	0.43	0.62	0.02	2.64	0.01	0.60	0.65	0.50	1.06	0.18	0.39	7.24
	2016	6.83	0.80	0.61	0.25	1.11	0.00	0.50	8.41	2.10	4.74	0.66	2.06	28.07
	2017	8.51	3.65	2.34	5.06	0.00	0.00	0.41	0.41	1.66	10.64	35.89	8.52	77.10
	2018	3.29	2.05	2.31	0.87	0.00	0.00	0.00	5.63	1.68	0.44	2.18	0.17	18.62
	2019	2.96	4.91	5.18	0.02	0.00	0.09	2.12	0.57	1.94	2.86	2.11	11.09	33.85
	2011	18	5.52	64	.16	0	.00	15	.24		49:	1.60		756.52
	2012	41.85	53.09	96.87	102.93	4.26	0.00	2.44	2.18		1.	.79		305.41
	2013	13.29	90.22	10.30	13.49	323	1.62	25.70	11.65	1,061.85	626.32	866.98	916.62	3,961.09
	2014	157.75	162.96	169.59	81.12	10.0	35.71	5.06	3.29	83.67	11.77	91.30	195.44	1,007.66
TSS (lbs)	2015	14.96	46.31	103.94	3.19	10.8	0.05	4.96	5.33	84.99	176.87	30.21	65.50	547.09
	2016	117.70	20.91	2.28	0.94	15.33	0.00	2.11	35.59	45.06	101.42	14.20	44.06	399.60
	2017	661.2	283.7	6.98	15.11	0.00	0.00	2.17	2.17	128.57	826.5	2,787	661.2	5,374.98
	2018	57.50	35.90	15.26	5.76	0.00	0.00	0.00	64.02	29.4	7.76	38	2.9	256.50
	2019	61.52	102.01	107.64	0.38	0.00	4.87	113.49	30.47	40.41	59.51	43.94	230.68	794.93
	2011	7.50		2.	55	0	.00	0	41		9.	.03		19.49
	2012	4.80	6.09	1.89	2.01	0.24	0.00	0.19	0.17		0.	30		15.70
	2013	0.56	3.82	0.30	0.39	1.27	0.01	2.09	0.95	4.16	2.46	3.40	3.59	23.00
	2014	3.91	4.04	3.04	1.46	0.23	0.81	1.00	0.65	1.89	0.27	2.06	4.42	23.78
TKN (lbs)	2015	0.29	0.89	0.89	0.03	1.71	0.01	0.87	0.94	0.73	1.52	0.26	0.56	8.70
	2016	21.40	2.52	0.28	0.11	1.37	0.00	0.19	3.18	0.90	2.03	0.28	0.88	33.14
	2017	5.99	2.57	0.75	1.62	0.00	0.00	0.24	0.24	1.17	7.49	25.27	5.99	51.33
	2018	1.05	0.66	2.51	0.95	0.00	0.00	0.00	11.76	0.54	0.14	0.70	0.05	18.36
	2019	2.02	3.36	3.54	0.01	0.00	0.15	3.58	0.96	1.33	1.96	1.45	7.59	25.96
	2011	0	.75	0.	36	0	.00	0	25		1.	38		2.74
	2012	0.52	0.67	0.26	0.28	0.03	0.00	0.03	0.03		0.	.02		1.84
	2013	0.08	0.53	0.10	0.14	0.38	0.00	0.30	0.13	1.25	0.74	1.02	1.08	5.75
	2014	0.63	0.65	0.52	0.25	0.04	0.16	0.20	0.13	0.37	0.05	0.40	0.86	4.25
TP (lbs)	2015	0.05	0.15	0.34	0.01	0.42	0.00	0.14	0.15	0.28	0.57	0.10	0.21	2.42
	2016	4.47	0.53	0.08	0.03	0.34	0.00	0.05	0.79	0.24	0.54	0.08	0.24	7.39
	2017	0.78	0.33	0.14	0.31	0.00	0.00	0.05	0.05	0.15	0.98	3.29	0.78	6.86
	2018	0.34	0.21	0.31	0.09	0.00	0.00	0.00	1.27	0.17	0.05	0.23	0.02	2.69
	2019	0.53	0.88	0.93	0.00	0.00	0.03	0.65	0.17	0.35	0.52	0.38	2.00	6.44
	2015	0.03	0.10	0.18	0.01	0.35	0.00	0.12	0.13	0.14	0.30	0.05	0.11	1.52
	2016	0.98	0.12	0.10	0.04	0.32	0.00	0.04	0.75	0.16	0.35	0.05	0.15	3.06
DOP (Ibs)	2017	0.61	0.26	0.10	0.22	0.00	0.00	0.04	0.04	0.12	0.76	2.57	0.61	5.32
	2018	0.22	0.14	0.27	0.08	0.00	0.00	0.00	0.92	0.11	0.03	0.15	0.01	1.93
	2019	0.31	0.51	0.54	0.00	0.00	0.02	0.38	0.10	0.20	0.30	0.22	1.16	3.74

¹ The EPA Simple Method is used to fill in gaps in flow summaries for periods without a complete measured storm flow history. The resulting values are then used in pollutant loading estimates.

² E. coli is not included in pollutant loads. E. coli values are reported in MPN/100 ml. This is a most probable number and not a mass; therefore, a pollutant loading mass is not an appropriate estimate.

					1	Table 11. Wet	Weather Pollu Chrisfi	tant Loading E	stimates ¹					
_	_	_	Dorn	nit Required Mo	nitoring	_	Christi	eia	_		Supplement	al Monitoring	_	Annual Cumulative Estimate
Analyte ²	Water Year	March	April	May	June	July	August	September	October	November	December	January	February	Sum of Monthly Loads
, indigeo	2011		12 April	0.			- August		06			08		6.85
	2011	0.69	0.64	0.12	0.01	0.01	0.00	0.01	0.09			.2		1.76
	2012	0.03	0.04	0.12	0.01	0.01	0.00	2.40	1.35	0.01	0.13	0.07	0.02	4.37
	2013	0.02	0.13	0.11	0.03	0.00	0.00	0.15	0.04	0.01	0.13	0.07	0.02	2.58
Nitrate+Nitrite as N (lbs)	2014	0.08	0.00	0.08	0.03	0.00	0.00	0.15	0.44	0.11	0.05	0.07	0.05	1.85
	2015	0.29	0.11	0.00	0.01	0.52	0.00	0.40	0.44	0.11	0.10	0.00	0.03	3.08
	2017	0.31	0.56	0.32	0.40	0.00	0.00	0.06	0.06	0.066	0.43	1.44	0.34	4.00
	2018	0.29	0.30	0.52	0.40	0.00	0.01	0.00	1.55	0.192	0.43	0.12	0.04	3.05
	2019	0.44	0.55	1.13	0.14	0.00	0.00	0.18	0.06	0.132	0.11	0.12	0.56	3.60
	2011		0.07	88		1	-		.95		1	.54	0.00	284.6
	2012	18.22	16.92	7.20	0.65	0.46	0.00	0.54	5.30			.04		61.36
	2012	5.71	35.83	104.01	100.49	0.40	0.00	107.60	60.73	2.31	53.61	28.43	7.48	506.4
	2013	29.38	23.67	11.14	1.18	0.00	6.94	17.63	4.55	11.30	9.27	7.50	41.04	163.6
TSS (lbs)	2014	7.47	9.84	17.72	2.02	87.21	0.04	45.83	42.94	25.55	40.00	12.92	11.00	302.54
	2016	90.41	45.20	15.74	4.41	100.15	0.00	12.09	89.37	18.61	47.00	17.42	9.32	449.72
	2010	45.40	83.43	20.90	26.48	0.35	1.96	3.05	3.37	7.96	51.15	172.5	40.92	457.46
	2018	89.84	35.76	7.82	2.11	0.00	0.00	0.00	106.16	60.30	35.29	38.8	10.05	386.13
	2019	57.59	72.9	148.65	1.52	0.00	6.67	86.44	27.64	50.77	117.93	134.64	268.16	972.91
	2013		2.34	3.		0.00	-		99	00.11	1	24	200.10	28.40
	2012	2.54	2.36	0.86	0.08	0.07	0.00	0.06	0.58			88		8.42
	2013	0.19	1.21	1.51	1.46	0.00	0.00	18.86	10.64	0.05	1.14	0.60	0.16	35.82
	2013	10.91	8.79	3.43	0.36	0.00	1.24	2.30	0.59	2.03	1.66	1.35	7.36	40.02
TKN (lbs)	2015	0.62	0.82	0.59	0.07	1.81	0.00	3.19	2.99	0.85	1.33	0.43	0.37	13.07
	2016	2.81	1.40	2.02	0.57	7.65	0.00	0.92	6.83	2.39	6.04	2.24	1.20	34.07
	2017	2.92	5.37	1.73	2.20	0.02	0.09	0.43	0.47	0.29	1.85	6.24	1.48	23.08
	2018	1.38	0.55	3.24	0.88	0.00	0.00	0.00	14.68	0.93	0.54	0.60	0.15	22.95
	2019	5.15	6.52	13.3	0.14	0.00	0.23	2.56	0.82	1.50	3.49	3.98	7.93	45.62
	2011	0.	.99	0.	50		_	1.	14		0.	36		2.99
	2012	0.16	0.15	0.12	0.01	0.01	0.00	0.01	0.10			30		0.86
	2013	0.02	0.12	0.20	0.20	0.00	0.00	1.34	0.75	0.01	0.16	0.08	0.02	2.90
	2014	1.57	1.26	0.44	0.05	0	0.21	0.25	0.07	0.34	0.28	0.23	1.23	5.92
TP (lbs)	2015	0.07	0.09	0.08	0.01	0.18	0.00	0.30	0.28	0.12	0.19	0.06	0.05	1.43
	2016	0.24	0.12	0.43	0.12	0.39	0.00	0.08	0.57	0.33	0.82	0.31	0.16	3.57
	2017	0.26	0.48	0.21	0.27	0.00	0.01	0.07	0.08	0.044	0.28	0.96	0.23	2.90
	2018	0.18	0.07	0.43	0.12	0.00	0.00	0.00	1.83	0.123	0.07	0.08	0.02	2.923
	2019	0.61	0.77	1.56	0.02	0.00	0.02	0.34	0.11	0.2	0.47	0.53	1.06	5.69
	2015	0.09	0.07	0.05	0.01	0.10	0.00	0.20	0.19	0.08	0.12	0.04	0.03	0.98
	2016	6.24	0.06	0.28	0.08	0.64	0.00	0.05	0.34	0.51	1.28	0.48	0.25	4.085
DOP (lbs)	2017	0.86	0.27	0.12	0.16	0.00	0.01	0.05	0.05	0.028	0.18	0.60	0.14	2.47
	2018	0.06	0.02	0.3	0.08	0.00	0.00	0.00	1.24	0.04	0.02	0.03	0.01	1.8
	2019	0.19	0.24	0.49	0.00	0.00	0.00	0.00	0.07	0.13	0.02	0.34	0.67	2.66

- = no data available.

¹The EPA Simple Method is used to fill in gaps in flow summaries for periods without a complete measured storm flow history. The resulting values are then used in pollutant loading estimates.

² E. coli is not included in pollutant loads. E. coli values are reported in MPN/100 ml. This is a most probable number and not a mass; therefore, a pollutant loading mass is not an appropriate estimate.

					Tat	ole 12. Wet We	ather Polluta Eagle Are		imates					
			Permit	Required Monit	oring		Lagie Ale	a			Supplement	al Monitoring		Annual Cumulative Estima
Analyte ²	Water Year	March	April	May	June	July	August	September	October	November	December	January	February	Sum of Monthly Loads
	2011		149	1.9				1,5				623	1	10,326
	2012	6,422	5,050	607	106	19	0	70	1,603		,	43		14,420
	2013	119	805	370	485	245	1	755	342	805	475	657	695	5,755
	2014	2,570	2,655	592	283	58	206	311	202	483	68	528	1,129	9,085
litrate+Nitrite as N (lbs)	2014	415	1,253	1,803	55	1,075	5	245	262	654	3.397	580	1,258	11,003
. ,	2016	2,782	327	249	103	452	0	243	3,427	857	1,930	270	838	11,440
	2017	3,470	1,489	952	2.062	0	0	168	168	675	4,338	14,628	3,470	31,420
	2011	1,340	837	943	356	0	0	0	2.293	686	181	889	67	7,592
	2019	1,206	1,999	2,110	8	0	37	862	232	792	1,166	861	4,521	13,794
	2010		.352	57,9				13,				1,102	.,021	683,188
	2011	63,525	49,956	172,554	30,197	770	0	1,631	37,517			.937		368,087
	2012	12,004	81,507	9,302	12,189	291,831	1,460	23,215	10,522	959.245	565,804	783,202	828.051	3,578,331
	2013	142,503	147,211	9,302 153,204	73,283	9,036	32,258	4,575	2,970	75,589	10,631	82,480	176,552	910,292
TSS (lbs)	2014	44,408	134,118	301,040	9,246	4,396	22	2,022	2,970	109,184	567,099	96,864	210,011	1,480,584
100 (100)	2015	72,420	8,520	931	384	6,247	0	862	14,504	18,365	41,334	5,787	17,958	187,312
	2010	269,471	115,622	2,844	6,159	0,247	0	884	885	52,398	336,845	1,135,916	269,476	2,190,501
	2017	23,427	115,622	6,221	2,349	0	0	004	26,091	11,992	3,163	1,135,910	1,179	104,600
	2018	25,427	41,572	43,869	2,349	0	1,985	46,252	12,416	16,470	24,253	15,540	94,012	323,966
	2019	6,772		43,809				40,252	,	10,470		400	54,012	17,848
	2011 2012	7,290	5,733	3,370	590	43	0	128	4 2,946			400 015		22,114
		508	,	271	355		6		2,946	0.700		3,071	2.047	
	2013		3,449			1,144		1,887		3,762	2,219		3,247	20,775
TKN (lbs)	2014 2015	3,535 851	3,652 2,569	2,750	1,315 80	204 695	729	903 355	586 382	1,709 940	240 4.880	1,865 834	3,991	21,479 15,988
1111 (103)			,	2,591				77			/		1,807	
	2016	8,721	1,026	113	47	558 0	0	97	1,295 97	367	827	116	359	13,506
	2017	2,443	1,048	305	659				-	475	3,053	10,297	2,443	20,917
	2018 2019	428	267	1,023	386	0	0	0	4,793	219	58 798	284 589	22	7,480
		825	1,368	1,443	5	-	63	1,461	392	542			3,093	10,579
	2011		73	32			1	22				.72		1,390
	2012	796	626	465	81	5	0	22	516	1 100		47	070	2,659
	2013	70	475	94	123	343 40	2 141	268 180	121 117	1,126	664	919	972	5,177
TP (lbs)	2014	568	587	468	224	-				331	47	361	772	3,837
IF (IDS)	2015	146	442	974	30	170	1	57	61	353	1,835	313	680	5,062
	2016	1,822	214	32	13	131	0	19	321	63	222	31	96	2,964
	2017	318	136	58	126	0	0	21	21	62	397	1,340	318	2,798
	2018 2019	139 217	87	128	48	0	0	0 263	375 71	71 143	19 210	92	7	966
			360	380	1	-	11			-		155	815	2,627
	2015	93	282	510	16	140	1	49	53	185	961	164	356	2,810
	2016	400	47	41	17	138	0	18	305	99	142	20	62	1,289
DOP (lbs)	2017	248	106	42	91	0	0	15	15	48	310	1,046	248	2,170
	2018	90	57	109	41	0	0	0	516	46	12	60	5	936
	2019	126	209	221	0.8	0	7	155	42	83	122	90	474	1,530

- = no sample.

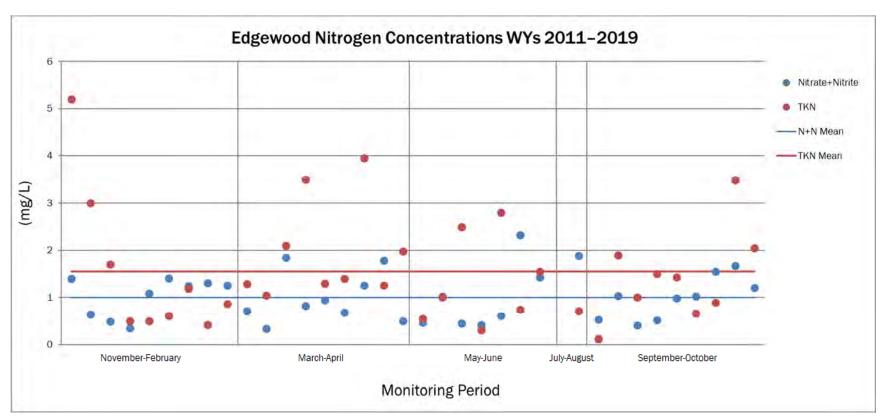
¹ The EPA Simple Method is used to fill in gaps in flow summaries for periods without a complete measured storm flow history. The resulting values are then used in pollutant loading estimates.

² E. coli is not included in pollutant loads. E. coli values are reported in MPN/100 ml. This is a most probable number and not a mass; therefore, a pollutant loading mass is not an appropriate estimate.

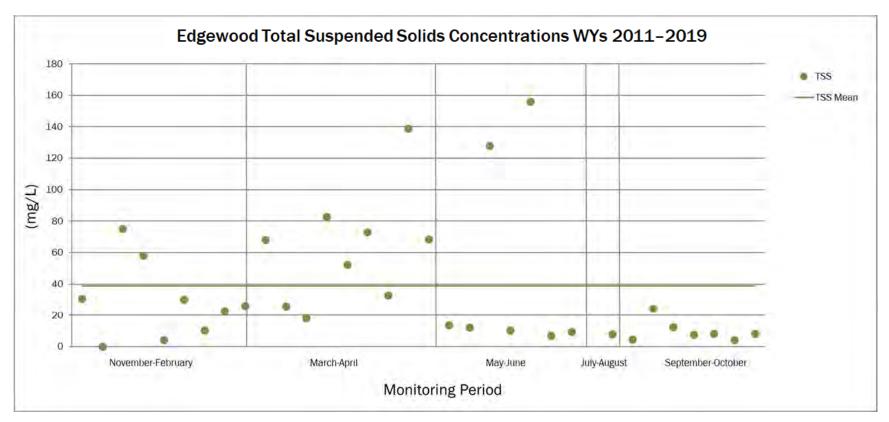
					Table 13.			iding Estimate:	s ¹					
		_	_	_	_	Mer	idian Area	_	_		_	_	_	
			Permit Requ	uired Monitoriı	ıg						Supplement	al Monitoring		Annual Cumulative Estin
Analyte ²	Water Year	March	April	May	June	July	August	September	October	November	December	January	February	Sum of Monthly Load
_	2011	9,	158	1,3	320		-	4,5	82		1	72		15,233
_	2012	2,877	2,453	509	94	83	0	44	452		8	54		7,366
	2013	55	344	253	244	1	0	5,329	3,008	13	300	159	42	9,748
	2014	1,657	1,335	641	68	0	145	335	87	236	194	157	858	5,713
itrate+Nitrite as N (lbs)	2015	188	248	175	20	599	0	1,034	968	252	394	127	108	4,113
	2016	654	327	500	140	1,154	0	139	1,030	591	1,494	553	296	6,878
	2017	681	1,251	706	895	4	25	124	138	148	951	3,205	760	8,889
	2018	638	254	1,128	304	0	0	0	13	428	251	275	71	3,362
	2019	973	1,232	2,513	26	0	63	401	128	235	547	624	1,243	7,012
	2011	220),352	195	,868		-	55,	501	161,132		632,853		
	2012	76,117	64,903	30,535	5,642	3,930	0	2,726	27,718		51,	256		262,828
	2013	12,696	79,702	231,335	223,506	377	151	239,320	135,067	5,132	119,243	63,244	16,641	1,126,415
	2014	65,341	52,646	24,775	2,618	0	15,431	39,205	10,127	25,124	20,611	16,684	91,276	363,838
TSS (lbs)	2015	16,604	21,894	39,419	4,483	193,970	89	101,930	95,500	56,827	88,960	28,744	24,455	672,875
	2016	201,081	100,540	35,004	9,801	222,747	0	26,883	198,781	41,390	104,546	38,738	20,719	1,000,230
	2017	101,022	185,551	46,490	58,904	768	4,350	6,780	7,494	17,698	113,774	383,671	91,019	1,017,522
	2018	199,830	79,528	17,393	4,696	0	0	0	868	134,107	78,489	86,286	22,351	623,548
	2019	128,085	162,134	330,619	3,374	0	14,844	192,259	61,466	112,925	262,301	299,466	596,431	2,035,819
	2011	27,441		8,5	516		-	20,0	006		7,1	196		63,159
	2012	10,621	9,056	3,635	672	562	0	296	3,013		7,9	97		35,852
-	2013	430	2,697	3,363	3,249	8	3	41,943	23,672	109	2,527	1,340	353	79,693
	2014	24,270	19,554	7,623	805	0	2,768	5,109	1,320	4,506	3,696	2,992	16,370	89,013
TKN (lbs)	2015	1,384	1,825	1,314	149	4,032	2	7,092	6,645	1,849	2,965	958	815	29,030
	2016	6,247	3,124	4,501	1,260	17,105	0	2,054	15,185	5,322	13,442	4,981	2,663	75,883
-	2017	6,502	11,943	3,857	4,887	36	205	952	1,052	640	4,114	13,874	3,291	51,352
-	2018	3,074	1,224	7,212	1,947	0	0	0	120	2,063	1,208	1,327	344	18,519
-	2019	11,459	14,506	29,579	302	0	501	5,687	1,818	3,340	7,759	8,858	17,643	89,993
	2011	2,	210	1,1	20		_	2,5	27		. 79	92		6,649
-	2012	677	577	511	94	72	0	500	5,086		1,2	283		8,800
	2013	43	268	455	439	1	0	2,973	1,678	15	354	188	49	6,463
	2014	3,491	2,813	972	103	0	464	561	145	755	619	501	2,743	13,166
TP (lbs)	2015	159	209	184	21	408	0	668	626	265	415	134	114	3,203
-	2016	540	270	954	267	1,414	0	171	1,262	1,128	2,850	1,056	565	10,477
-	2017	579	1,064	471	596	5	31	154	171	99	634	2,137	507	6,448
-	2018	407	162	673	256	0	0	0	15	273	160	176	46	2,168
-	2019	1,348	1,706	3,478	36	0	45	762	244	448	1,040	1,187	2,365	11,311
	2015	122	148	116	13	218	0	456	427	167	262	85	72	2,086
-	2016	274	140	614	172	859	0	104	766	726	1,834	680	363	6,529
DOP (lbs)	2010	327	601	277	351	3	19	104	117	62	397	1,339	318	3,916
,	2018	132	53	949	182	0	0	0	10	89	52	57	15	1,539
-	2018	425	538	1,098	182	0	24	479	153	281	653	746	1,485	5,468

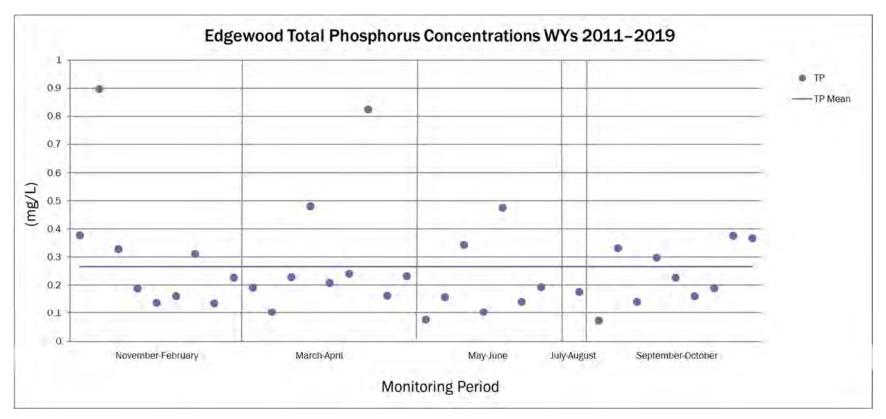
- = no sample.

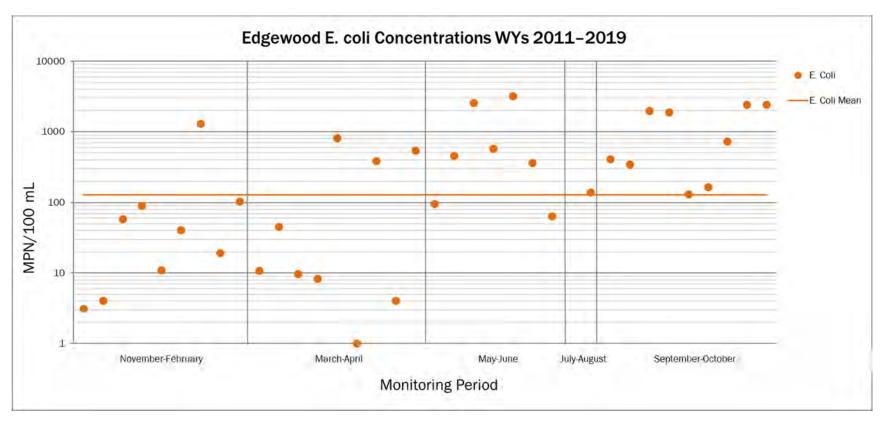
¹ The EPA Simple Method is used to fill in gaps in flow summaries for periods without a complete measured storm flow history. The resulting values are then used in pollutant loading estimates.

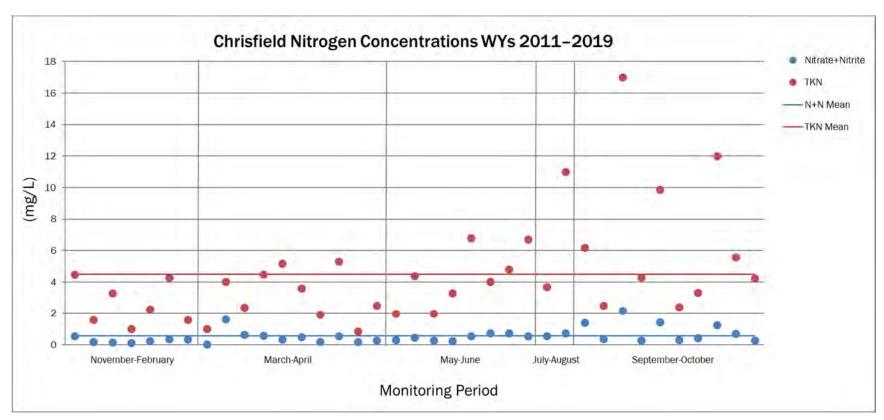

² E. coli is not included in pollutant loads. E. coli values are reported in MPN/100 ml. This is a most probable number and not a mass; therefore, a pollutant loading mass is not an appropriate estimate.

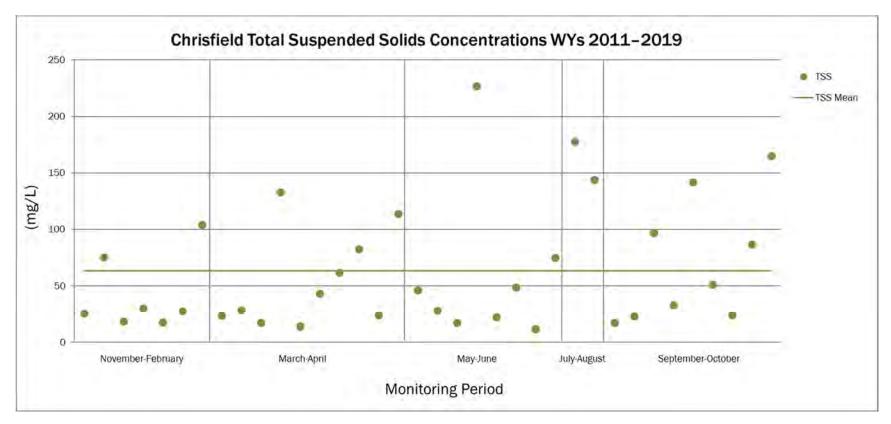
Figures


- Figure 1. Nitrogen Concentrations Edgewood
- Figure 2. TSS Concentrations Edgewood
- Figure 3. TP Concentrations Edgewood
- Figure 4. E. coli Concentrations Edgewood
- Figure 5. Nitrogen Concentrations Chrisfield
- Figure 6. TSS Concentrations Chrisfield
- Figure 7. TP Concentrations Chrisfield
- Figure 8. E. coli Concentrations Chrisfield
- Figure 9. Edgewood Flow Summary
- Figure 10. Chrisfield Flow Summary
- Figure 11. Edgewood Precipitation Summary
- Figure 12. Chrisfield Precipitation Summary

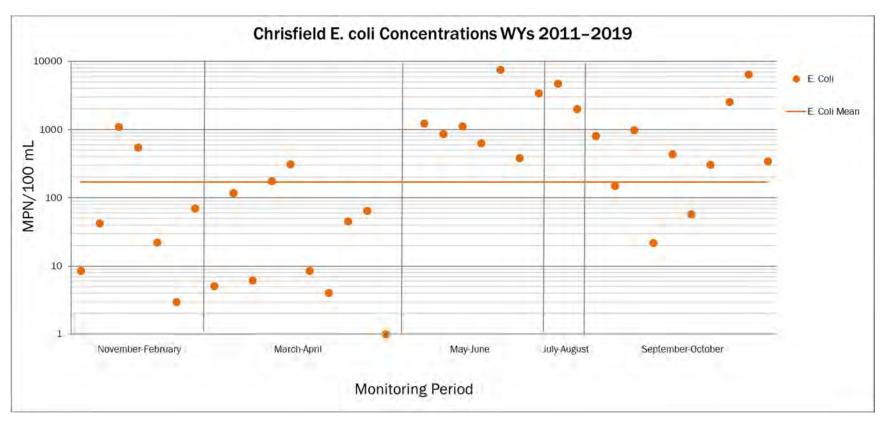


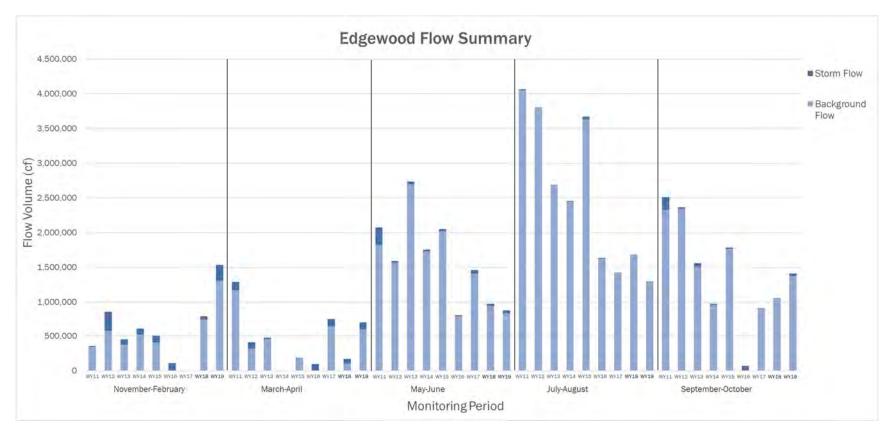


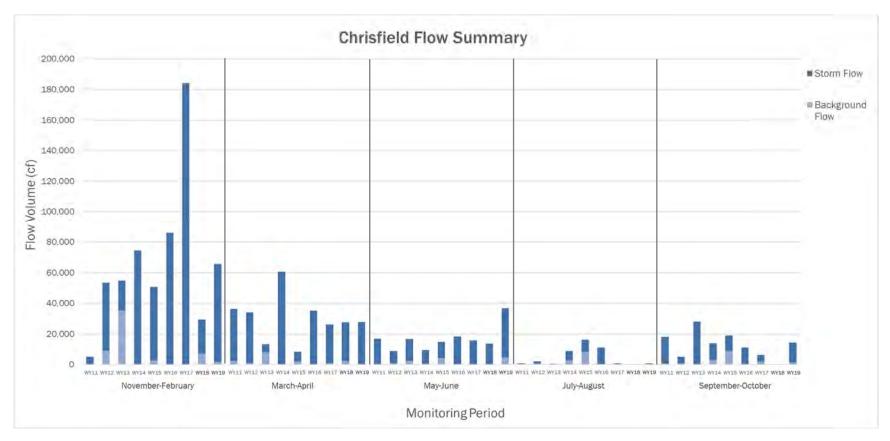




Y-axis is presented as a logarithmic scale.







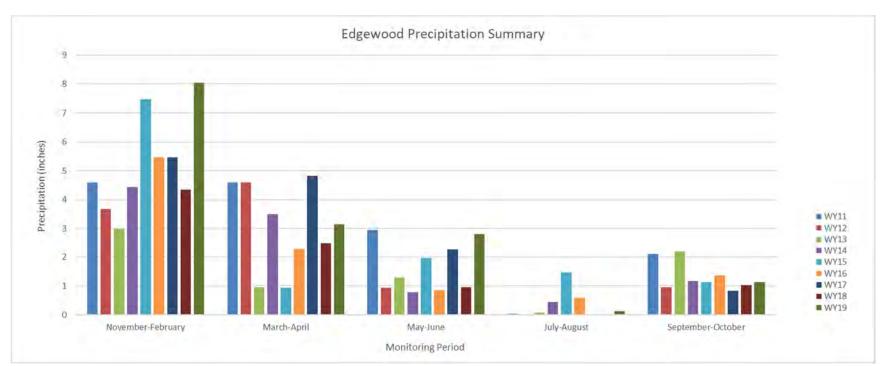
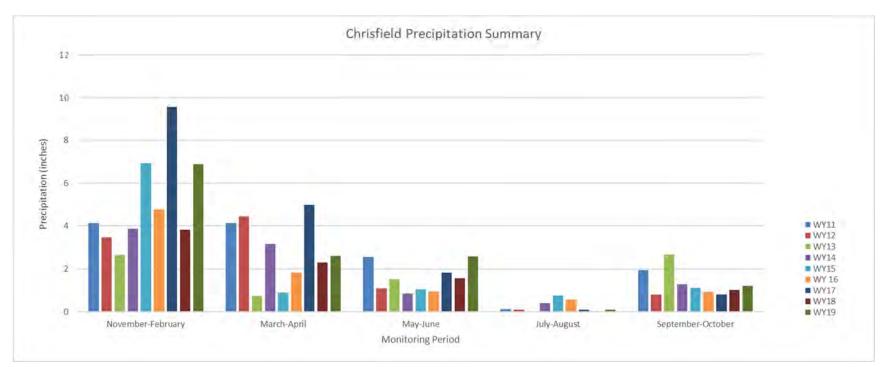
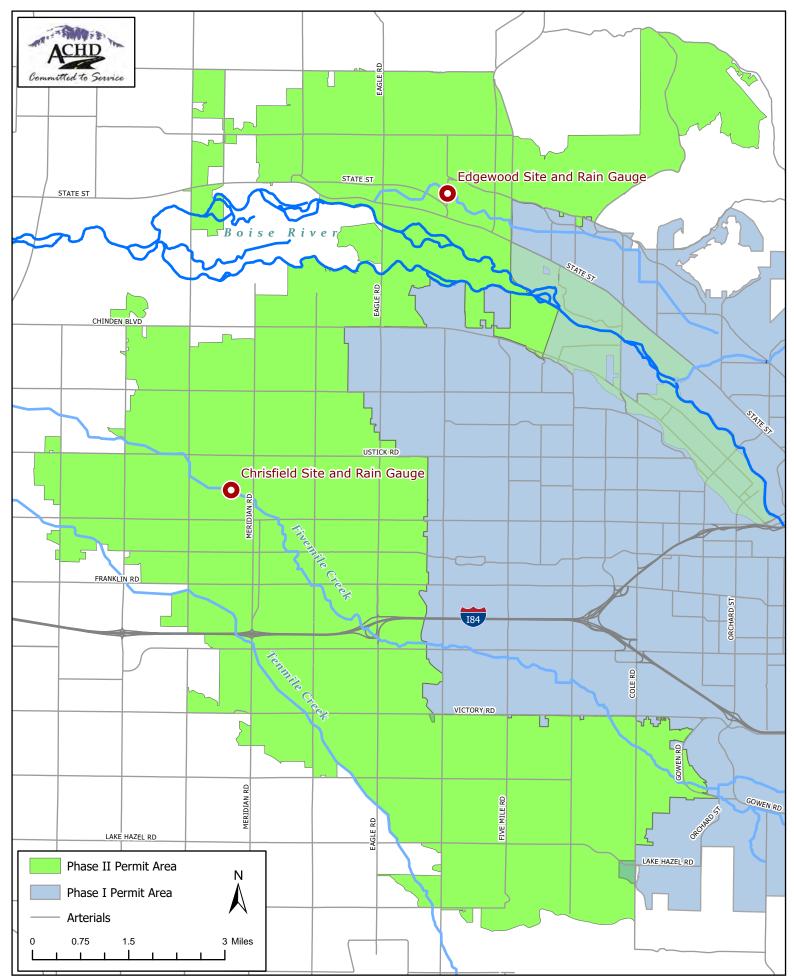
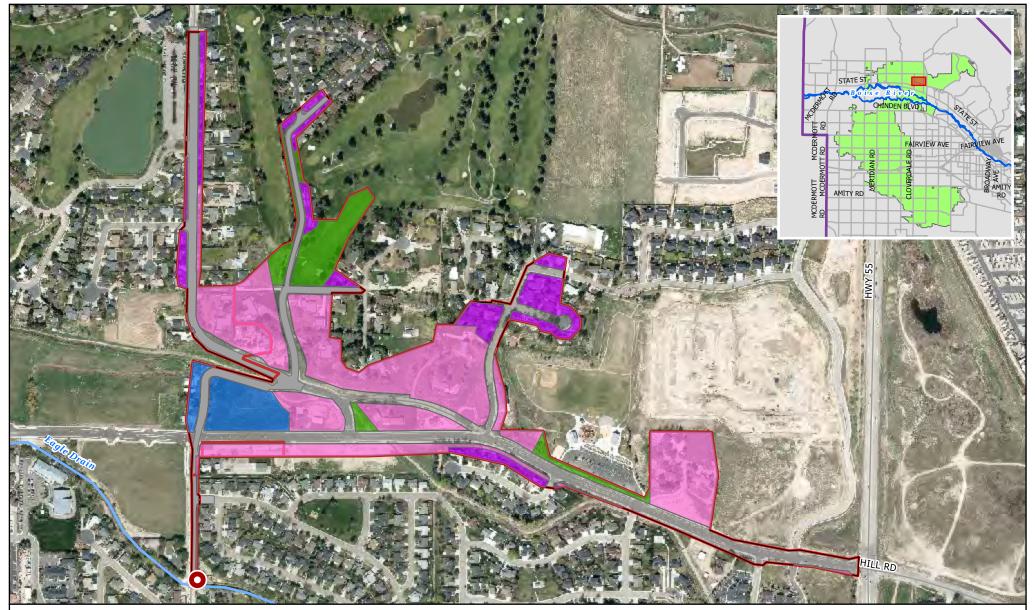

Y-axis is presented as a logarithmic scale.

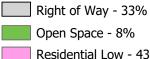
Figure 11

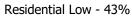



Figure 12

Appendix A: Site Maps


Phase II NPDES Monitoring Locations Edgewood Monitoring Station Map Chrisfield Monitoring Station Map Phase II City Area of impacts


Phase II NPDES Monitoring Locations

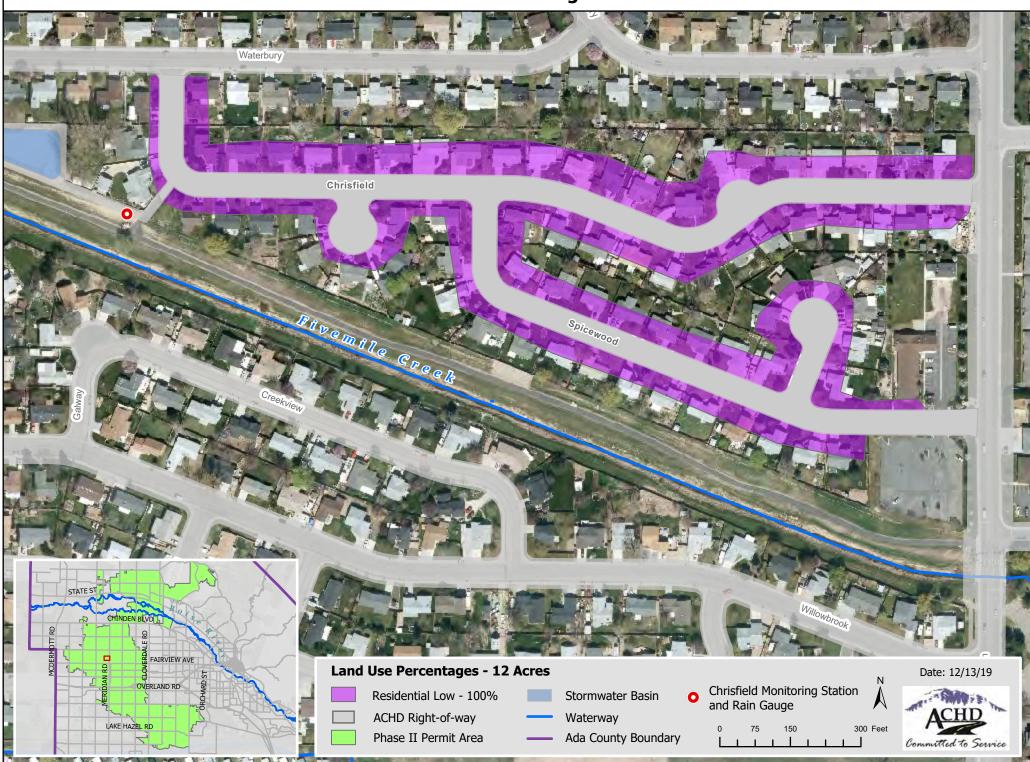


Edgewood Monitoring Station

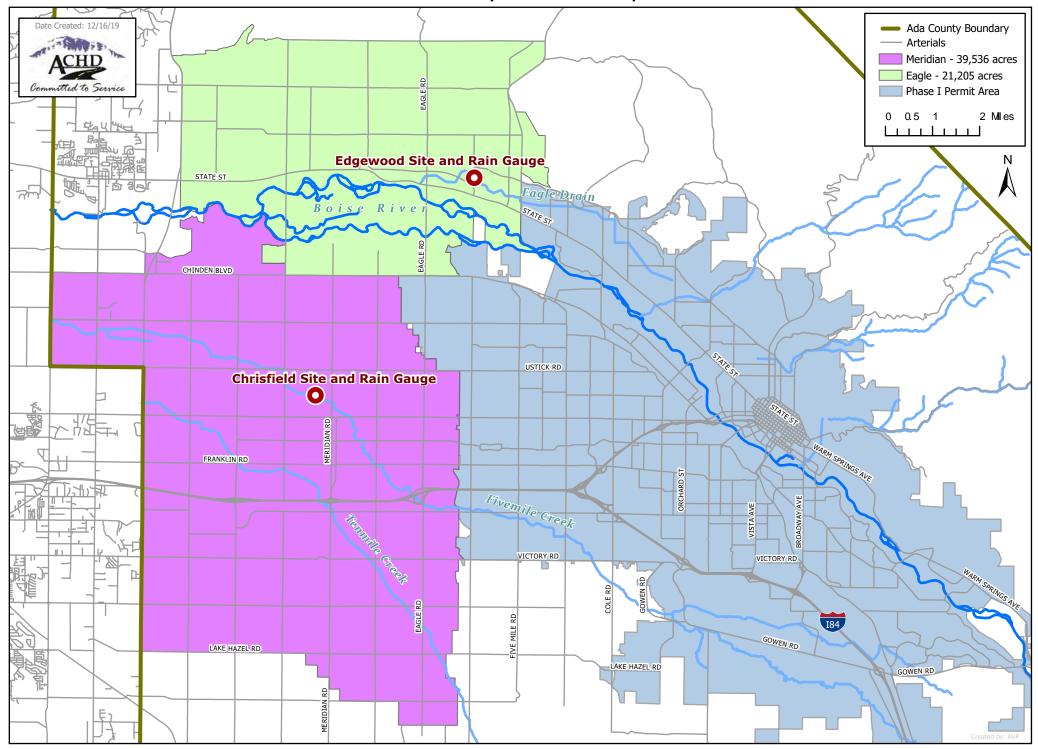
Land Use Percentages

- Residential Medium 10%
- Agriculture 6% Edgewood Drainage Area Waterway
- Arterials

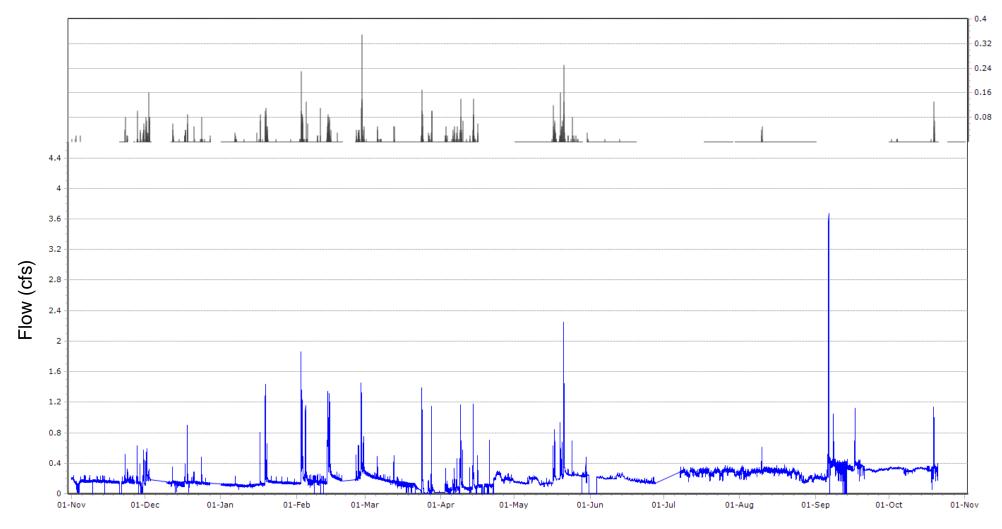
- Edgewood Monitoring Station and Rain Gauge 0
 - Phase II Permit Area
 - Ada County Boundary
- 2.5 5


0

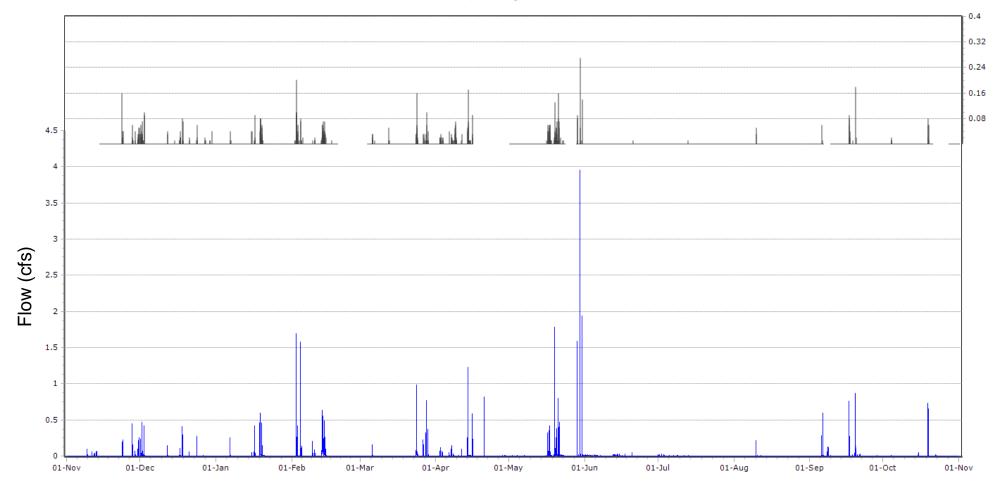
N



Chrisfield Monitoring Station


Phase II City Areas of Impact

Appendix B: Water Year 2019 Monitoring Period Summaries and Hydrographs



Edgewood Annual Hydrograph - Water Year 2019

	Rainfall (Edgewood Rain Gauge)
—	Flow

Chrisfield Annual Hydrograph - Water Year 2019

(Chrisfield Rain Gauge)	
— Flow	

Technical Memorandum

950 West Bannock Street, Suite 350 Boise, ID 83702

Phone: 208-389-7700 Fax: 208-389-7750

- Prepared for: Ada County Highway District (ACHD)
- Project Title: Phase II Stormwater Outfall Monitoring

Project No.: 152760

Technical Memorandum

- Subject: ACHD Phase II Monitoring Period Summary for November 2018 through February 2019
- Date: August 23, 2019
- To: Monica Lowe Tammy Lightle
- From: Andy Weigel, Project Manager

Prepared by:

andrew Lorrand

Andrea Leonard, Project Scientist

Reviewed by:

Andy Weigel, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 1, 2017. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List of Tables	ii
Section 1: Project Summary	1
Section 2: Monitoring Period Narrative National Weather Service Summary Manitaring Station Summary.	1
Monitoring Station Summary Section 3: Storm Narrative	3
Section 4: Pollutant Loading	
Section 5: Deviations/Problems Section 6: References	
Attachment A: Monitoring Period Summary Tables	
Attachment B: Monitoring Period Hydrographs	
Attachment C: Analytical Reports and Field Sheets	C

List of Tables

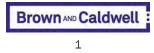
Section 1: Project Summary

Table 1 is a summary of the types of data collected during the supplemental monitoring period for Water Year (WY) 2019 Phase II Stormwater Monitoring.

	Table 1. Project Summary	
Sample Period	November 2018	-February 2019
Station	Edgewood	Chrisfield
Rain (inches)	8.04 ¹	6.88 ¹
Storm data flow (cubic feet)	229,023	64,026
Wet grab	Yes	Yes
Composite	Yes	No
Field parameters	Yes	Yes
QA/QC	No	Yes

¹Rainfall data gaps were supplemented with Agrimet data, maintained by the U.S. Bureau of Reclamation.

Section 2: Monitoring Period Narrative


This technical memorandum describes the Phase II Stormwater Monitoring completed for Ada County Highway District (ACHD) from November 2018 through February 2019. Flow and rain data were collected during this period from the Edgewood and Chrisfield Phase II monitoring stations. Analytical data was collected during two successful storm events. The first event took place on November 23, 2018 and the second event on November 27, 2018.

National Weather Service Summary

The National Weather Service (NWS) prepares a summary of precipitation observations each month for inclusion in an overall monthly climate summary. The NWS monthly climate summary is made available through the local Boise Weather Forecast Office on the NWS website at http://www.nws.noaa.gov/climate/index.php?wfo=boi. Precipitation summaries from the NWS are included in the text below. Summaries are pared down but are otherwise quoted directly with minor punctuation and grammatical edits for readability.

The average temperature for November 2018 was near normal. Precipitation totaled 0.80 inch, 60 percent of normal, most falling during the last nine days of the month. There was no measurable precipitation from the 5th through the 21st. But despite the wet weather at the end of the month, it still ranks among the driest 25 percent of Novembers at the airport. The first snow of the season fell at the airport in the early morning hours of the 24th. The longer nights, shorter days, and lower sun angle, combined with warm air aloft, resulted in a temperature inversion. Weak winds at all levels kept warm air from mixing down to the surface, so temperatures in the valley averaged a few degrees below normal. The change to a progressive flow pattern which began on the 21st broke the inversion, allowing temperatures to warm to near or above normal for the rest of the month.

The average temperature for December 2018 was slightly warmer than normal, although the month started out cold, with the temperature staying below freezing from the 5th through the

8th. The rest of the month was relatively mild, with daily averages near or above normal. Precipitation was near normal, totaling 1.4 inches, but total snowfall was slightly below normal at 4.9 inches. Half of the total precipitation fell on the first two days of the month, when a deep upper level trough from the north Pacific crossed the area. On the 17th and the 18th two closely spaced Pacific weather systems brought nearly a third of an inch of rain. Light snow fell on the 23rd and the 29th, but most of it melted in response to afternoon temperatures in the upper 30s and lower 40s.

January ranked 14th warmest in the 80 years of airport records. Precipitation was a third of an inch below normal, totaling 1.08 inches. Most of it fell in one day on the 19th, when three quarters of an inch fell at the airport. While not a record, it was the largest daily amount so far this winter. Light snowfalls left no more than traces on the ground on the 7th, 16th, and 23rd. After each event, the snow was gone by afternoon as temperatures warmed into the 40s. The combination of clear skies and long winter nights allowed the air in the valley to cool, creating a temperature inversion capped by the warm air at high elevations. On the 23rd a high-pressure ridge was building near the coast. A weak disturbance rounding the north portion of the ridge crossed the Boise area, bringing another light snowfall. The rest of the month stayed mild and dry as the ridge gradually shifted inland.

After a relatively mild and nearly snow-free January, February brought a return to winter. February, with an average temperature only a couple of degrees below normal, was colder than January. The low of 10 degrees on the 22nd was the coldest temperature of the winter. Brief periods of southwest flow aloft enabled temperatures to reach or exceed normal values for a few days at the beginning, middle, and end of the month. The warm spells were accompanied by the wettest weather of the month, due to disturbances embedded in the flow picking up moisture from off the California coast. Measurable precipitation was recorded on all but four days, for a February total precipitation of 3.71 inches. It was the wettest February since precipitation records began in 1878. It was the 9th snowiest February on record, with 11.6 inches falling during the month. The greatest depth for the month and the winter was 5 inches on the 21st.

Monitoring Station Summary

Prior to WY 2019, analytical data was derived from grab samples at Edgewood and Chrisfield. For WY 2019, however, composite samplers were installed at both sites to capture flow weighted composite samples during storm events to obtain event mean concentrations rather than discrete data. These samplers will continue to be used going forward with this permit. More equipment details will be outlined in the WY 2019 Annual Report.

A summary of data collected for each monitoring station over the entire monitoring period (Nov–Feb) and for the targeted storms is provided in Table 2. Monthly summaries are presented in Tables 3–6 (Nov–Feb). Monitoring period summary tables are included in Attachment A.

November–February summary hydrographs are presented in Figures 1 (Edgewood) and 2 (Chrisfield). Monthly hydrographs for each monitoring station in this monitoring period are provided in chronological order in Figures 3–10. Included on each hydrograph are recorded hourly precipitation at the local rain gauge (inches), flow (cubic feet per second), and sample collection times, as applicable. Hydrographs are included in Attachment B.

Section 3: Storm Narrative

Three storms were targeted during the November–February monitoring period. Wet grab samples were collected at Chrisfield on November 23, 2018, and at both sites on November 27, 2018. A composite sample was collected at Edgewood on November 27, 2018. Both sites were targeted for composite samples on February 2, 2019, but both were unsuccessful. A successful composite sample was not collected at Chrisfield during the November – February monitoring period. See Section 5 for additional notes about data collected during the monitoring period.

November 23, 2018

On Wednesday morning, November 21, the National Weather Service issued a forecast for rain showers in the Boise area from late morning Friday into the afternoon and evening. Setup was accomplished Wednesday afternoon to collect composite samples at both Chrisfield and Edgewood. An expected precipitation depth of 0.22 inch was used to set trigger volumes at both monitoring sites. Precipitation started around 1545 Friday afternoon and continued lightly throughout the evening. Precipitation totaled 0.30 inch at Chrisfield, and Edgewood's rain gauge data is not available for this storm event.

A two-member team mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on the afternoon of November 23, 2019. Wet grab samples were collected at Edgewood and Chrisfield monitoring stations and submitted to the West Boise Water Quality Lab (WQL) at 1711 on November 23. Laboratory analytical reports are included in Attachment C.

November 27, 2018

On Monday morning, November 26, the National Weather Service issued a forecast for rain showers in the Boise area from late morning Tuesday into the afternoon and evening. Chance of precipitation was 100 percent for Tuesday evening; a total precipitation of 0.20 inch was predicted. Setup was accomplished Monday afternoon to collect composite samples at both Chrisfield and Edgewood. An expected precipitation depth of 0.11 inch was used to set trigger volumes at both monitoring sites. Precipitation started around 1700 on Tuesday evening, and small amounts continued until around 2200. Precipitation totals were 0.11 inch at Chrisfield, and 0.14 inch at Edgewood.

A two-member team mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on the afternoon of November 27, 2019. Wet grab samples were collected at Edgewood and Chrisfield monitoring stations and submitted to the West Boise Water Quality Lab (WQL) at 2157 on November 27. Laboratory analytical reports are included in Attachment C.

February 2, 2019

On Friday morning of February 1, the National Weather Service (NWS) issued a forecast for rain showers in the Boise area from around midnight throughout the day on Saturday. Rain was expected to continue into late Saturday night and early Sunday. Setup was accomplished Friday afternoon to collect composite samples at both Chrisfield and Edgewood. An expected precipitation depth of 0.11 inch was used to set trigger volumes at both monitoring sites. Precipitation started around 2000 on Saturday evening, and small waves of precipitation continued until 1200 on February 3. Precipitation totals were 0.75 inch at Chrisfield, and 0.98 inch at Edgewood.

No successful samples were collected during this event. See Section 5 for more information.

Section 4: Pollutant Loading

Water quality results and pollutant loading estimates for the Edgewood and Chrisfield monitoring stations for the November–February monitoring period are included in Table 2. Monthly values and estimates are presented for each individual month as well (Tables 3–6). Estimates for wet weather pollutant loads are calculated based on flow and rain data from the monitoring period. Analytical results from samples collected at Edgewood during the November 27, 2018 storm event were used in pollutant loading estimates to represent the Edgewood/Eagle drainage area for the November–February monitoring period.

Section 5: Deviations/Problems

Precipitation and Flow Data

Flow meters were left installed and operating at both stations throughout the monitoring period. Likewise, precipitation data was recorded continuously at site rain gauges. However, there are several data gaps in both flow and precipitation data. On days when precipitation data was not available at either site, the AgriMet Weather Station rain gauge data is used to estimate storm flow. The AgriMet weather station is maintained by the U.S. Bureau of Reclamation and located at the Western Idaho Fairgrounds, which is approximately 4 miles southeast of the Edgewood monitoring station and 6 miles northeast of the Chrisfield monitoring station.

Because the site-specific rain gauges are not equipped to measure snowfall and snow water equivalency, the overall precipitation amounts recorded at the site rain gauges may not be representative of actual total precipitation during times of snow and freezing conditions. Site rain gauge records were compared to measurements from the Boise, Idaho, AgriMet Weather Station rain gauge to validate event timing and totals for the monitoring period. AgriMet gauges are heated and designed to measure snow and avoid ice buildup that would impede accurate measurement collection. Some of the data gaps mentioned above were due to freezing conditions and were replaced with AgriMet data.

Edgewood

During the November 23, 2018 event, the sampler was programmed incorrectly to accommodate remote sampling program initiation.

Edgewood is missing flow data throughout the monitoring period. Since both Edgewood and Chrisfield have the same data gaps, they most likely resulted from error associated with downloading data. Measured background discharge volume does not include these dates.

Chrisfield

Composite samples were targeted at Chrisfield for all three storm events. During the November 23, 2018 event, the sampler was programmed incorrectly to accommodate remote sampling program initiation. The issue was not discovered until too far into the storm event to initiate the sampling program on-site. A tubing connection came loose during the November 27, 2018 event and the sampler could not pull subsamples. A third attempt to collect a composite sample at Chrisfield was conducted on February 2, 2019. A combined sampling team for Phase I and Phase II sites was used for this event due to moderate forecasted precipitation and no need for grab sample collection at the Phase II sites. Rainfall intensity and amount was significantly higher than anticipated at the beginning of this event and sampling teams were not able to change out the full composite sample quickly enough at Chrisfield and the sample was compromised.

Chrisfield is missing flow data throughout the monitoring period. Since both Edgewood and Chrisfield have the same data gaps, they most likely resulted from error associated with downloading data. Measured back-ground discharge volume does not include these dates.

Section 6: References

- National Weather Service Boise Forecast Office. (2018). Monthly Weather Summary. Retrieved April 3, 2018, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi
- National Weather Service Boise Forecast Office. (2018). Preliminary Monthly Climate Data. Retrieved April 3, 2018, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi
- U.S. Bureau of Reclamation, AgriMet. (2018). Historical Archive (Daily) Data Access. Retrieved april 10, 2018, from AgriMet website: https://www.usbr.gov/pn/agrimet/webarcread.html

Attachment A: Monitoring Period Summary Tables

Table 2

	Monitoring Per	iod Summary	November 1 - February 2	9 (WY19)				
		Edge	wood		Chris	sfield		
	cubio	feet	percent	cubic	feet	percent		
Measured Stormwater Runoff Volume (cf)	229,	023 ¹	15%	64,0	26 ¹	98%		
Background Discharge Volume (cf)	1,304	,721 ¹	85%	1,60	02 ¹	2%		
Total Discharge Volume (cf)	1,533	,744 ¹	100%	65,6	28 ¹	100%		
Estimated Runoff for Monitored Area ²	Edge	wood	Eagle	Chris	field	Meridian		
Monthly Precipitation ³ (in)		8.	04		88			
Drainage Area (acres)	55	.86	22,765	12 26,690				
stimated Stormwater Runoff Volume ⁴ (cf)	174	,604	182,710,296	55,	563	183,305,852		
Nonitored Storm Information		Edgewood (1	1/27/2018)		Chrisfield ((11/23/18)		
Precipitation Amount (in)		0.	14		0.	.30		
Storm Duration (hrs)		!	5		1	11		
Intecedent Dry Period (hrs)		9	18		>2	217		
Recorded Runoff Volume (cf)		2,3	349	864.0				
ample Information								
ample Date and Time		11/27/2	018 21:27	11/23/2018 16:09				
issolved Oxygen (mg/L)		9.	89		7.50			
H (S.U.)		7.94			8.	.22		
onductivity (uS/cm)		167.9			20	15.0		
emperature (°C)		10	0.1		10).55		
itrate + Nitrite as N (mg/L)		1.	26					
otal Suspended Solids (mg/L)		26	6.2					
otal Kjeldahl Nitrogen (mg/L)		0.8	362					
issolved Orthophospate as P (mg/L)		0.1	132					
otal Phosphorus as P (mg/L)		0.2	227					
E.Coli (MPN/100 mL)		10	5.0		23	5.9		
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian		
onduring Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)		
itrate + Nitrite as N	0.32	18.01	7,340	-	-	-		
otal Suspended Solids	6.71	374.55	152,642	-	-	-		
otal Kjeldahl Nitrogen	0.22	12.32	5,022	-	-	-		
Dissolved Orthophosphate as P	0.03	1.89	769	-	-	-		
Fotal Phosphorus as P	0.06	3.25	1,323		-	-		

Notes:

 $^{1}\ensuremath{\,\text{Volumes}}$ do not include dates with missing data.

 2 The "Monitored Area" includes only the area drained by the individual monitoring station.

³ Missing rain gauge data has been supplemented by Agrimet weather station daily precipitation data. See Section 5.

⁴ Estimated stormwater runoff volume is calculated using local precipitation data

Table 3

	Monitoring Perio	od Summary	November 1 - November 3	30 (WY19)			
		Edge	ewood		Chris	sfield	
	cubic	: feet	percent	cubic	feet	percent	
Measured Stormwater Runoff Volume (cf)	24,7	12 ¹	6%	5,68	8 ¹	100%	
Background Discharge Volume (cf)	369,8	812 ¹	94%	0		0%	
Total Discharge Volume (cf)	394,5	524 ¹	100%	5,68	8 ¹	100%	
Estimated Runoff for Monitored Area ²	Edge	wood	Eagle	Chrisf	ïeld	Meridian	
Monthly Precipitation ³ (in)		0.	75		05		
Drainage Area (acres)	55.	.86	22,765	12 26,690			
Estimated Stormwater Runoff Volume ⁴ (cf)	16,2	288	17,043,871	8,48	80	27,975,457	
Monitored Storm Information		Edgewood (1	11/27/2018)		Chrisfield (11/23/18)	
Precipitation Amount (in)		0.	14		0.	30	
Storm Duration (hrs)		!	5		1	1	
Antecedent Dry Period (hrs)		9	98		>2	17	
Recorded Runoff Volume (cf)		2,3	349	864.0			
Sample Information							
Sample Date and Time		11/27/2	018 21:26	11/23/2018 16:04			
Dissolved Oxygen (mg/L)		9.	89	7.50			
H (S.U.)		7.94			8.	22	
Conductivity (uS/cm)		167.9			20	5.0	
emperature (°C)		10	0.1		10	.55	
litrate + Nitrite as N (mg/L)		1.	26		-	-	
otal Suspended Solids (mg/L)		26	6.2		-	-	
otal Kjeldahl Nitrogen (mg/L)		0.8	862		-	-	
Dissolved Orthophospate as P (mg/L)		0.1	132		-	-	
otal Phosphorus as P (mg/L)		0.2	227		-	-	
E.Coli (MPN/100 mL)		10	5.0		23	5.9	
Pollutant Loading Estimates	Edgev	wood	Eagle	Christ	field	Meridian	
Shutani Louding Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
litrate + Nitrite as N	0.03	1.94	792	-	-	-	
otal Suspended Solids	0.72	40.41	16,470	-	-	-	
otal Kjeldahl Nitrogen	0.02	1.33	542	-	-	-	
Dissolved Orthophosphate as P	0.00	0.20	83	-	-	-	
Total Phosphorus as P	0.01	0.35	143	-	-	-	

Notes:

 $^{1}\ensuremath{\,\text{Volumes}}$ do not include dates with missing data.

 2 The "Monitored Area" includes only the area drained by the individual monitoring station.

³ Missing rain gauge data has been supplemented by Agrimet weather station daily precipitation data. See Section 5.

⁴ Estimated stormwater runoff volume is calculated using local precipitation data

Table 4

	Monitoring Perio	od Summary	December 1 - December 3	1 (WY19)				
		Edge	ewood		Chris	sfield		
	cubio	: feet	percent	cubic	feet	percent		
Measured Stormwater Runoff Volume (cf)	36,	389	14%	13,2	12 ¹	97%		
Background Discharge Volume (cf)	220,8	867 ¹	86%	39	6 ¹	3%		
Total Discharge Volume (cf)	257,2	256 ¹	100%	13,6	08 ¹	100%		
Estimated Runoff for Monitored Area ²	Edge	wood	Eagle	Chris	field	Meridian		
Monthly Precipitation ³ (in)		1	8		1	.1		
Drainage Area (acres)	55.	.86	22,765	1	2	26,690		
Estimated Stormwater Runoff Volume ³ (cf)	39,	090	40,905,290	8,8	84	29,307,622		
Monitored Storm Information		Edgewood (1	11/27/2018)		Chrisfield (11/23/18)		
Precipitation Amount (in)		0.	14		0.	30		
Storm Duration (hrs)			5		1	1		
Antecedent Dry Period (hrs)		g	98		>2	217		
Recorded Runoff Volume (cf)		2,349 864.0				4.0		
Sample Information								
Sample Date and Time		11/27/2	018 21:26		11/23/2	018 16:04		
Dissolved Oxygen (mg/L)		9.89 7.				7.50		
oH (S.U.)		7.94			8.22			
Conductivity (uS/cm)		167.9 205.0				5.0		
emperature (°C)		10.1 10.55				.55		
litrate + Nitrite as N (mg/L)		1.	26					
otal Suspended Solids (mg/L)		20	6.2					
otal Kjeldahl Nitrogen (mg/L)		0.8	862					
Dissolved Orthophospate as P (mg/L)		0.:	132					
otal Phosphorus as P (mg/L)		0.2	227					
E.Coli (MPN/100 mL)		10	5.0		23	5.9		
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian		
condume country countr	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)		
litrate + Nitrite as N	0.05	2.86	1,166	-	-	-		
otal Suspended Solids	1.07	59.51	24,253	-	-	-		
otal Kjeldahl Nitrogen	0.04	1.96	798	-	-	-		
Dissolved Orthophosphate as P	0.01	0.30	122	-	-	-		
Total Phosphorus as P	0.01	0.52	210		-	-		

Notes:

 $^{1}\ensuremath{\,\text{Volumes}}$ do not include dates with missing data.

 2 The "Monitored Area" includes only the area drained by the individual monitoring station.

³ Missing rain gauge data has been supplemented by Agrimet weather station daily precipitation data. See Section 5.

⁴ Estimated stormwater runoff volume is calculated using local precipitation data

Table 5

	Monitoring Pe	eriod Summar	y January 1 - January 31 (WY19)			
			wood	Chrisfield			
	cubio	: feet	percent	cubic	feet	percent	
Measured Stormwater Runoff Volume (cf)	26,	867	8%	15,0	084	97%	
Background Discharge Volume (cf)	347,	425	92%	46	68	3%	
Total Discharge Volume (cf)	374	292	100%	15,5	552	100%	
Estimated Runoff for Monitored Area ¹	Edge	wood	Eagle	Chris	field	Meridian	
Monthly Precipitation (in)		0.	93		0	.93	
Drainage Area (acres)	55.	.86	22,765	1	2	26,690	
Estimated Stormwater Runoff Volume ² (cf)	20,	197	21,134,400	7,5	11	24,778,262	
Monitored Storm Information		Edgewood (1	1/27/2018)		Chrisfield	(11/23/18)	
Precipitation Amount (in)		0.	14		0	.30	
Storm Duration (hrs)			5		1	11	
Antecedent Dry Period (hrs)		ç	8		>2	217	
Recorded Runoff Volume (cf)		2,3	349		86	64.0	
Sample Information							
Sample Date and Time		11/27/2	018 21:26		11/23/2	018 16:04	
Dissolved Oxygen (mg/L)		9.89 7.50				.50	
pH (S.U.)		7.94 8.22				.22	
Conductivity (uS/cm)		167.9 205.0					
Temperature (°C)		10).1		10	.55	
Nitrate + Nitrite as N (mg/L)		1.	26				
Total Suspended Solids (mg/L)		20	6.2				
Total Kjeldahl Nitrogen (mg/L)		0.8	362				
Dissolved Orthophospate as P (mg/L)		0.:	132				
Total Phosphorus as P (mg/L)		0.2	227				
E.Coli (MPN/100 mL)		10	5.0		23	5.9	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian	
	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
Nitrate + Nitrite as N	0.04	2.11	861	-	-	-	
Total Suspended Solids	0.79	43.94	17,907	-	-	-	
Total Kjeldahl Nitrogen	0.03	1.45	589	-	-	-	
Dissolved Orthophosphate as P	0.00	0.22	90	-	-	-	
Total Phosphorus as P	0.01	0.38	155	-	-	-	

Notes:

 $^{1}\,\mbox{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

²Estimated stormwater runoff volume is calculated using local precipitation data

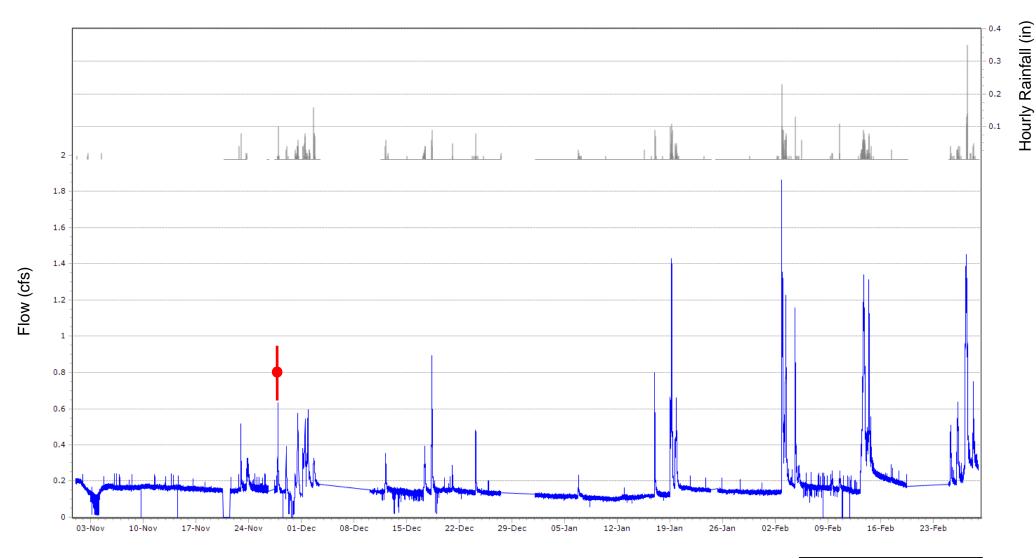
Table 6

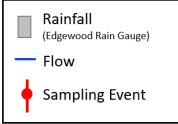
	Monitoring Pe	riod Summary	February 1 - February 29	(WY19)			
		Edge	wood		Chri	sfield	
	cubio	feet	percent	cubic	feet	percent	
Measured Stormwater Runoff Volume (cf)	141,	055 ¹	28%	30,0	42 ¹	98%	
Background Discharge Volume (cf)	366,	617 ¹	72%	73	8 ¹	2%	
Total Discharge Volume (cf)	507,	672 ¹	100%	30,7	'80 ¹	100%	
Estimated Runoff for Monitored Area ²	Edge	wood	Eagle	Chris	field	Meridian	
Monthly Precipitation ³ (in)		4.	56		3	.8	
Drainage Area (acres)	55	.86	22,765	1	2	26,690	
Estimated Stormwater Runoff Volume ⁴ (cf)	99,	029	103,626,735	30,0	689	101,244,512	
Nonitored Storm Information		Edgewood (1	11/27/2018)		Chrisfield ((11/23/18)	
Precipitation Amount (in)		0.	14		0.	.30	
Storm Duration (hrs)		5 11					
Antecedent Dry Period (hrs)		ç	18		>2	217	
Recorded Runoff Volume (cf)		2,3	349	864.0			
ample Information							
ample Date and Time	11/27/2018 21:26 11/23/2018 1				018 16:04		
issolved Oxygen (mg/L)	9.89 7.50				.50		
H (S.U.)		7.94 8.22				.22	
onductivity (uS/cm)		167.9 205.0				15.0	
emperature (°C)		10.1 10.55).55	
itrate + Nitrite as N (mg/L)		1.	26				
otal Suspended Solids (mg/L)		20	6.2				
otal Kjeldahl Nitrogen (mg/L)		0.8	362				
issolved Orthophospate as P (mg/L)		0.:	132				
otal Phosphorus as P (mg/L)		0.227					
Coli (MPN/100 mL)		10	5.0		23	5.9	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian	
ondum Edung Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
itrate + Nitrite as N	0.20	11.09	4,521	-	-	-	
otal Suspended Solids	4.13	230.68	94,012	-	-	-	
otal Kjeldahl Nitrogen	0.14	7.59	3,093	-	-	-	
Dissolved Orthophosphate as P	0.02	1.16	474	-	-	-	
Fotal Phosphorus as P	0.04	2.00	815	-	-	-	

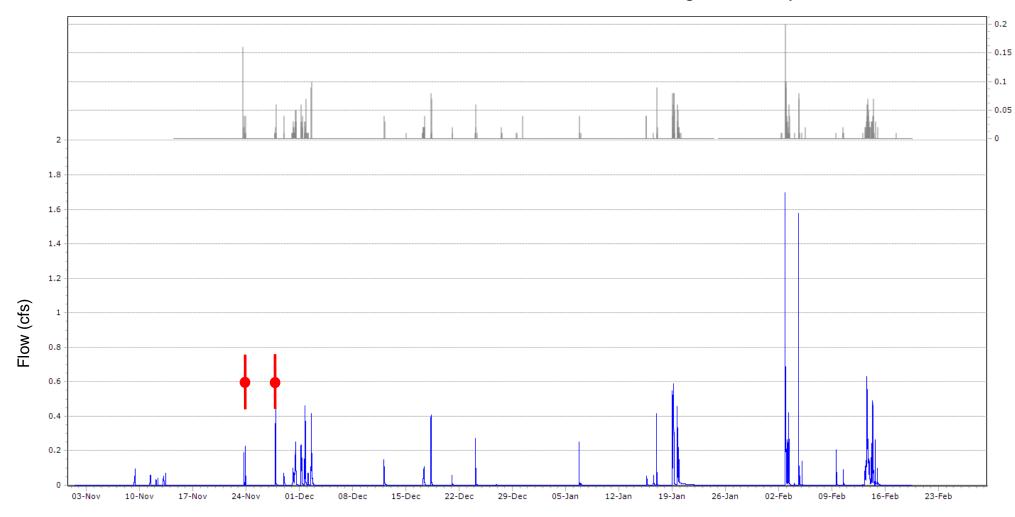
Notes:

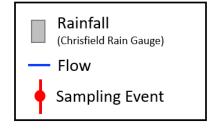
 $^{1}\ensuremath{\,\text{Volumes}}$ do not include dates with missing data.

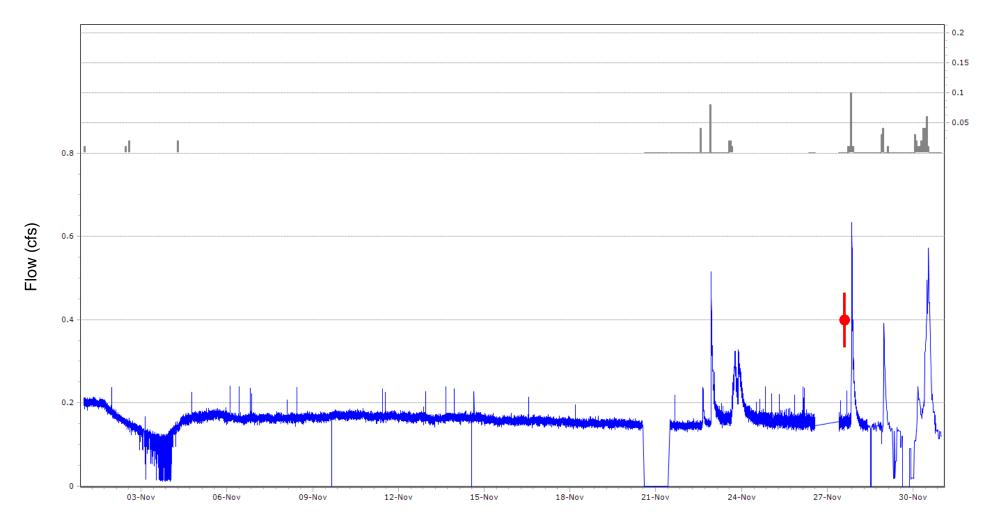
 2 The "Monitored Area" includes only the area drained by the individual monitoring station.

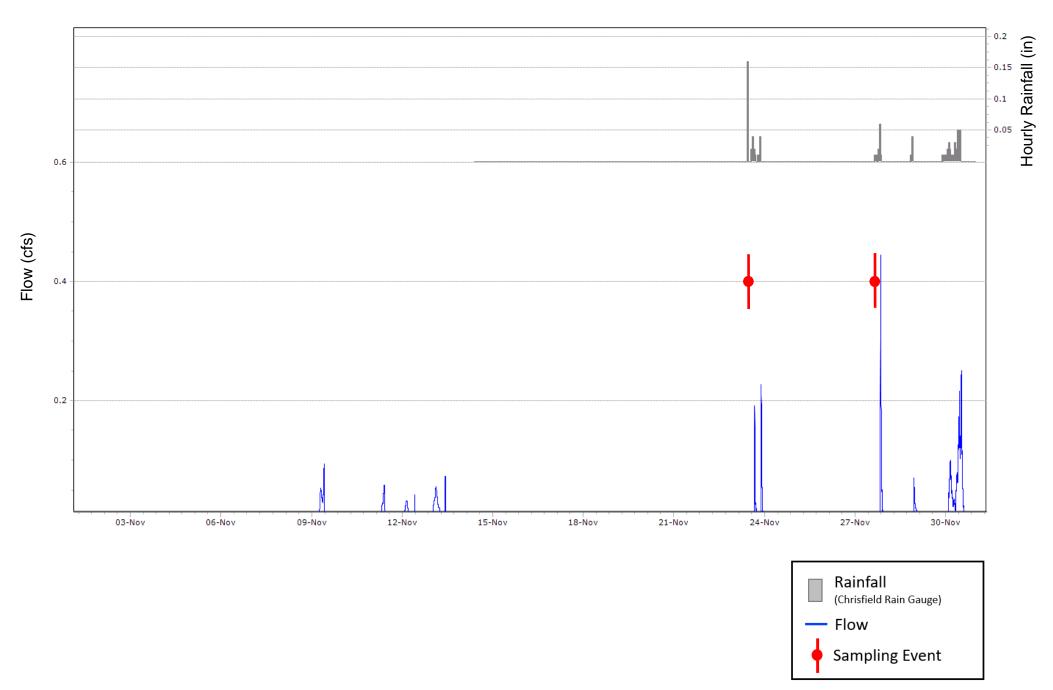

³ Missing rain gauge data has been supplemented by Agrimet weather station daily precipitation data. See Section 5.

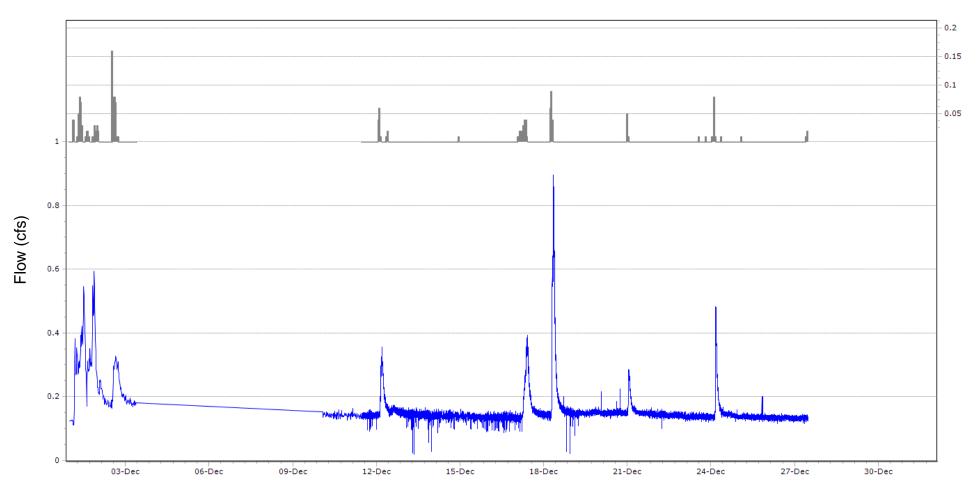

⁴ Estimated stormwater runoff volume is calculated using local precipitation data

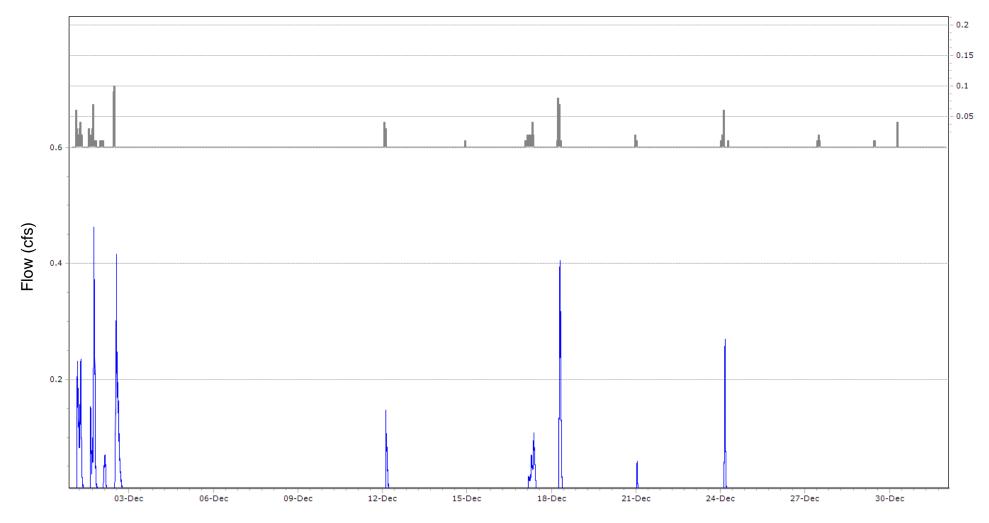

Attachment B: Monitoring Period Hydrographs


Edgewood - Water Year 2019 - November 2018 through February 2019

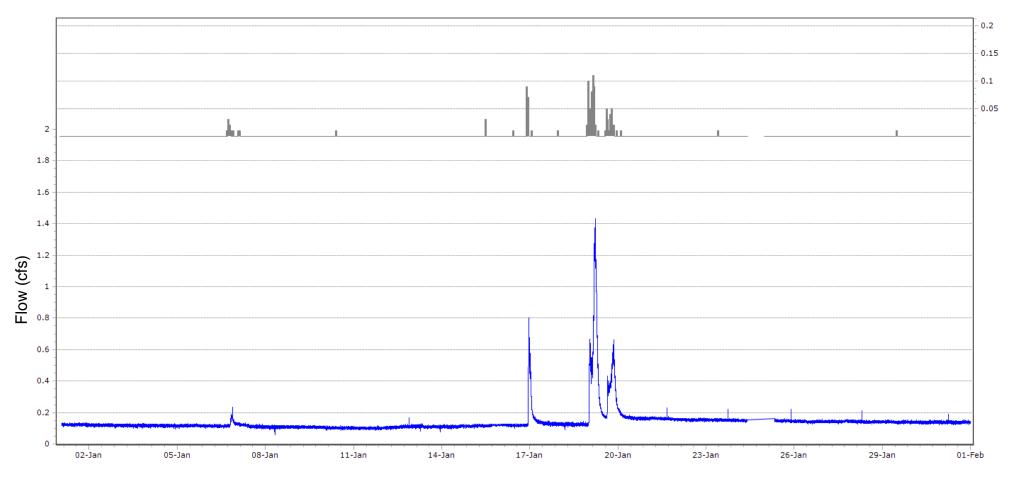


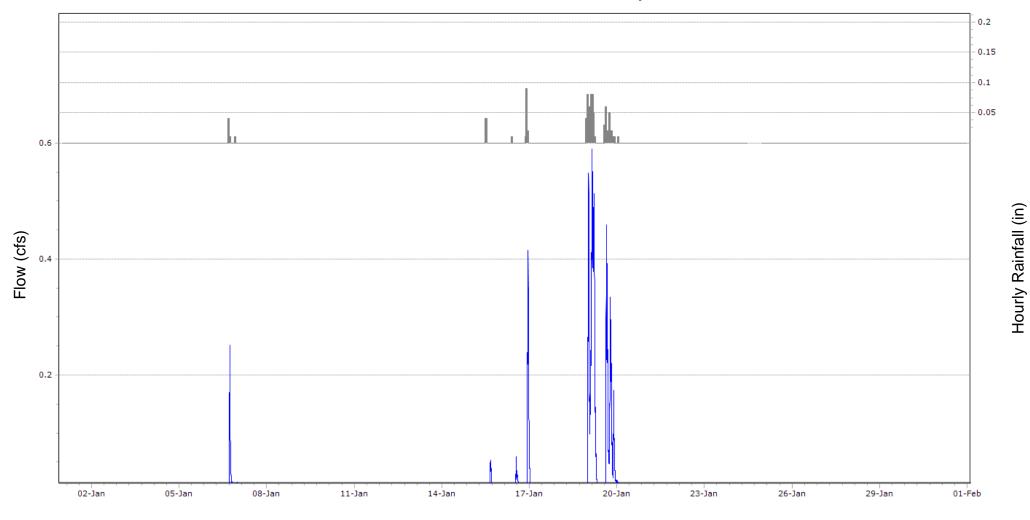

Chrisfield - Water Year 2019 - November 2018 through February 2019


Edgewood - Water Year 2019 - November 2018

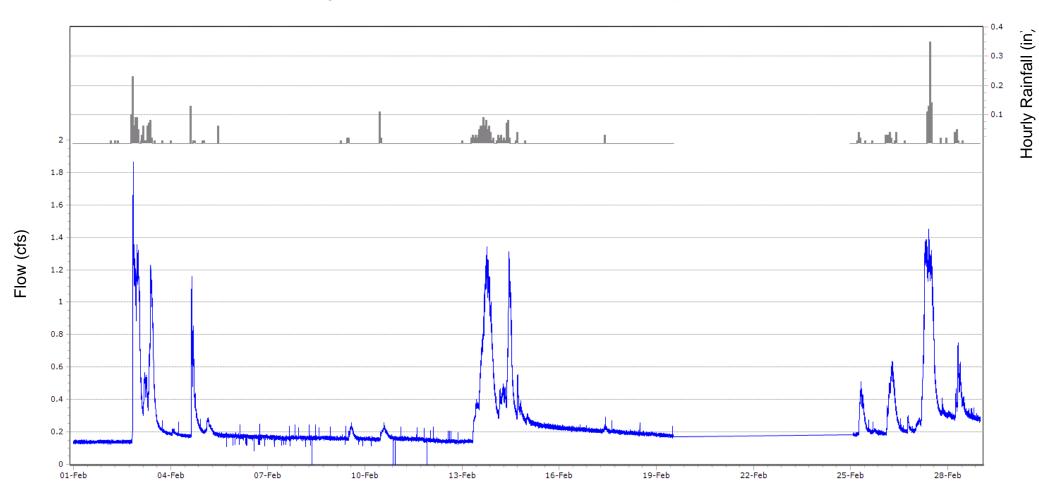

Rainfall (Edgewood Rain Gauge) Flow Sampling Event Chrisfield - Water Year 2019 - November 2018

Edgewood - Water Year 2019 - December 2018

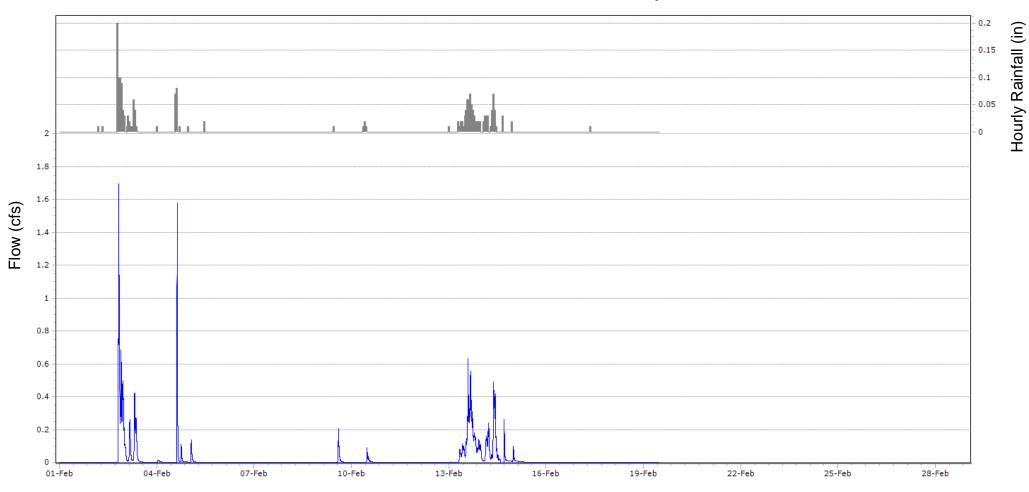





Edgewood - Water Year 2019 - January 2019



Chrisfield - Water Year 2019 - January 2019



Edgewood - Water Year 2019 - February 2019

(Edgewood Rain Gauge)
— Flow

Chrisfield - Water Year 2019 - February 2019

	Rainfall (Chrisfield Rain Gauge)
—	Flow

Attachment C: Analytical Reports and Field Sheets

Report Date: 11/29/2018 09:33

a = 00

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualifiers	Date Sampled	Date Received
8AC0090-01	ACST2B	181123-09-WG	Water	11/23/2018	11/23/2018
8AC0090-02	ACST2B	181123-09-101	Water	11/23/2018	11/23/2018

Report Date: 11/29/2018 09:33

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST2	2B				Location Description:	181123-0	9-WG		
Date/Time Collecte	ed: 11/23/2	2018 16:04	Ļ							
Lab Number:	8AC00	90-01				Sample Collector:	ABW			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology E. Coli	B8K2301	235.9 N	IPN/100 mL	. 1.0	1.0	Colilert	11/23/18 18:25	11/24/18 18:25	ASM	
Wet Chemistry										
Chlorine Screen	B8K2402	Absent				SM 4500-CL G-2000 mod	11/23/18	11/23/18 18:13	ASM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Analysis Report

Location:	ACST2	2B				Location Description:	181123-09	9-101		
Date/Time Collecte	d: 11/23/2	2018 12:00								
Lab Number:	8AC00	90-02				Sample Collector:	ABW			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology										
E. Coli	B8K2301	198.9 M	PN/100 mL	. 1.0	1.0	Colilert	11/23/18 18:25	11/24/18 18:25	ASM	
Wet Chemistry										
Chlorine Screen	B8K2402	Absent				SM 4500-CL G-2000 mod	11/23/18	11/23/18 18:13	ASM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Microbiology									
Batch: B8K2301 Blank (B8K2301-BLK1) E. Coli	Absent						11/24/2018	ASM	
LCS (B8K2301-BS1) E. Coli				Present			11/24/2018	ASM	
Duplicate (B8K2301-DUP1) E. Coli	Source ID: 8WB0	727-06			Pass	128	11/24/2018	ASM	

Notes and Definitions

Item Definition

No notes entered.

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

Japet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Heather Rankin QA/QC Coordinator

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

(\bigcirc
ς	Ā
(K A
(AR N

10/18

α
CÔ.
~
ч <u>р</u>
<u>च</u>
~
~
<u> </u>
- तिन
×.
· ¥.
15
×
8
Q.
1
1
1

ta		Total Contain	M	N			
	13 - 53 - 53 - 53	77 WS - 8HN					
		ON+"ON					
	a second s	Turbidity - F					
	Commentation and the second se Second second sec	E. Coll - IDI	10	¥			 <u>vi</u>
		- oH letoT	×	R			 Comments/Special Instructions:
	7.005 A93 - nZ. d9 .	Diss. Cd Cu					
	Pb-EPA 200.7						usti
	1.265.AGE - ets	Contraction of the second	1				all
	the second s	TP - EPA 20					ec.
	10X0-IA1 arc	TKN - Perst					 /Sp
		SS MS - SST			_		 uts
		COD - Hach					 La construction de la constructi
	the second se	900H 000					 E
-		Composite					O I
	extra state stat	etisogmoj					
	Ê	Grab	K	x			
1	×						
	Matrix	Water	X	×			
			2	1			
			13E	184		ar an	~
	sis	Sampler Initi	Ć	7			0.2
							(CS).
							e
							<u>8</u>
		5	ত	~			eceived by (sign)
		atio	E	Э			P S
		entification	1				si S
		len	0				S S
		Sample Id	0	୍ ସ			× 2
		ng n	1	}			19
		Sai	81123	M			
			1	18/12			
	ġ L			18			
	ueise Weise						e
	llerisen Weise						Date & Time Transferred 2 3//8
		End Time	T	0			Co Isto
	16446 mwate		0	0			ate
	63046446 Stormwater-PII And G	Begin Time	1604	1200			Date & Transf
ict	V V 1 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1	E Be					
isti			-				
Õ	-64	End Date	X	?			
vay	<u>+</u> +	ШÓ	N	~			i iii
Ada County Highway District	Attn: Monica Lowe 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	5	11/23	10			Relinquished by (sign)
₽i	ve bo t 391	Begin Date	1 2	1 2			8 7
N	Lov Stra Idal Jer:	ă D					
n	ity, 1333	\sim	_	N			
	Ada Ada 08) 3se t: er(s	* 6	ā ļ	-02			
a	Attn: Monica Lowe 3775 Adams Street Garden City, Idaho Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	Lab# %kcrr9t0	2			412 400 100 TENT	E j
Ă	Attn: Monica Lowe 3775 Adams Street Garden City, Idaho 83 Tel. (208) 387–6391 Purchase Order: Project: Sampler(s):	D DC		**************************************		**************************************	

Form 21A GRAB SAMPLE DATA FORM - (Phase II)

FLOW METER CUP	RENT STATUS		MDT/MST (,					
	Value			Malua	11-14				
	value	<u>Unit</u>		Value	<u>Unit</u>				
_evel		inch Ve	locity		fps				
Flow		cfs Ba	ttery		v				
Total Flow		cf Flo	w Start	~1555	(time)				
Rainfall		in. (if applicable)							
RAB INFORMATIC s this a QA/QC S)N: Station2 Vac				on hool)				
		<u>NO</u>		out form 21B	on back)				
Photographs Tal	ken? Yes	No 🔀	Swing Samp	oler Used? Yes	s <u>X</u> No				
Storm Event Sar	nple? Yes	χ No							
		WG	-						
		Wet / Dry	Grab (fill in stat	ion name)					
SUBSAMPLE INFO	BSAMPLE INFORMATION:								
Collection		er - Analyte	Preserved*	Filtered	Labeled				
		er - Analyte	Preserved* (H2SO4)	Filtered	Labeled				
Collection				Filtered N/A	Labeled				
Collection	Containe	SS	(H2SO4)						
Collection	Contain (4) L plastic – T	SS KN	(H2SO4) N/A	N/A					
Collection	Containe (4) L plastic – T (1) L plastic – T (1) 500mL plast	SS KN	(H2SO4) N/A	N/A N/A					
Collection Time	Containe (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast	SS KN iic - TP	(H2SO4) N/A	N/A N/A N/A					
Collection Time	Containe (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast	SS KN tic - TP tic (square) - NOx e plastic – <i>E. coli</i>	(H2SO4) N/A	N/A N/A N/A Time:					
Collection Time	Containe (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL steril	SS KN tic - TP tic (square) - NOx e plastic – <i>E. coli</i>	(H2SO4) N/A N/A N/A N/A	N/A N/A N/A Time: N/A					
Collection Time	Containe (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL steril (1) 250 mL plas	SS KN tic - TP tic (square) - NOx le plastic – <i>E. coli</i> tic - OP	(H2SO4) N/A N/A N/A N/A N/A	N/A N/A N/A Time: N/A					
Collection Time	Containe (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL steril (1) 250 mL plas RS: Fill (1) 500m	SS KN tic - TP tic (square) - NOx le plastic – <i>E. coli</i> tic - OP mL Amber Time:	(H2SO4) N/A N/A N/A N/A N/A	N/A N/A N/A Time: N/A Time:					
Collection Time	Containe (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL steril (1) 250 mL plas RS: Fill (1) 500m Value	SS KN tic - TP tic (square) - NOx e plastic – <i>E. coli</i> tic - OP mL Amber Time: <u>Unit</u>	(H2SO4) N/A N/A N/A N/A 16 C 9	N/A N/A N/A Time: N/A Time:					
Collection Time	Containe (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL steril (1) 250 mL plas RS: Fill (1) 500m	SS KN tic - TP tic (square) - NOx e plastic – <i>E. coli</i> tic - OP mL Amber Time: <u>Unit</u>	(H2SO4) N/A N/A N/A N/A N/A	N/A N/A N/A Time: N/A Time:					
Collection Time	Containe (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL steril (1) 250 mL plas RS: Fill (1) 500m Value	SS KN tic - TP tic (square) - NOx le plastic – <i>E. coli</i> tic - OP mL Amber Time: <u>Unit</u> Mg/L Te µS/cm Te	(H2SO4) N/A N/A N/A N/A 16 C 9	N/A N/A N/A Time: N/A Time:					

*NOTE: Use 1 drop of H_2SO_4 per 100 mL of sample volume & Preserved samples should have pH <2

ų

Form 21B QA/QC SAMPLE DATA FORM – (Phase II)

Date/Time - Off-site:

Chrisfield Station:

Personnel:

Sample ID: <u>ISI23 - 09</u> QA Sample? **QA SAMPLE TY**

<u>II23 - 09 -101</u> (fill in appropriate sequential number) QA SAMPLE TYPE: FIELD DUPLICATE

SUBSAMPLE INFO	RMATION:			
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
	(4) L plastic – TSS	N/A	N/A	
	(1) L plastic – TKN		N/A	
	(1) 500mL plastic - TP	N/A	N/A	
	(1) 500mL plastic (square) - NOx		Time:	
4/23/18 1605	(1) 500mL sterile plastic – E. coli	N/A	N/A	Ŗ
	(1) 250 mL plastic - OP	N/A	Time:	

Notes: The date/time for the first and final subsample is the "Start Date/Time" and the "End Date/Time", respectively

Comments:

Sample ID:

-001 (fill in appropriate sequential number)

QA Sample? QA SAMPLE TYPE: FIELD BLANK (Fill bottles with Ultra-pure water supplied by WQL) SUBSAMPLE INFORMATION:

Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
1.14	(4) L plastic – TSS	N/A	N/A	
4 M	(1) L plastic – TKN		N/A	
	(1) 500mL plastic - TP	N/A	N/A	
1.1.1.1.1.1	(1) 500mL plastic (square) - NOx		Time:	
Color-	(1) 500mL sterile plastic – <i>E. coli</i>	N/A	N/A	
171.23	(1) 250 mL plastic - OP	N/A	Time:	· 🗆

Notes: The date/time for the first and final subsamples is the "Start Date/Time" and "End Date/Time", respectively.

Comments:

Form 22 SET-UP/SHUT DOWN CHECKLIST - Phase II

Velocity Cut-off Chart	in. cfs fps V C°
v and Elow (Elowlink)	V
e, velocity spectrum, velocity spec	trum
Personnel: of sheet ns on back of sheet Sampling (sample bottle change v 15 L bottle, add ice	e out):
empling program Restarted: nning ne Off-site:	-
Personnel: Flow Meter Status Level Flow Velocity Voltage	in. cfs fps V
	Date/Time Off-site: Personnel: f sheet ns on back of sheet Sampling (sample bottle change / 15 L bottle, add ice mpling program Personnel: Personnel: Flow Meter Status Level Flow Velocity

Form 22 COMPOSITE INFORMATION- Phase II

station/S	Sample ID;				VC			Bottle _	of
			S		uantitative	Result	ts		
Compon				<u>Value</u>					Unit
Compos	ite Sample	Volume	(Approx.)						mL
	lse Interva				-				ft^3
		-	uid Height vs	Approxim	ate Sample \	/olume C	onversion Cha	art	<u>n s</u>
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 ml
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
		Sample	Qualitativ	e Results	1. The second second		11		
Compon	ent		ription				Example	e	
Clarity								oudy, Silty	
Color									Dist.
0000	-						Clear, G	ray, Tan, Bi	rown, Black
			Informatio						
Trigger #	Date/	Time	Sampler I Subsamp	Vessage / ie Result	Trigger	#	Date/Time		Message /
1					21		2.0		
2					22		the second second		
3				-	23		1000		
4	-								
			-		24				
5	-				25	-			
6					26		at man to make	Jan Marine	
7	1				27	1			
8					28				
9					29				-
10			1		30				
11	-		-	_					
					31			-	
12	1		1.1.4		32		and the second		
13					33				
14	1			1 2 2 2 2	34		1		
15	1			-	35				
16					36				
17		-							
			-		37		Sec. Tank		
18	115				38	_			
19					39				
20					40				
Notes: Th	e date/time fo	or the first tr	igger is the "S	tart Date/Tin		/time for t	the final trigger	is the "End Da	te/Time"
COMMEN		or the first o	igger is the "S	tart Date/Tin	ne"; The date	/time for i	the final trigger	is the "End Da	<u>ite/Time</u> "
Is this a	QA/QC Sta	ation?	Yes	No	(if	YES, fill	l out informa	tion below)	
Sample	D:		-103 /6	ill in appropr	iate sequentia	al number			aboratory S
	MPLE INFO	ORMATI				annunnber			appratory 5
	Dat	e/Time			Container	- Test	(Subsample	Result)	
-	-		12:00		Sample D				
			12.00	000	- Jampie L	alc a l	INC		

Notes: Use the "Start Date/Time" and "End Date/Time" for the parent sample.

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 22 SET-UP/SHUT DOWN CHECKLIST - Phase II

Station: Chrisfield SET-UP:		Bottle Ö	
Date/Time On-site: <u>11/21/18</u> 33 Remote Connection Date/Time:	MDT/MST	*(circle one) Personnel: AM *(circle one)	L ADAW
_> Replace batteries if v<11.9		s & Velocity Cut-off Chart	
Verify Flow Meter operation	Time/Date		
(Flowlink) & Check to determine	Level		in.
if flow present Program sampler per PG 320	Flow		cfs
	Velocity		fps
Trigger condition <u>0</u> Flow Pulse Interval <u>11</u> 6	Voltage		V
	Temp		C°
 Set Modem Access to "Storm Event" -24/7 (Flowlink) Change Data Storage Rates to 1 m Change Data Storage Rates to 15 ratio, and velocity signal to 15 minu Perform decon. cycle Verify Sampler date and time are of Place 15L sample bottle in sampler Remove jar lid and place in a clear Verify all cable and tubing connection Verify Sampler Program is Running Verify latches are secure Comments: 	minutes for tempera ite (Flowlink) orrect base & fill with 2 b re-sealable plastic ons	ature, velocity spectrum, velocity	spectrum
COMPOSITE SAMPLE COLLECTION			
Date/Time On-site:		Personnel:	
Halt Sampler program			
Put lid on sample bottle Properly label sample bottle; Reco	d Sample ID on ba	ck of sheet	
Record liquid height/sample volum Record subsample information on		ations on back of sheet	
If Sampling is Complete: Power off Sampler Add ice to sample cooler Complete COC form; Arrange transport to lab Comments:	Install Restar Date/T	ng Sampling (sample bottle cha new 15 L bottle, add ice t sampling program ime Restarted: Running	ange out):
Comments.	Date	Time Off-site:	
SHUT-DOWN:			
Date/Time On-site:	MDT/MS1		
Remote Date/Time:	MDT/MS	Personnel:	
Record Flow Meter status (Flowline	()	Flow Meter Status	
Replace battery if v<11.9		Level	in.
Retrieve Data (Flowlink) Change modem access to "Dry We	athor" 9 6 M E	Flow	cfs
Change data storage rates for leve		Velocity	fps
rate to 15 min (Flowlink)	, verously and now	Voltage	V
Change data storage rates for tem Velocity ratio, and velocity signal to Comments:			

Form 22 COMPOSITE INFORMATION- Phase II

Compone	ample ID				VC			Bottle _	of
			S		uantitative	e Result	S		
Composit				Value					<u>Unit</u>
			(Approx.)					al and	mL
Flow Puls	e Interva								ft^3
			uid Height vs	s. Approxim	ate Sample	Volume Co	onversion Cha	nt	
	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
	800 mL 1400 mL	3.5" 4.0"	4250 mL 5000 mL	6.0" 6.5"	8000 mL 8750 mL	8.5" 9.0"	11750 mL 12500 mL	11.0" 11.5"	15500 mL 16250 mL
	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
			Qualitativ					1	
Compone	ent		ription	• / (004/10			Example	e	
Clarity	<u></u>	0000	inplion					oudy, Silty	
Color									Dia 1
COIDI							_ Clear, Gi	ay, ran, Bi	rown, Black
			Informati					A	
Trigger #	Date	Time	Sampler I Subsamp	Message / le Result	Trigge	r#	Date/Time		Message /
1				1	21				
2					22				
3	7				23				
4					24		121 22		1
5	The second		10.200		25		Contraction of the second		
6					26				
7	-				27				
8	1.	1			28			-	
9			-		29	-			
10					30	-		-	
11					31		E	-	
12								-	
	1				32			_	1
13					33		1		
14	_				34				
15					35			-	
16	-				36		1.2-1.1		
17				12. 150	37				
18					38				
19					39				
20					40				
		or the first tr	igger is the "S	Start Date/Tir		e/time for t	he final trigger	is the "End Da	ate/Time"

Notes: Use the "Start Date/Time" and "End Date/Time" for the parent sample.

*MST is observed during fall and winter; MDT is observed in spring and summer.

Report Date: 12/04/2018 11:19

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualifiers	Date Sampled	Date Received
8AC0092-01	ACST2B	181127-09-WG	Water	11/27/2018	11/27/2018
8AC0092-02	ACST2B	181127-08-WG	Water	11/27/2018	11/27/2018

Report Date: 12/04/2018 11:19

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location: Date/Time Collect	ACST2 ed: 11/27/2	28 2018 20:45	i			Location Description:	181127-09	181127-09-WG			
Lab Number:	8AC00					Sample Collector:	ABW				
Sample Type:	Grab					Sample Matrix:					
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual	
Microbiology E. Coli	B8K2704	1580.0 M	IPN/100 mL	. 100.0	1.0	Colilert	11/27/18 22:55	11/28/18 23:05	KMR	D	
Wet Chemistry Chlorine Screen	B8K2811	Absent				SM 4500-CL G-2000 mod	11/27/18	11/27/18 22:03	JJR		

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Report Date: 12/04/2018 11:19

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST2	2B				Location Description:	181127-08-WG			
Date/Time Collecte	ed: 11/27/2	2018 21:26								
Lab Number:	8AC00	92-02				Sample Collector:	ABW			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology E. Coli	B8K2704	105.0 M	PN/100 mL	. 1.0	1.0	Colilert	11/27/18 22:55	11/28/18 23:05	KMR	
Wet Chemistry Chlorine Screen	B8K2811	Absent				SM 4500-CL G-2000 mod	11/27/18	11/27/18 22:03	JJR	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

					Analyzed	Initials	Qualifier
Absent					11/28/2018	JJR	
		Present			11/28/2018	JJR	
Source ID: 8WB073	33-06		Deve	400	44 (00 (00 4 0		
			Present	Present	Present Source ID: 8WB0733-06	Present 11/28/2018 Source ID: 8WB0733-06	Present 11/28/2018 JJR Source ID: 8WB0733-06

Notes and Definitions

ltem	Definition	
D	Data reported from a dilution	

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

Janet Finegan-Kelly

Water Quality Laboratory Manager

Stephen Quintero or Heather Rankin QA/QC Coordinator

QA/QC

ζ	Ъ
ç	2
ζ	(X
ې ح	Ĭ
С	Ż

10/18-

-coc_wql-wy19p2

	Matrix Type	00 NH ₃ - D 20 NH ₃ - D 20 NH ₃ - D 20 C 20 C 20 C 20 C 20 C 20 C 20 C 20 C	Sample Identification Composite Composite BODs SM 554 Composite Composite TPS - SM 254 TSKU - Perstor TSS - SM 254 Composite Consolate TSS - SM 254 TSS - SM 254 Consolate Consolate TSS - SM 254 Consolate Consola	2045 181127-09-WG ABW X X X	18/127-08-		Date & Time Received by (sign) Comments/Special Instructions: Transferred Received by (sign) 0 11/27//8 11/22/18 0
		146 water-PII مربع ل باطهار مربع ل المحابة	M1 894 M 1 M - 1 M				ate & Time ransferred 7//3 2157
itrict			Begin Time	20	212		
vay Dis	I	146418	End Date	118	18		(sign)
y Highw	owe.	Street daho 837 -6255 -6391 er:	Begin Date	11/27/18	11/2 7/18		Relinquished by (sign)
Ada County Highway District	Attn: Monica Lowe	3775 Adams Street Garden City, Idaho 837146418 Tel. (208) 387-6255 Fax (208) 387-6391 Purchase Order: Project: Sampler(s):	Lab#	- - -	eq-		Relinqui

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
8AC0094-01	ACST2C	181127-08-WC	Water		11/27/2018	11/28/2018

Analysis Report

Location:	ACST					Location Description:	181127-08	3-WC		
Date/Time Collected		/2018 20:25	5 - 11/27/	2018 22:26						
Lab Number:		094-01				Sample Collector:	ABC			
Sample Type:	Comp	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qua
Wet Chemistry										
Ammonia, as N	B8K3001	271	ug/L	35.0	35.0	SM 4500-NH3 D-1997	11/30/18	11/30/18 11:11	ASM	
BOD5	B8K2901	12.4	mg/L	2.00	2.00	SM 5210 B-2001	11/29/18	12/4/18 7:54	ASM	
COD	B8K2814	67.5	mg/L	7.00	7.00	HH 8000-1979	11/28/18	11/28/18 16:35	KMR	
Nitrate-Nitrite, as N	B8L1002	1.26	mg/L	0.0200	0.0200	EPA 353.2	12/10/18	12/10/18 12:11	SMC	
TKN	B8L1004	0.862	mg/L	0.130	0.130	EPA 351.2	12/10/18	12/11/18 8:46	LRF	
Total Dissolved Solids	B8K2807	111	mg/L	20.0	20.0	SM 2540 C-1997	11/28/18	11/30/18 13:23	CJP	
Total Suspended Solids	B8K2915	26.2	mg/L	0.900	0.900	SM 2540 D-1997	11/29/18	11/29/18 9:35	ALD	
Turbidity	B8K2812	14.2	NTU	0.3	0.3	EPA180.1 R2.0 (1993)	11/28/18	11/28/18 14:08	JAL	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B8K2907	0.132	mg/L	2.00E-3	2.00E-3	EPA 365.1	11/29/18	11/29/18 11:22	SMC	
Total Metals										
Mercury	B8K2818	<4.71E-3	ug/L	4.71E-3	4.71E-3	EPA 245.2	11/29/18	11/30/18 9:17	SAS	U
Arsenic	B8K2920	<5.72	ug/L	5.72	5.72	EPA 200.7	11/29/18	11/30/18 16:56	EDM	U
Cadmium	B8L0515	<1.00	ug/L	1.00	1.00	EPA 200.7	12/05/18	12/6/18 17:52	AMO	U
Calcium	B8K2920	15500	ug/L	50.0	50.0	EPA 200.7	11/29/18	11/30/18 16:56	EDM	
Lead	B8K2920	<6.94	ug/L	6.94	6.94	EPA 200.7	11/29/18	11/30/18 16:56	EDM	U
Magnesium	B8K2920	2930	ug/L	50.0	50.0	EPA 200.7	11/29/18	11/30/18 16:56	EDM	_
Phosphorus as P	B8K2920	0.227	mg/L	6.00E-3	6.00E-3	EPA 200.7	11/29/18	11/30/18 16:56	EDM	
Hardness	B8K2920	50.6	mg/L	1.00	1.00	EPA 200.7	11/29/18	11/30/18 16:56	EDM	
Dissolved Metals										
Cadmium	B8L0621	<1.00	ug/L	1.00	1.00	EPA 200.7	12/06/18	12/6/18 16:40	AMO	U
Copper	B8L0320	<10.0	ug/L	10.0	10.0	EPA 200.7	12/03/18	12/3/18 18:04	EDM	U
_ead	B8L0320	<6.94	ug/L	6.94	6.94	EPA 200.7	12/03/18	12/3/18 18:04	EDM	U
Zinc	B8L0320	<10.0	ug/L	10.0	10.0	EPA 200.7	12/03/18	12/3/18 18:04	EDM	U

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry									
Batch: B8K2807 Blank (B8K2807-BLK1) Total Dissolved Solids	< 20	mg/L					11/30/2018	CJP	U
	~ 20	my/L					11/30/2010	CJP	U
LCS (B8K2807-BS1) Total Dissolved Solids			94.5	90-110			11/30/2018	CJP	
Duplicate (B8K2807-DUP1) Total Dissolved Solids	Source ID: 8LS	0420-01			6.23	10	11/30/2018	CJP	
Batch: B8K2812 Blank (B8K2812-BLK1) Turbidity	< 0.3	NTU					11/28/2018	JAL	U
LCS (B8K2812-BS1) Turbidity			101	90-110			11/28/2018	JAL	
Duplicate (B8K2812-DUP1) Turbidity	Source ID: 8LS	0420-01		an a	9.72	25	11/28/2018	JAL	
Batch: B8K2814 Blank (B8K2814-BLK2) COD	< 7	mg/L					11/28/2018	KMR	U
LCS (B8K2814-BS1) COD			98.7	90-110			11/28/2018	KMR	
Duplicate (B8K2814-DUP1) COD	Source ID: 8LS	0420-01			8.22	10	11/28/2018	KMR	
Batch: B8K2901 Blank (B8K2901-BLK1) BOD5	< 2	mg/L					12/04/2018	ASM	Seed-01, U
LCS (B8K2901-BS1) BOD5			104	84.6-115.4			12/04/2018	ASM	
Duplicate (B8K2901-DUP1) BOD5	Source ID: 8AC	0094-01	*******		1.99	30	12/04/2018	ASM	

Quality Control Report

(Continued)

Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
ued)								
< 0.9	mg/L					11/29/2018	ALD	U
		93.2	90-110			11/29/2018	ALD	
Source ID: 8BB	0755-02		- Contraction Contra	4.47	20	11/29/2018	ALD	
< 35	ug/L	GAUNTED FITTE DE LE CONTRACTO CONTRACTO CONTRACTO DE LA CONTRACTO DE LA CONTRACTO DE LA CONTRACTO DE LA CONTRACT				11/30/2018	ASM	U
		101	90-110			11/30/2018	ASM	
Source ID: 8WB	0727-05			0.866	10	11/30/2018	ASM	
Source ID: 8LS0)420-05	*************		0.789	10	11/30/2018	ASM	
Source ID: 8W	/B0727-05	104	80-120			11/30/2018	ASM	
Source ID: 8L	S0420-05	116	80-120			11/30/2018	ASM	
//SD1) Source	ID: 8WB07	27-05 104	80-120	0.0542	10	11/30/2018	ASM	
(ISD2) Source	ID: 8LS042	0-05 110	80-120	3.88	10	11/30/2018	ASM	
< 0.02	mg/L					12/10/2018	SMC	U
		96.4	90-110			12/10/2018	SMC	
		103	90-110			12/10/2018	SMC	
Source ID: 8ACC	0093-02			0.281	10	12/10/2018	SMC	
Source ID: 8BB0	778-02			0.0703	10	12/10/2018	SMC	1103034(14034)90(141)14(1404)14(1404)
Source ID: 8B	30778-02	92.1	90-110		*****	12/10/2018	SMC	
Source ID: 8BE	30732-01RI	∃1 96.4	90-110			12/10/2018	SMC	
Source ID: 8A0	0093-02	NART CREATE CREATE CREATE CREATE CREATE CREATE CREATE CREATE				49-19-49-19-19-19-19-19-19-19-19-19-19-19-19-19		
	Blank < 0.9	Blank Units < 0.9	Blank Units Recovery Iued) < 0.9	Blank Units Recovery Limits ued) <0.9	Blank Units Recovery Limits RPD ued) <0.9	Blank Units Recovery Limits RPD Limit ued) <0.9	Blank Units Recovery Limits RPD Limit Analyzed ued) 90-110 11/29/2018 11/29/2018 11/29/2018 Source ID: 8BB0755-02 90-110 11/29/2018 11/29/2018 < 35	Blank Units Recovery Limits RPD Limit Analyzed Initials ued) 9.0 11/29/2018 ALD ALD ALD ALD 93.2 90.110 11/29/2018 ALD ALD Source ID: 8BB0755-02 4.47 20 11/29/2018 ALD <35

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Net Chemistry (Continued)									
Batch: B8L1002 (Continued) Matrix Spike (B8L1002-MS5) Sou Nitrate-Nitrite, as N	rce ID: 8B	B0769-02	104	90-110			10/10/0010	SMO	
Matrix Spike Dup (B8L1002-MSD2)	Source	ID: 8BB0778	8-02				12/10/2018	SMC	
Nitrate-Nitrite, as N			93.4	90-110	0.553	10	12/10/2018	SMC	
Matrix Spike Dup (B8L1002-MSD4) Nitrate-Nitrite, as N	Source	ID: 8AC009	3-02 101	90-110	0.456	10	12/10/2018	SMC	
Batch: B8L1004 Blank (B8L1004-BLK1) TKN	< 0.13	mg/L					12/11/2018	LRF	U
LCS (B8L1004-BS1)	< 0.15	Шġ́г∟					12/11/2010	LRF	U
TKN			92.3	80-120		A 10,000 hadi 10,000 viceo ana ana ang ang ang ang ang ang ang ang	12/11/2018	LRF	
Duplicate (B8L1004-DUP1) Sourc TKN	e ID: 8LS(0420-01			4.52	20	12/11/2018	LRF	D
Duplicate (B8L1004-DUP2) Sourc TKN	e ID: 8AC	0094-01			13.3	20	12/11/2018	LRF	998400 UMA In American
Matrix Spike (B8L1004-MS1) Sou TKN	rce ID: 8L	S0420-01	95.0	80-120			12/11/2018	LRF	D
Matrix Spike (B8L1004-MS2) Sou TKN	rce ID: 8A	C0094-01	102	80-120			12/11/2018	LRF	
Matrix Spike Dup (B8L1004-MSD1) TKN	Source	ID: 8LS0420)-01 96.6	80-120	1.21	20	12/11/2018	LRF	D
Matrix Spike Dup (B8L1004-MSD2) TKN	Source	ID: 8AC009	4-01 98.3	80-120	2.48	20	12/11/2018	LRF	
Dissolved Wet Chemistry		******							
Batch: B8K2907 Blank (B8K2907-BLK1)									
Orthophosphate, as P	< 0.002	mg/L					11/29/2018	SMC	U
LCS (B8K2907-BS1) Orthophosphate, as P			94.3	90-110			11/29/2018	SMC	
Duplicate (B8K2907-DUP1) Source Orthophosphate, as P	e ID: 8AC	0093-02			0.0699	10	11/29/2018	SMC	
Matrix Spike (B8K2907-MS1) Sou Orthophosphate, as P	rce ID: 8A	C0093-02	100	90-110			11/29/2018	SMC	
Matrix Spike Dup (B8K2907-MSD1)	Source	ID: 8AC009	3-02	whichtmostants					

			A/	Deres					
Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date	Analyst	Qualifier
·	Dialik	onits	Recovery	Linits	RFD	Linnt	Analyzed	Initials	Quaimer
Total Metals									
Batch: B8K2818									
Blank (B8K2818-BLK1)									
Mercury	< 0.00471	ug/L					11/30/2018	SAS	U
LCS (B8K2818-BS1)									
Mercury			99.8	85-115			11/30/2018	SAS	
Duplicate (B8K2818-DUP1)	Source ID: 8BB0)732-01					-		
Mercury					13.6	20	11/30/2018	SAS	D
Matrix Spike (B8K2818-MS1)	Source ID: 8B	P0722 01		1971 1971 1971 1971 1971 1971 1971 1971					
Mercury	Source ID. ob	DU/32-VI	94.9	70-130			11/30/2018	SAS	D
							11/30/2018		
Matrix Spike Dup (B8K2818-N Mercury	(ISD1) Source	ID: 8BB073		70-130	0.054	20	44/00/0040		
Mercury			95.6	70-130	0.651	20	11/30/2018	SAS	D
Batch: B8K2920									
Blank (B8K2920-BLK1)									
Arsenic	< 5.72	ug/L					11/30/2018	EDM	U
Calcium	< 50	ug/L					11/30/2018	EDM	U
Lead	< 6.94	ug/L					11/30/2018	EDM	U
Magnesium	< 50	ug/L					11/30/2018	EDM	U
Phosphorus as P	< 0.006	mg/L					11/30/2018	EDM	U
Hardness	< 1	mg/L					11/30/2018	EDM	U
LCS (B8K2920-BS1)								1999 A A A A A A A A A A A A A A A A A A	3833838 - A
Arsenic			106	85-115			11/30/2018	EDM	
Calcium			96.5	85-115			11/30/2018	EDM	
Lead			106	85-115			11/30/2018	EDM	
Magnesium			103	85-115			11/30/2018	EDM	
Phosphorus as P			109	85-115			11/30/2018	EDM	
Duplicate (B8K2920-DUP1)	Source ID: 8AC	0093-02							
Arsenic		0000-02			NR	20	11/30/2018	EDM	U
Calcium					0.737	20	11/30/2018	EDM	Ũ
Lead					4.55	20	11/30/2018	EDM	
Magnesium					0.520	20			
Phosphorus as P							11/30/2018	EDM	
Hardness					0.805	20	11/30/2018	EDM	
	40404440444444444444444444444444444444				0.678	200	11/30/2018	EDM	
Matrix Spike (B8K2920-MS1)	Source ID: 8A	C0093-02							
Arsenic			110	70-130			11/30/2018	EDM	
Calcium			97.2	70-130			11/30/2018	EDM	
Lead			104	70-130			11/30/2018	EDM	
Magnesium			104	70-130			11/30/2018	EDM	
Phosphorus as P			110	70-130			11/30/2018	EDM	
Matrix Spike Dup (B8K2920-N	(SD1) Source	ID: 8AC009	3-02	() () () () () () () () () () () () () (
Arsenic	,		109	70-130	0.873	20	11/30/2018	EDM	
Calcium			97.9	70-130	0.646	20	11/30/2018	EDM	
Lead			105	70-130	0.660	20	11/30/2018	EDM	
Magnesium			104	70-130	0.128	20	11/30/2018	EDM	
Phosphorus as P			111	70-130	0.524	20	11/30/2018	EDM	
			AN GROUTE CARCENCER CENTER CAREAR CARLES CAREAR CAREAR CAREAR						

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifie
Total Metals (Continued)									
Batch: B8L0515 Blank (B8L0515-BLK1) Cadmium	< 1	ug/L					12/06/2018	AMO	U
LCS (B8L0515-BS1) Cadmium			99.6	85-115			12/06/2018	AMO	SERVICE HE HE HEAD IN A CONTRACT OF A CONTRACT OF
Duplicate (B8L0515-DUP1) Sou Cadmium	Irce ID: 8BB	0769-02			NR	20	12/06/2018	AMO	U
Matrix Spike (B8L0515-MS1) So Cadmium	ource ID: 8B	B0769-02	94.9	70-130	n Marina francúska konstrukcio a na konstrukcio na konstrukcio	87 188 196 196 196 196 196 196 196 196 196 196	12/06/2018	AMO	
Matrix Spike Dup (B8L0515-MSD Cadmium	1) Source	ID: 8BB07	69-02 94.5	70-130	0.358	20	12/06/2018	AMO	. Sanaman yan yangan geryan yan yan yan bi birya kata da b

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Dissolved Metals							-		
Batch: B8L0320									
Blank (B8L0320-BLK1)									
Copper	< 10	ug/L					12/03/2018	EDM	U
Lead	< 6.94	ug/L					12/03/2018	EDM	Ŭ
Zinc	< 10	ug/L					12/03/2018	EDM	U
LCS (B8L0320-BS1)	****		*******						
Copper			98.7	85-115			12/03/2018	EDM	
Lead			108	85-115			12/03/2018	EDM	
Zinc			108	85-115			12/03/2018	EDM	
,	rce ID: 8AC	0093-03							
Copper					NR	10	12/03/2018	EDM	U
Lead					NR	10	12/03/2018	EDM	U
Zinc		0			0.269	10	12/03/2018	EDM	
• • • •	ource ID: 8A	C0093-03							
Copper			112	70-130			12/03/2018	EDM	
Lead			102	70-130			12/03/2018	EDM	
Zinc			107	70-130		- Partiniana in	12/03/2018	EDM	
Matrix Spike Dup (B8L0320-MSD1	I) Source	ID: 8AC009							
Copper			109	70-130	2.86	10	12/03/2018	EDM	
Lead			102	70-130	0.119	10	12/03/2018	EDM	
Zinc			106	70-130	0.215	10	12/03/2018	EDM	
Batch: B8L0621									
Blank (B8L0621-BLK1)									
Cadmium	< 1	ug/L	Child bird from birn birn birn row liver birn admanses and admanses and adm			מפליליה לאי ביו בא נוא אוני אונג אוני או	12/06/2018	AMO	U
LCS (B8L0621-BS1)									
Cadmium			103	85-115	******		12/06/2018	AMO	
	rce ID: 8AC	0094-01RE1							
Cadmium					NR	10	12/06/2018	AMO	U
	ource ID: 8A	C0094-01RE	E1						A
Cadmium			90.2	70-130			12/06/2018	AMO	
Matrix Spike Dup (B8L0621-MSD1) Source	ID: 8AC009	4-01RE1						
Cadmium			91.5	70-130	1.43	10	12/06/2018	AMO	

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
Seed-01	The seed depletion is greater than that recommended by the method. The LCS is acceptable showing the seed supports the method.
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

Janet Finegan-Kelly Water Quality Laboratory Manager

<

Stephen Quintero or Heather Rankin QA/QC Coordinator

-
-
0
9
C
- E
F
4
5
\sim

40/18

	Toolite - SM 5210 B - - SM 5210 B - - - SM 5210 B - - - SM 5240 C - - - SM 5540 D - - - SM 5540 D - - - SM 5540 D - - - Perston PAL-DK01 - - - Perston PAL-DK01 - - - SM 2540 D - - - SM 2540 C - - - SM 2540 D - - - SM 4500 NH3 - EPA 365.1 - - - SM 4500 NH3 - D - - - SM 4500 NH3 - P - - - SM 450 D - - - SM 4500 NH3 - D - - - SM 4500 NH3 - D - - - SM 4500 NH3 - D - <th>ин³ ИО⁻⁴ Нац Е. Сс Оцро Цота Цота Цота Цота Цота Цота Цота Цот</th> <th>- - - - - - - - -<th>Comments/Special Instructions:</th></th>	ин ³ ИО ⁻⁴ Нац Е. Сс Оцро Цота Цота Цота Цота Цота Цота Цота Цот	- - - - - - - - - <th>Comments/Special Instructions:</th>	Comments/Special Instructions:
	Matrix	nətev	8	
	5		181127 - 08 - WC	Time Received by (sign) arred II-28-18 (323 0.00000000000000000000000000000000000
	46 Carlces End	Time	KCC	
trict	63046446 Stormwater-PII مطع العدالية Begin End	Time	3025	Date Tran 11/2%//%
vay Dist	14–6418 End	Date	1/22/18	(sign)
ty Highw	Lowe Street Idaho 837 7–6255 7–6391 der: Begin	Date	Nachs	Relinquished by (sign)
Ada County Highway District	Attn: Monica Lowe 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s): Begin End	RACOOR4		Relinqu

Form 21A Grab Sample Data Form – Phase II

Station: Edgewood Personnel: TLL ABIN
Date/Time - On-site: 11/2.7/18 MDT MST*(arcle one)
GRAB INFORMATION:
Is this a QA/QC Station? Yes No 📈 (if YES, fill out Form 21B on back)
Photographs Taken? Yes No 🖉 Swing Sampler Used? Yes 📈 No
Sample ID: 18/127-08WG (fill in appropriate seguential number)
Date/Time Container - Test (Subsample Result) Labeled
11/27/18 2126 (1) 250mL sterile plastic – E. coli
FIELD PARAMETERS: Fill (1) 500mL Amber Date/Time: 11/27/18 2/27
<u>Value Unit</u> <u>Value Unit</u>
Diss. O _{2-DO Meter} <u>9-89</u> Mg/L Temp - DO Meter <u>10,1</u> °C
Conductivity - 167.9 µS/cm Temp - Cond Meter 10.1 °C
рН – pH Meter <u>7.99</u> S.U. <u>Тетр – pH Meter</u> <u>10.1</u> °C
AUTO SAMPLER CURRENT STATUS: First Subsample taken: Yes / No (circle one); if Yes, Date/Time 11/17 2025 Last Subsample taken, Date/Time # of Subsamples taken: 15
COMMENTS:
Date/Time - Off-site:
Dale/ Hitte - Oli-Sile
그는 그는 것 같은 것 같은 것 같은 것은 것 같은 것 같은 것 같은 것 같은

Form 21B QA/QC Grab Sample Data Form – Phase II

FIELD DUPLICATE:

SUBSAMPLE INFORMATION:

Date/Time	Container - Test (Subsample Result)	Labeled
	(1) 250mL sterile plastic – E. Coli	

Comments:

FIELD BLANK:

Sample ID: _______ (fill in appropriate sequential number)

(Fill bottle with Ultra-pure water supplied by WQL)

Date/Time	Container - Test (Subsample Result)	Labeled
	(1) 250mL sterile plastic – <i>E. Coli</i>	

Comments:		For Star	

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 21A GRAB SAMPLE DATA FORM – (Phase II)

Date/Time On-site:	11/27/18	2030	1_MOT/M	ST (ci	ircle one)	
FLOW METER CU						
	Value	Unit			Value	Unit
Level		inch	Velocity	_		fps
Flow		cfs	Battery	_		v
Total Flow		cf	Flow Start	-		(time)
Rainfall		in. (if applicab	le)			
GRAB INFORMATI		No X	(if YES	fill o	out Form 21B	on hack)
Photographs Ta						s_X_ No
			_	ampi		s <u> </u>
Storm Event Sa						
Sample ID: 18	1127-09-2	G Wet / Dry	Grab (fill	in statio	on name)	
SUBSAMPLE INFO	The second s					
Collection Time	Containe	er - Analyte	Preser (H2SC		Filtered	Labeled
NA	(4) L plastic – TS	SS	N/A		N/A	
NA	(1) L plastic – Th	٢N			N/A	
NA	(1) 500mL plasti	c - TP	N/A		N/A	
NA	(1) 500mL plasti	c (square) - N	Dx 🛛		Time:	
1/27/18 2045	(1) 500mL sterile	e plastic – <i>E. c</i>	oli N/A		N/A	X
NA	(1) 250 mL plast	ic - OP	N/A		Time:	
				-		
FIELD PARAMET	ERS: Fill (1) 500n	nL Amber Ti	me: 2	045		
	Value	<u>Unit</u>			Value	Unit
	12.63	Mg/L	Temp – DO	Meter	- 0	°C
Diss. O ₂ – Field	14.01					
Diss. O ₂ – Field Conductivity		µS/cm	Temp – Con Meter	d.	5.3	°C

*NOTE: Use 1 drop of $H_2SO_4\,per\,100$ mL of sample volume & Preserved samples should have pH <2

Form 21B QA/QC SAMPLE DATA FORM – (Phase II)

Date/Time - Off-site:

Station:

Personnel:

SUBSAMPLE INFO	DRMATION:			
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
	(4) L plastic – TSS	N/A	N/A	
	(1) L plastic – TKN		N/A	
State Street	(1) 500mL plastic - TP	N/A	N/A	
	(1) 500mL plastic (square) - NOx		Time:	
	(1) 500mL sterile plastic – E. coli	N/A	N/A	
1	(1) 250 mL plastic - OP	N/A	Time:	

Notes: The date/time for the first and final subsample is the "Start Date/Time" and the "End Date/Time", respectively

Comments:

Sample ID:

-001 (fill in appropriate sequential number)

QA Sample? QA SAMPLE TYPE: FIELD BLANK (Fill bottles with Ultra-pure water supplied by WQL) SUBSAMPLE INFORMATION:

Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
	(4) L plastic – TSS	N/A	N/A	
13.3	(1) L plastic – TKN		N/A	
	(1) 500mL plastic - TP	N/A	N/A	
all all	(1) 500mL plastic (square) - NOx		Time:	
15 10	(1) 500mL sterile plastic – <i>E. coli</i>	N/A	N/A	
1.2.	(1) 250 mL plastic - OP	N/A	Time:	

Notes: The date/time for the first and final subsamples is the "Start Date/Time" and "End Date/Time", respectively.

Comments:

	SET-UP/SHUT	DOWN CHECKL	IST – Phase II		
Statior	: P. Asomood			Rottle	of
SET-U		-		Bottle	
	ime On-site: 11/16/18 134	MDTMST*	(circle one) Perso	nnel A	Bus
	e Connection Date/Time:		(circle one)		
		-			
X	Replace batteries if v<11.9	Flow Meter Status	& velocity Cut-o	ff Chart	
	Verify Flow Meter operation	Time/Date			
	(Flowlink) & Check to determine	Level			in.
ø	if flow present	Flow			cfs
/	Program sampler per PG 320 Trigger condition <u></u> の名	Velocity			· fps
	Flow Pulse Interval 157	Voltage			V
\sim	Set Modem Access to "Storm	Temp			C°
7	Event? 04/7 (Eleveliale)				
	Change Data Storage Rates to 1 r	ninute for Level. Velo	city and Flow (Flov	wlink)	
X	Change Data Storage Rates to 15	minutes for temperat	ure, velocity spect	rum velocit	vspectrum
<u> </u>	ratio, and velocity signal to 15 min				y opeoa an
NA	Perform decon. cycle				
×	Verify Sampler date and time are of	correct			
$\overline{\times}$	Place 15L sample bottle in sample		a ice		
X	Remove jar lid and place in a clear				
\succ	Verify all cable and tubing connect	ions			
\mathcal{X}	Verify Sampler Program is Runnin				
\underline{X}	Verify latches are secure	-			
Comm	ents: No samples collected	no Friday		11/26/18	
	100 Samples Conceren	Die in g	Date/Time Off-sit	te: 13-	53
_					
	OSITE SAMPLE COLLECTION		= . A	00	
Jate/ I	ime On-site: <u>11/28</u> 1222		Personnel:	BC	
$\frac{y}{\sqrt{2}}$	Halt Sampler program				
6	Put lid on sample bottle	rd Sample ID on heal	k of about		
$\frac{\nabla}{2}$	Properly label sample bottle; Reco				
$\frac{\varphi}{2}$	Record liquid height/sample volum Record subsample information on		tions on back of sr	ieet	
66666K	Record subsample information on	Dack of Sheet			
	ampling is Complete:	If Continuin	g Sampling (samı	nle hottle c	hande out)
X)	Power off Sampler		ew 15 L bottle, add	·	nange outj
5	Add ice to sample cooler		sampling program		
	Complete COC form;		ne Restarted:		
7	Arrange transport to lab	Verify R			
Comm		02 1 TH	anning		
	Nol- Chronite				
_	101 300111	Date/T	ime Off-site: 12	31	
	-101 - SUSTAT	Astrine /BC Date/T	ime Off-site: 12	31	100
SHUT	DOWN:	totome ABC Date/T	ime Off-site: 12	31	
	-DOWN: Time On-site:	MDT/MST	ime Off-site: 12	31	
Date/T			ime Off-site: 12	31	
Date/T	ime On-site:	MDT/MST	Personnel:	31	
Date/T	ime On-site: e Date/Time:	MDT/MST	Personnel:	31	
Date/T	ime On-site: e Date/Time: Record Flow Meter status (Flowlin Replace battery if v<11.9 Retrieve Data (Flowlink)	MDT/MST MDT/MST k)	Personnel: Flow Meter Stat Level	3/	
Date/T	ime On-site: e Date/Time: Record Flow Meter status (Flowlin Replace battery if v<11.9 Retrieve Data (Flowlink) Change modem access to "Dry Wi	MDT/MST MDT/MST k) eather" 8-6 M-F	Personnel: Flow Meter Stat Level Flow	tus	cfs
Date/T	ime On-site: e Date/Time: Record Flow Meter status (Flowlin Replace battery if v<11.9 Retrieve Data (Flowlink)	MDT/MST MDT/MST k) eather" 8-6 M-F	Personnel: Flow Meter Stat Level	3	

Form 22

Change data storage rates for temp, vel. Spectrum, Velocity ratio, and velocity signal to 30 minutes.

Date/Time Off-site:

Comments:

Remote/On-site (circle one)

Form 22 COMPOSITE INFORMATION- Phase II

			S		uantitativ	e Result	ts		
Compon				<u>Value</u>					<u>Unit</u>
Compos	ite Sample	Volume	(Approx.)		11000				mL
	se Interva				157				ft^3
		-	uid Heiaht vs	. Approxim	ate Sample	Volume C	Conversion Cha	rt	_ 11 _
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height-	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	(8.0"	11000 mL>	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
			Qualitativ	e Results					
Compon	ent	Desc	ription				Examples	S	
Clarity		()	autre				Clear, Cl	oudy, Silty	
Color		Ci	w						rown, Black
	6.		Informati	on:					, _
Frigger #		/Time		Message /	Trigge	er#	Date/Time		r Message / ple Result
1	11/201	2025		iccess	21				
2	M/CF	2027	0	I	22				
3		2040	-	-	23				
				1	23				
4		2041	-	1					
5		2042		-	25			-	
6		20 55			26				
7		2056			27				
8		2057			28		1		-
9		2058		1	29	1			1. 10 C 10 C 10 C
10		2111			30				
11			1		31				
12		2111			32			-	
		2126		-					
13	1 -1	2126	1		33			-	
14		2127		-	34			-	
15		2140			35				
16		2141			36				
17		2156			37				
18	11	2156	18000		38				
19	J	1226		V	39				15-1-
20		the			40			-	
	a data/time f	or the first to	inger is the "G	Start Date/Til		te/time for	the final trigger	is the "End D	ate/Time"
COMME				Juin Date/Th	ne, mede		ule inter utgger		
Is this a	QA/QC St	ation?	Yes	No	<u>)</u> (i	f YES, fi	ill out informa	tion below))
Sample	ID:		-103 (fill in approp	riate sequen	tial numbe	er) QA Sam	ple Type:	Laboratory S
	MPLE INF	ORMATI							
		te/Time			Containe	ar - Teet	(Subsample	Regult)	
	Da	iter mile	10.00	-				Result	
			12:00	CO	C Sample	Date &	Lime		

Notes: Use the "Start Date/Time" and "End Date/Time" for the parent sample.

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 22 SET-UP/SHUT DOWN CHECKLIST – Phase II

	itation: _ Chrisfield			Bottle of
S	ET-UP:		·	
D	Date/Time On-site: 11/26/18 1300	MDT MST*	(circle one) Perso	nnel: ABW
	Remote Connection Date/Time:	MDT/MST*	(circle one)	1044 / / 4 · 1
-	Replace batteries if v<11.9	Flow Meter Status	& Velocity Cut-o	ff Chart
_	Concernity Flow Meter operation	Time/Date		
	(Flowlink) & Check to determine	Level		in.
	if flow present	Flow		cfs
3c X _	Program sampler per PG 320	Velocity		fps
,- ,- <u>-</u>	Trigger condition On	Voltage		V
ABC	Flow Pulse Interval 58	Temp		C°
× X _	Set Modem Access to "Storm	. only		
NOT -	Event" -24/7 (Flowlink)			
$10^{\circ} \times 10^{\circ}$	MA Change Data Storage Rates to 1 m	inute for Level, Velo	city and Flow (Flov	/link)
AGC 70 -		minutes for temperat	ure, velocity spectr	um, velocity spectrum
	ratio, and velocity signal to 15 minu			
_	Ard Perform decon, cycle	. ,		
_	M Verify Sampler date and time are c	orrect		
_	 Verify Sampler date and time are converted by Place 15L sample bottle in sampler Remove jar lid and place in a clean Verify all cable and tubing connection 	base & fill with 2 ba	g ice	
_	Remove jar lid and place in a clean	re-sealable plastic k	bag	
_	Verify all cable and tubing connection	ons	-	
_	 Verify Sampler Program is Running Verify latches are secure 			
	Verify latches are secure ,			
Ō	comments: No samples had been Power failed when it	r collecter.		
	Pours filed where it	held to samph	Date/Time Off-sit	e: 1/26 x 1315
	rough numera where n	IV TEAL	billion and a second second state of the	
- 	Date/Time On-site: 11/28/16 12 V Halt Sampler program V Put lid on sample bottle V Properly label sample bottle; Record N Record liquid height/sample volume X Record subsample information on bottle	e and visual observa		
	lf Compling in Completer	Konstanta		
	If Sampling is Complete:			ble bottle change out):
_	∑ Power off Sampler		ew 15 L bottle, add	
_	Add ice to sample cooler		sampling program	
_	X Complete COC form;		me Restarted:	
_		, Verify R	unning	
	comments: Scaple discarded A5 du	1 10		
C		Deta/T	ima Off altas	
C	Insufficient volume.	Date/T	ime Off-site:	
S	HUT-DOWN:		ime Off-site:	
S	B HUT-DOWN: Date/Time On-site:	MDT/MST		
S	B HUT-DOWN: Date/Time On-site:	MDT/MST MDT/MST	ime Off-site:	A
S	B HUT-DOWN: Date/Time On-site: Remote Date/Time: Record Flow Meter status (Flowlink	MDT/MST MDT/MST	Personnel:	
S	B HUT-DOWN: Date/Time On-site:	MDT/MST MDT/MST	Personnel: Flow Meter Stat	
S	B HUT-DOWN: Date/Time On-site: Remote Date/Time: Record Flow Meter status (Flowlink Replace battery if v<11.9 Retrieve Data (Flowlink)	MDT/MST MDT/MST	Personnel: Flow Meter Stat Level	in.
S	B HUT-DOWN: Date/Time On-site: Remote Date/Time: Record Flow Meter status (Flowlink Replace battery if v<11.9 Retrieve Data (Flowlink)	MDT/MST MDT/MST	Personnel: Flow Meter Stat Level Flow	
S	BHUT-DOWN: Date/Time On-site: Remote Date/Time: Record Flow Meter status (Flowlink Replace battery if v<11.9 Retrieve Data (Flowlink) Change modem access to "Dry We	MDT/MST MDT/MST	Personnel: Flow Meter Stat Level	in. cfs fps
S	BHUT-DOWN: Date/Time On-site:	MDT/MST MDT/MST	Personnel: Flow Meter Stat Level Flow	in. cfs
S	BHUT-DOWN: Date/Time On-site: Remote Date/Time: Record Flow Meter status (Flowlink Replace battery if v<11.9 Retrieve Data (Flowlink) Change modem access to "Dry We Change data storage rates for level rate to 15 min (Flowlink)	MDT/MST MDT/MST	Personnel: Flow Meter Stat Level Flow Velocity	in. cfs fps
S	SHUT-DOWN: Date/Time On-site: Remote Date/Time: Record Flow Meter status (Flowlink) Replace battery if v<11.9	MDT/MST MDT/MST ather" 8-6 M-F l, velocity and flow o, vel. Spectrum,	Personnel: Flow Meter Stat Level Flow Velocity	in. cfs fps
S C F - - - - -	SHUT-DOWN: Date/Time On-site: Remote Date/Time: Record Flow Meter status (Flowlink) Replace battery if v<11.9	MDT/MST MDT/MST ather" 8-6 M-F l, velocity and flow o, vel. Spectrum,	Personnel: Flow Meter Stat Level Flow Velocity	in. cfs fps
S C F - - - - -	SHUT-DOWN: Date/Time On-site: Remote Date/Time: Record Flow Meter status (Flowlink) Replace battery if v<11.9	MDT/MST MDT/MST ather" 8-6 M-F l, velocity and flow o, vel. Spectrum,	Personnel: Flow Meter Stat Level Flow Velocity	in. cfs fps

Form 22 COMPOSITE INFORMATION- Phase II

Compon	ont		5	ample Qu	antitative	Result	5		Linit
Compon		Volume	(Approv.)	Value V	-0				<u>Unit</u>
	ite Sample		(Approx.)		00				mL
-low Pul	se Interval				8	-			ft^3
11. 11	0 1 1						onversion Cha		
Liquid	Sample Volume	Liquid	Sample Volume	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height 0.5"	400 mL	Height 3.0"	3500 mL	Height 5.5"	Volume 7250 mL	Height 8.0"	Volume 11000 mL	Height 10.5"	Volume 14750 mL
(1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL		10250 mL	10.0"	14000 mL	Lab min	8,000 mL
-		Sample	Qualitativ	- 6.5			2		
Compon	ent		ription	o neounto			Example	e	
Clarity	one	0030						oudy, Silty	
Color		Ci	-cy						Dup Black
00101			u.l				Clear, G	ay, ran, Bi	rown, Black
			Informati						
Frigger #	Date/	Time	Sampler I Subsamp	Message / le Result	Trigger	#	Date/Time		Message /
1	11/17	· 2016	No 1		21				
2	1421	2020	No	40-	22				
3			Ne	-	23				
		2023		-		-			
4		2026	No	-	24	-			
5		2028	Ng		25				
6		2031	No		26				
7		2033	N.		27				
8		2036	No		28				
9		2039	No		29	100			
10		2042	No	1	30				
11		2045	No	1	31				
12		2050	No	1	32			-	
13				1 Contraction					
		1050	110		33		-		
14		2101	Succe	55	34				
15		2109			35				
16		2123	1		36		a second		
17		2148	V		37			-	
18		2316	No 1	invid	38				
19			1	-1	39				
20					40			-	
	e date/time fo	or the first tr	igger is the "S	tart Date/Tim		time for	the final trigger	is the "End Da	ate/Time"
	ITS: Not		withed, to	1	Valvine				

SUBSAMPLE INFORMATION:	
Date/Time	Container - Test (Subsample Result)
12:00	COC Sample Date & Time

Notes: Use the "Start Date/Time" and "End Date/Time" for the parent sample.

*MST is observed during fall and winter; MDT is observed in spring and summer.

First 13 sample attempts error : No More Liquid!

Technical Memorandum

950 West Bannock Street, Suite 350 Boise, ID 83702

Phone: 208-389-7700 Fax: 208-389-7750

- Prepared for: Ada County Highway District (ACHD)
- Project Title: Phase II Stormwater Outfall Monitoring

Project No.: 152760

Technical Memorandum

- Subject: ACHD Phase II Monitoring Period Summary for March through April 2019
- Date: August 27, 2019
- To: Monica Lowe
- Cc: Tammy Lightle
- From: Andy Weigel, Project Manager

Prepared by:

andres Loran

Andrea Leonard, Project Scientist

Reviewed by:

Andy Weigel, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 1, 2017. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List of Tables	ii
Section 1: Project Summary	1
Section 2: Monitoring Period Narrative National Weather Service Summary Monitoring Station Summary	1
Section 3: Storm Narrative	2
Section 4: Pollutant Loading	
Section 5: Deviations/Problems	
Section 6: References	
Attachment A: Monitoring Period Summary Tables	
Attachment B: Monitoring Period Hydrographs	В
Attachment C: Analytical Reports and Field Sheets	C

List of Tables

Section 1: Project Summary

Table 1 is a summary of the types of data collected during Water Year (WY) 2019 Phase II Stormwater Monitoring.

Table 1. Project Summary									
Sample Period	Novembe Februar		March-A	pril 2019					
Station	Edgewood	Chrisfield	Edgewood	Chrisfield					
Rain (inches)	8.04 ¹	6.88 ¹	3.14	2.62					
Storm data flow (cubic feet)	229,023 ¹	64,026 ¹	99,994	27,872 ²					
Wet grab	Yes	Yes	Yes	Yes					
Field parameters	Yes	No	No	No					
QA/QC	No	Yes	No	Yes					

¹ Rainfall data gaps were supplemented with Agrimet data, maintained by the U.S. Bureau of Reclamation. ² Estimated runoff volume is used when flow data is not available.

Section 2: Monitoring Period Narrative

This technical memorandum describes the Phase II Stormwater Monitoring completed for Ada County Highway District (ACHD) from March through April 2019. Flow and rain data were collected during this period from the Edgewood and Chrisfield Phase II monitoring stations. One storm was targeted during the March-April monitoring period on April 13, 2019, resulting in successful grab samples at both monitoring stations. Composite samples were attempted, but were unsuccessful.

National Weather Service Summary

The National Weather Service (NWS) prepares a summary of precipitation observations each month for inclusion in an overall monthly climate summary. The NWS monthly climate summary is made available through the local Boise Weather Forecast Office on the NWS website at https://w2.weather.gov/climate/index.php?wfo=boi. Precipitation summaries from the NWS are included in the text below. Summaries are pared down but are otherwise quoted directly with minor punctuation and grammatical edits for readability.

The average temperature for March 2019 was only slightly below normal. Total precipitation was very close to normal, at 1.31 inches. No records were equaled or exceeded. On the 23rd a low-pressure trough approaching from the coast brought light showers, the first measurable precipitation since the 12th. On the 24th the trough was over our area, and more than half an inch of rain was measured at the airport. While not a record, it was the first significant precipitation since late February. On the 26th moist unstable air associated with an offshore low-pressure trough contributed to late afternoon thunderstorms which developed along a cold front. One of these storms was accompanied by brief heavy showers, and even small hail in some parts of Boise. As it moved inland, the trough

brought more showers from the 27th through the 30th. A high-pressure ridge over the coast provided dry sunny weather on the 31st.

April 2019 was wetter and slightly warmer than normal, with a total precipitation of 1.99 inches. Measurable precipitation fell on 14 days. An upper-level high pressure ridge kept temperatures above normal through the 5th. Disturbances moving through the ridge brought nearly daily showers. After the ridge shifted east, relatively mild temperatures were maintained by southwest flow aloft ahead of an approaching upper- level low pressure trough. Daily showers continued. Heavier showers on the 8th dropped nearly half an inch of rain at the airport. Another system resulted in rainfall totaling over half an inch on the 14th and 15th. On the 20th a strong cold front in advance of an upperlevel trough triggered wet thunderstorms. One such storm dumped nearly a quarter inch of rain in 20 minutes at the airport.

Monitoring Station Summary

A summary of data collected for each monitoring station over the entire monitoring period (Mar-Apr) and for the targeted storm is provided in Table 2. Monthly summaries are presented in Tables 3–4 (Mar-Apr). Monitoring period summary tables are included in Attachment A.

March – April summary hydrographs are presented in Figures 1 (Edgewood) and 2 (Chrisfield). Monthly hydrographs for each monitoring station in this monitoring period are provided in chronological order in Figures 3–6. Included on each hydrograph are recorded hourly precipitation at the local rain gauge (inches), flow (cubic feet per second), and sample collection times, as applicable. Hydrographs are included in Attachment B.

Section 3: Storm Narrative

One storm was targeted during the March – April monitoring period. Wet grab samples were collected at both sites on April 13, 2019. Setup was accomplished for composite samples at Edgewood and Chrisfield, but no successful composite sample was collected. See Section 5 for additional notes about data collected during the monitoring period.

April 12, 2019

On Friday afternoon, April 12, the National Weather Service issued a forecast for rain showers in the Boise area from Saturday evening to Sunday morning. Chance of precipitation was 65-75 percent; a total precipitation of 0.14 inch was forecasted. Setup was conducted Friday afternoon.

April 13, 2019

Precipitation started around 2200 on Saturday evening, April 13, 2019 and light showers continued through Sunday morning around 0900. Precipitation totals were 0.48 at both Edgewood and Chrisfield.

Section 4: Pollutant Loading

Water quality results and pollutant loading estimates for the Edgewood and Chrisfield monitoring stations for the March – April monitoring period were not calculated for this monitoring period since composite samples were not collected. Field parameters and E. Coli analytical results are included in Tables 2-4.

Section 5: Deviations/Problems

Composite Samples

During the April 13, 2019 storm event, trigger volumes for Chrisfield and Edgewood monitoring stations were calculated incorrectly, resulting in programmed trigger volumes that were too high to collect successful composite samples. In future monitoring events both grab and composite samples will be targeted for all analytical parameters, except e. coli, until successful composite samples can be collected consistently.

Section 6: References

National Weather Service Boise Forecast Office. (2018). Monthly Weather Summary. Retrieved April 3, 2018, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi

National Weather Service Boise Forecast Office. (2018). Preliminary Monthly Climate Data. Retrieved April 3, 2018, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi

Attachment A: Monitoring Period Summary Tables

Table 2

	Monitoring Period	Summary M	arch 1 - April 30 (WY19)				
		Edgewood			Chrisfield		
	cubi	c feet	percent	cubi	c feet	percent	
Measured Stormwater Runoff Volume (cf)	99,	994	14%	27,8	872 ¹	100%	
Background Discharge Volume (cf)	598	,010	86%	()	0%	
Total Discharge Volume (cf)	698	,004	100%	27,8	372 ¹	100%	
Estimated Runoff for Monitored Area ²	Edge	wood	Eagle	Chris	field	Meridian	
Period Precipitation (in)		3.	14		2.	.62	
Drainage Area (acres)	55	.86	22,765	1	2	26,690	
Estimated Stormwater Runoff Volume ³ (cf)	68,	191	71,357,006	21,	159	69,805,426	
Monitored Storm Information		Edgewood (4/13/2019)		Chrisfield (4/13/2019)	
Precipitation Amount (in)		0.	48		0.	48	
Storm Duration (hrs)		1	2	14			
Antecedent Dry Period (hrs)		1	08 110				
Recorded Runoff Volume (cf)		14,396 6,300					
Sample Information							
Sample Date and Time		4/14/2	019 0:05	4/13/2019 23:30			
Dissolved Oxygen (mg/L)		8.	11	8.33			
рН (S.U.)		7.	75	8.05			
Conductivity (uS/cm)		59	9.7		0	.3	
Temperature (°C)		12	2.0		14	4.4	
Nitrate + Nitrite as N (mg/L)							
Total Suspended Solids (mg/L)							
Total Kjeldahl Nitrogen (mg/L)							
Dissolved Orthophospate as P (mg/L)							
Total Phosphorus as P (mg/L)							
E.Coli (MPN/100 mL)		24	8.1		30	7.6	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian	
Tonutant Loading Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
Nitrate + Nitrite as N							
Total Suspended Solids							
Total Kjeldahl Nitrogen							
Dissolved Orthophosphate as P							
Total Phosphorus as P							

Notes:

 $^{1}\ensuremath{\mathsf{Estimated}}\xspace$ runoff volume is used when flow data is not available.

 $^{2}\,\mathrm{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

 $^{3}\mbox{Estimated}$ stormwater runoff volume is calculated using local precipitation data

Table 3

	Monitoring Period	d Summary N	Narch 1 - March 31 (WY19)				
		Edge	wood		Chrisfield		
	cubio	cubic feet percent			: feet	percent	
Measured Stormwater Runoff Volume (cf)	37,	620	10%	12,3	01 ¹	100%	
Background Discharge Volume (cf)	337,	,464	90%	()	0%	
Total Discharge Volume (cf)	375	,084	100%	12,3	01 ¹	100%	
Estimated Runoff for Monitored Area ²	Edge	wood	Eagle	Chris	field	Meridian	
Monthly Precipitation (in)		1	.3		1.	07	
Drainage Area (acres)	55	.86	22,765	1	2	26,690	
Estimated Stormwater Runoff Volume ³ (cf)	28,:	232	29,542,709	8,6	641	28,508,322	
Monitored Storm Information		Edgewood (4/13/2019)		Chrisfield (4	4/13/2019)	
Precipitation Amount (in)		0.	48		0.	48	
Storm Duration (hrs)		1	2		1	14	
Antecedent Dry Period (hrs)		10	08	110			
Recorded Runoff Volume (cf)		14,	396		6,3	300	
ample Information							
ample Date and Time		4/14/20	019 0:05	4/13/2019 23:30			
issolved Oxygen (mg/L)		8.	11		8.33		
H (S.U.)		7.	75		8.05		
conductivity (uS/cm)		59	9.7		0	.3	
emperature (°C)		12	2.0		14	4.4	
itrate + Nitrite as N (mg/L)		-	-				
otal Suspended Solids (mg/L)		-	-				
otal Kjeldahl Nitrogen (mg/L)		-	-				
)issolved Orthophospate as P (mg/L)		-	-				
otal Phosphorus as P (mg/L)		-	-				
Coli (MPN/100 mL)		24	8.1		30	7.6	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian	
Unitant Loading Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
itrate + Nitrite as N							
otal Suspended Solids							
otal Kjeldahl Nitrogen							
Dissolved Orthophosphate as P							
otal Phosphorus as P							

Notes:

 $^{1}\ensuremath{\mathsf{Estimated}}\xspace$ runoff volume is used when flow data is not available.

 $^{2}\,\mathrm{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

 $^{3}\mbox{Estimated}$ stormwater runoff volume is calculated using local precipitation data

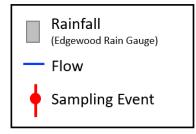
Table 4

	Monitoring Peri	iod Summary	April 1 - April 30 (WY 19)					
		Edge	wood		Chris	field		
	cubio	cubic feet percent			cubic feet p			
Measured Stormwater Runoff Volume (cf)	62,	374	19%	15,5	571 ¹	100%		
Background Discharge Volume (cf)	260	,546	81%	()	0%		
Total Discharge Volume (cf)	322	,920	100%	15,5	571 ¹	100%		
Estimated Runoff for Monitored Area ²	Edge	wood	Eagle	Chris	field	Meridian		
Monthly Precipitation (in)		1.	84		1.	55		
Drainage Area (acres)	55	.86	22,765	1	2	26,690		
Estimated Stormwater Runoff Volume ³ (cf)	39,	959	41,814,297	12,	518	41,297,103		
Monitored Storm Information		Edgewood (4/13/2019)		Chrisfield (4	/13/2019)		
Precipitation Amount (in)		0.	48		0.4	48		
Storm Duration (hrs)		1	.2		1	4		
Antecedent Dry Period (hrs)		1	08	110				
Recorded Runoff Volume (cf)		14,	396		6,3	6,300		
Sample Information								
Sample Date and Time		4/14/2019 0:05			4/13/2019 23:30			
Dissolved Oxygen (mg/L)		8.11			8.33			
oH (S.U.)		7.75			8.05			
Conductivity (uS/cm)		59	9.7		0.	.3		
emperature (°C)		12	2.0		14	.4		
litrate + Nitrite as N (mg/L)					-	-		
Fotal Suspended Solids (mg/L)			-		-	-		
Fotal Kjeldahl Nitrogen (mg/L)			-		-	-		
Dissolved Orthophospate as P (mg/L)			-		-	-		
Fotal Phosphorus as P (mg/L)					-	-		
E.Coli (MPN/100 mL)		24	8.1		30	7.6		
Pollutant Loading Estimates								
-onutant Loaunig Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)		
Nitrate + Nitrite as N								
otal Suspended Solids								
Total Kjeldahl Nitrogen								
Dissolved Orthophosphate as P								
Total Phosphorus as P								

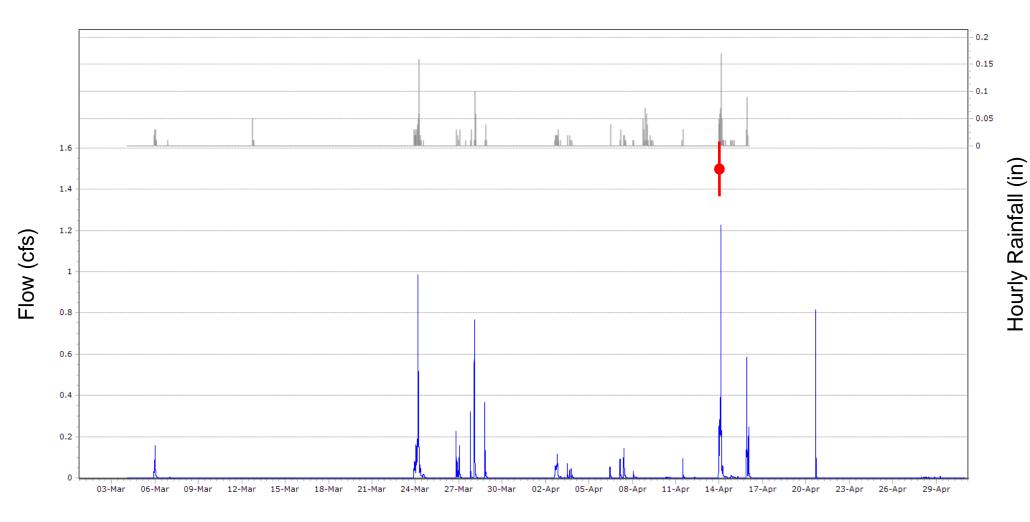
Notes:

 $^{1}\ensuremath{\mathsf{Estimated}}\xspace$ runoff volume is used when flow data is not available.

 $^{2}\,\mathrm{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.


 $^{\rm 3}\textsc{Estimated}$ stormwater runoff volume is calculated using local precipitation data

Attachment B: Monitoring Period Hydrographs



Edgewood - Water Year 2019 - March 2019 through April 2019

Chrisfield - Water Year 2019 - March 2019 through April 2019

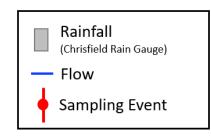
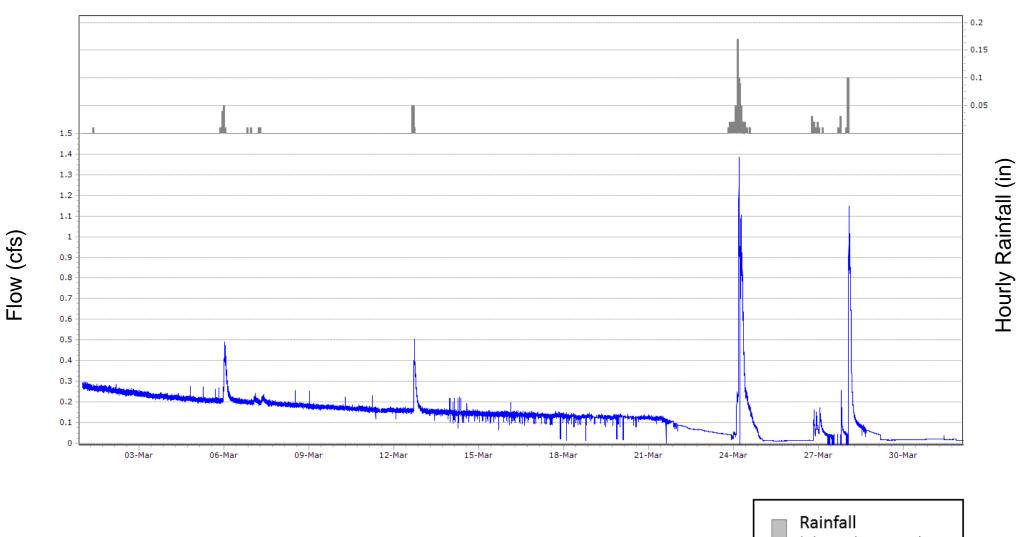
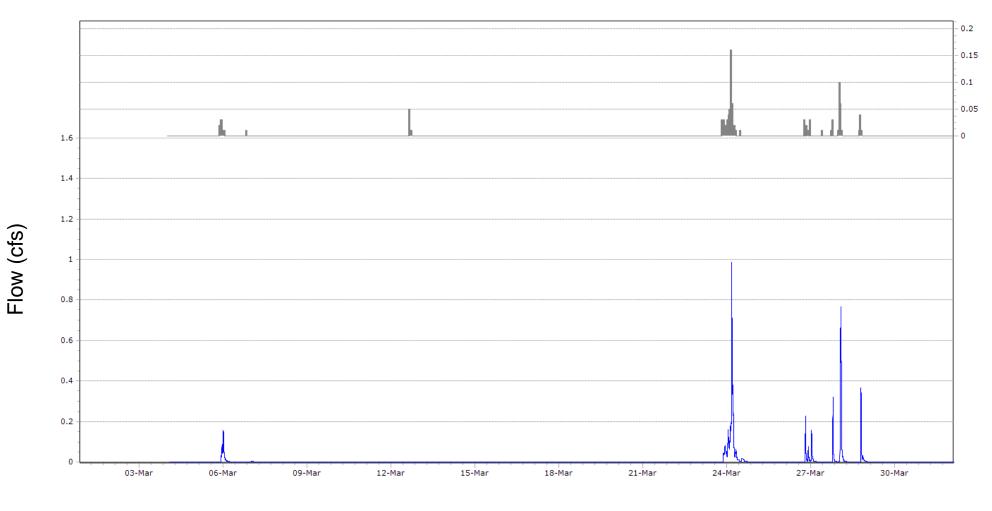
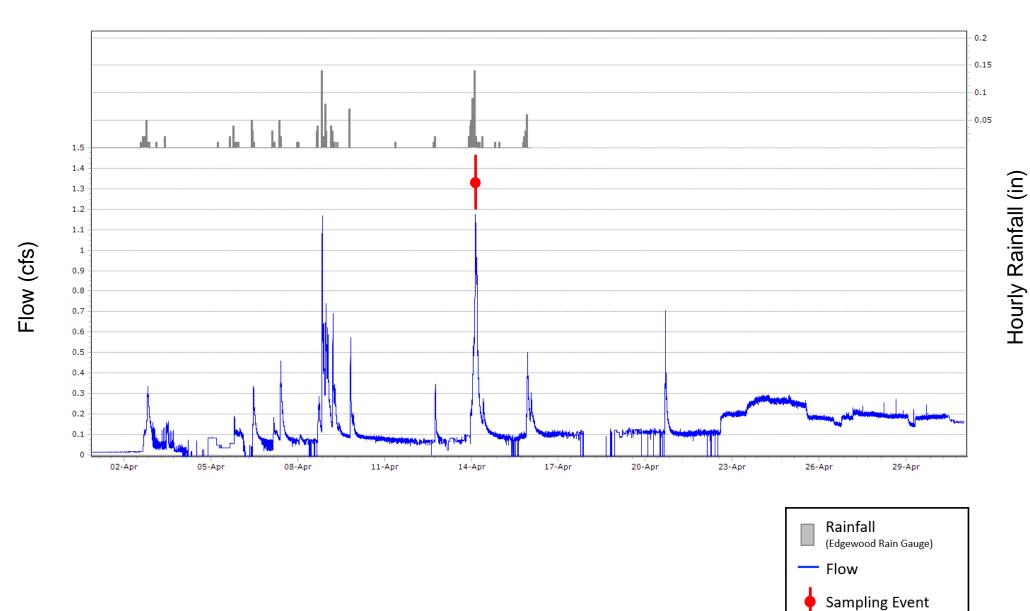



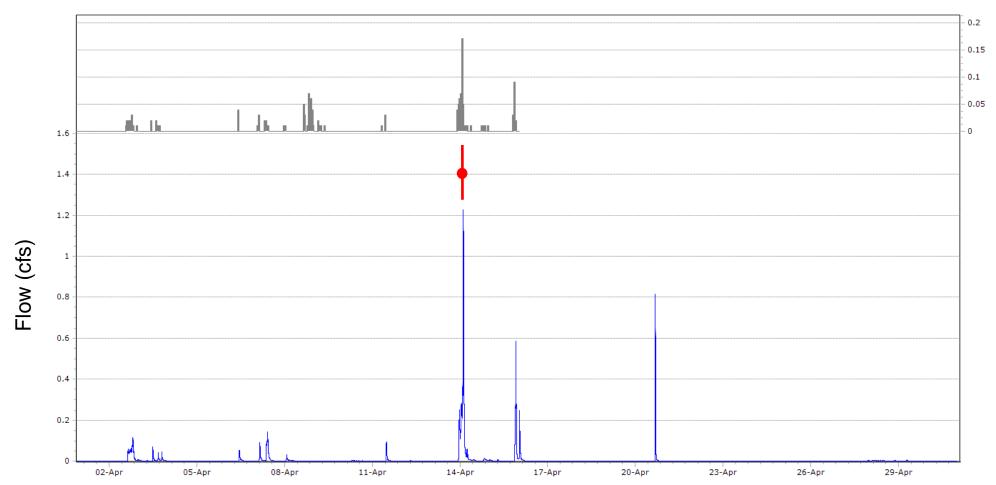
Figure 2


Edgewood - Water Year 2019 - March 2019

(Edgewood Rain Gauge)
 Flow

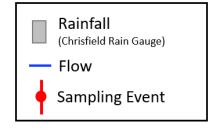
Figure 3


Chrisfield- Water Year 2019 - March 2019



 Rainfall (Chrisfield Rain Gauge)
 Flow

Figure 4


Edgewood - Water Year 2019 - April 2019

Chrisfield - Water Year 2019 - April 2019

Attachment C: Analytical Reports and Field Sheets

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

1

Lab ID	Sample	Sample Description	Matrix Qua	alifiers Date Sampled	Date Received
9AC0016-01	ACST2B	190413-09-WG	Water	04/13/2019	04/14/2019
9AC0016-02	ACST2B	190414-08-WG	Water	04/14/2019	04/14/2019
9AC0016-03	ACST2B	190413-09-001	Water	04/13/2019	04/14/2019

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST2	В				Location Description:	190413-09	9-WG		
Date/Time Collecte	ed: 04/13/2 9AC00	2019 23:31 16-01				Sample Collector:	ABW			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology E. Coli	B9D1507	307.6 M	PN/100 mL	. 1.0	1.0	Colilert	04/14/19 07:00	4/15/19 7:15	JJR	
Wet Chemistry Chlorine Screen	B9D1514	Absent				SM 4500-CL G-2000 mod	04/14/19	4/14/19 6:18	JJR	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST2	2B				Location Description:	190414-08	3-WG		
Date/Time Collect	ed: 04/14/2	2019 00:05	5							
Lab Number:	9AC00	16-02				Sample Collector:	ABW			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology E. Coli	B9D1507	248.1 N	IPN/100 mL	. 1.0	1.0	Colilert	04/14/19 07:10	4/15/19 7:15	JJR	
Wet Chemistry Chlorine Screen	B9D1514	Absent				SM 4500-CL G-2000 mod	04/14/19	4/14/19 6:23	JJR	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST2	2B				Location Description:	190413-09	9-001			
Date/Time Collect	ed: 04/13/2	2019 12:00)								
Lab Number:	9AC00	16-03				Sample Collector:	ABW				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analy Tim		Analyst Initials	Qual
Microbiology E. Coli	B9D1507	<1.0M	PN/100 mL	- 1.0	1.0	Colilert	04/14/19 07:00	4/15/19	7:15	JJR	ΗU
Wet Chemistry Chlorine Screen	B9D1514	Absent				SM 4500-CL G-2000 mod	04/14/19	4/14/19	6:18	JJR	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Microbiology Batch: B9D1507 Blank (B9D1507-BLK1)									
E. Coli	Absent						04/15/2019	JJR	
LCS (B9D1507-BS1) E. Coli			## An management of the second se	Present			04/15/2019	JJR	
Duplicate (B9D1507-DUP1) E. Coli	Source ID: 9ACC	016-01			Pass	128	04/15/2019	JJR	

Notes and Definitions

ltem	Definition
H	Hold time Exceeded.
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

- on

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Ada County Highway District	y Highw	vay Dis	strict						-									
Attn: Monica Lowe 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	-owe Street daho 837 -6255 -6391 er:	14-6415			Debroth	s	Matrix	Type	80		a second s			b. Zn - EPA 200.7 A 245.2	neliloQ X		the second se	*
Lab#	Begin Date	End Date	Begin Time	End	Sample Identification	l Sampler Initial	Water	Grab	Composite	COD - Hach 80	TDS - SM 2540 TDS - SM 2540	7.005 AGE - 9T Stenasonaorino	Total As. Cd. Pl	Total Ha - EP	E. Coll - IDEX	1011 - Vibidiu MS - Sendres	NH ³ - SM 4500	Total Container
-910004	14	3/19	2	12:22	140413-09-WG	A 800	X	X							X			-
Ą	4	14/19	0	2000	28	AU	X	X		-	_		1		×			
(<u>M</u>	7	6/2	<u>[]</u>	00 LI	5 00 1	ABK	X								X			
				Date & Time														
	Kelinquisned by (sign)	(ngis)	F 3	Transferred	higher to be a second of the second	V/Iulla abo 0			5									
										Ş	94 conte	110	d					

945 NN12

Form 21A Grab Sample Data Form – Phase II	
Station: Chrisfield Personnel: 27D ARM	ť
Date/Time - On-site: 4/13/19 23 MDT/MST*(circle one)*	E.
GRAB INFORMATION:	The
Is this a QA/QC Station? Yes <u>X</u> No (if YES, fill out Form 21B on back)	(St
Photographs Taken? Yes No Swing Sampler Used? Yes No	
Sample ID: 190413 - 69 -WG (fill in appropriate sequential number)	
Date/TimeContainer - Test (Subsample Result)Labeled $4/13/19/23:30$ (1) 250mL sterile plastic - E. coli \checkmark	
FIELD PARAMETERS: Fill (1) 500mL Amber Date/Time: 4/13/19 23:31	
<u>Value Unit</u> <u>Value Unit</u>	
Diss. O _{2-DO Meter} <u>8.33</u> Mg/L Temp - DO Meter <u>M. 4</u> °C	
Conductivity – 0.3 µS/cm Temp - Cond Meter 14.4 °C	
<u>рН – рн Meter 8.05</u> S.U. <u>Тетр – рн Meter</u> <u>14.2</u> °С	
AUTO SAMPLER CURRENT STATUS:	

First Subsample taken: Yes / No (circle one) ; if Yes, Date/Time

Last Subsample taken, Date/Time______# of Subsamples taken;

COMMENTS: Date/Time - Off-site: 1/13/19 2310 Station: Personnel:

Form 21B QA/QC Grab Sample Data Form – Phase II

FIELD DUPLICATE:

Sample ID: _______ (fill in appropriate sequential number)

SUBSAMPLE INFORMATION:

Date/Time	Container - Test (Subsample Result)	Labeled
and the second with the wheet	(1) 250mL sterile plastic – E. Coli	
	The state of the	
	a pierce and a second second	

Comments:	100	 16,20	A area	DEV.	E \$ 1	
15.						
1 127 11 2 11						

FIELD BLANK:

Sample ID: -	190413 - 09 -001 (fill in appropriate se	equential number)
		vou on a name of

(Fill bottle with Ultra-pure water supplied by WQL)

Date/Time	Container - Test (Subsample Result)	Labeled
4/13/14 23:35	(1) 250mL sterile plastic – E. Coli	R.

Comments:	A State Cal	
Barris and		
Real Providence		

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 21A Grab Sample Data Form – Phase II

N:	19/12:0	5 m MDT/MST*(circle	e one)	
ian) Vac				
ion res_	No	(if YES, fill out F	Form 21B on	back)
Yes_	No	🦾 Swing Sampler l	Jsed?Yes 🗋	<u>K_</u> No
-08	-WG (fill in	appropriate seguential number)	The second
ime	Con	itainer - Test (Subs	ample Resu	It) Labeled
15 am		And the state of the state of the state	No. of Concession, Name)æ ⁷
29: Eill (1)	500ml An	nber Date/Time:	4/14/10	12:07
		iber Date, fille		
				<u>Unit</u>
8,11	Mg/L	Temp - DO Meter	12.0	°C
59,7	µS/cm	Temp - Cond Meter	12.0	°C
7.75	S.U.	Temp - pH Meter	12.3	°C
	ime 05 com RS: Fill (1) <u>Value</u> 8, 11	-08 <u>-WG (fill in in ine</u> Con 05 a.m (1) 2 RS: Fill (1) 500mL An <u>Value Unit</u> 8, 11 Mg/L <u>59,7</u> µS/cm	-08 -WG (fill in appropriate sequential number ime Container - Test (Subsection 1) 05 and (1) 250mL sterile plastic RS: Fill (1) 500mL Amber Date/Time: Image: Container - Test (Subsection 1) Value Unit 8,11 Mg/L Temp - DO Meter 59,7 µS/cm Temp - Cond Meter	05 and(1) 250mL sterile plastic – E. coliRS: Fill (1) 500mL Amber Date/Time: $\frac{H}{1/4}/14$ ValueUnitValue8.11Mg/LTemp – DO Meter12.059.7µS/cmTemp – cond Meter12.0

First Subsample taken: Yes / No (circle one); if Yes, Date/Time_

í

Last Subsample taken, Date/Time # of Subsamples taken:

COMMENTS: Date/Time - Off-site: 4/14/19 00:35 Personnel: Station:

Form 21B QA/QC Grab Sample Data Form – Phase II

FIELD DUPLICATE:

Sample ID: -101 (fill in appropriate sequential number)

OLIDO ANDI	E INTEADINATION	
SUBSAMPL	E INFORMATION:	

Result) Labele	Date/Time
i 🗆	
216 25 100	

Comments:

FIELD BLANK:

Sample ID: -

-001 (fill in appropriate sequential number)

(Fill bottle with Ultra-pure water supplied by WQL) SUBSANDI E INCODMATION

Date/Time	Container - Test (Subsample Result)	Labeled		
	(1) 250mL sterile plastic – E. Coli			

Comments:			

*MST is observed during fall and winter; MDT is observed in spring and summer.

Technical Memorandum

950 West Bannock Street, Suite 350 Boise, ID 83702

Phone: 208-389-7700 Fax: 208-389-7750

- Prepared for: Ada County Highway District (ACHD)
- Project Title: Phase II Stormwater Outfall Monitoring

Project No.: 152760

Technical Memorandum

- Subject: ACHD Phase II Monitoring Period Summary for May through June 2019
- Date: August 28, 2019
- To: Monica Lowe
- Cc: Tammy Lightle
- From: Andy Weigel, Project Manager

Prepared by:

Julies Lionar

Andrea Leonard, Project Scientist

Reviewed by:

Andy Weigel, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 1, 2017. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List of Tables	ii
Section 1: Project Summary	1
Section 2: Monitoring Period Narrative National Weather Service Summary	1
Monitoring Station Summary	
Section 3: Storm Narrative	2
Section 4: Pollutant Loading	2
Section 5: Deviations/Problems	3
Section 6: References	3
Attachment A: Monitoring Period Summary Tables	A
Attachment B: Monitoring Period Hydrographs	B
Attachment C: Analytical Reports and Field Sheets	C

List of Tables

Table 1. Project Summary	1
--------------------------	---

Section 1: Project Summary

Table 1 is a summary of the types of data collected during Water Year (WY) 2019 Phase II Stormwater Monitoring.

Table 1. Project Summary									
Sample Period		er 2018 – ry 2019	March-A	pril 2019	May-June 2019				
Station	Edgewood	Chrisfield	Edgewood	Chrisfield	Edgewood	Chrisfield			
Rain (inches)	8.04 ¹	6.88 ¹	3.14	2.62	2.81 ²	2.58 ³			
Storm data flow (cubic feet)	229,023	64,026 ⁴	99,994	27,872 ⁴	75,080 ⁴	32,076 4			
Wet grab	Yes	Yes	Yes	Yes	Yes 5	Yes 5			
Field parameters	Yes	Yes	Yes	Yes	Yes	Yes			
Composite Sample	Yes	No	No	No	No	Yes			
QA/QC	No	Yes	No	Yes	Yes	No			

¹ Rainfall data gaps were supplemented with Agrimet data, maintained by the U.S. Bureau of Reclamation.

² Hourly rainfall data are supplemented with available hourly rainfall data from Chrisfield.

³ Hourly rainfall data are supplemented with available hourly rainfall data from Edgewood.

⁴ Estimated runoff volume is used when flow data is not available.

⁵ E.Coli results are qualified due to exceeded holding time.

Section 2: Monitoring Period Narrative

This technical memorandum describes the Phase II Stormwater Monitoring completed for Ada County Highway District (ACHD) from May through June 2019. Flow and rain data were collected during this period from the Edgewood and Chrisfield Phase II monitoring stations. One storm was targeted during the May – June monitoring period on May 16, 2019, resulting in successful grab samples at both monitoring stations, and a successful composite sample at Chrisfield. A composite sample was attempted at Edgewood but was unsuccessful.

National Weather Service Summary

The National Weather Service (NWS) prepares a summary of precipitation observations each month for inclusion in an overall monthly climate summary. The NWS monthly climate summary is made available through the local Boise Weather Forecast Office on the NWS website at http://www.nws.noaa.gov/climate/index.php?wfo=boi. Precipitation summaries from the NWS are included in the text below. Summaries are pared down but are otherwise quoted directly with minor punctuation and grammatical edits for readability.

May 2019 was the wettest May since 2005, and the 6th wettest on record, with a total of 3.98 inches. In addition, the period from January 1 through May 31 is the wettest on record at the Boise airport, at 12.07 inches. It ranks in second place for the entire period of record in the Boise area (behind 1896 at 14.27 inches), and even exceeds Boise's average annual precipitation of 11.73

inches. No rain fell during the first two weeks of the month. During the rest of the month most days had measurable rain. The moist and unstable air provided favorable conditions for daily rounds of showers and thunderstorms, some of which produced locally heavy showers.

June 2019 was the second driest June at the Boise airport, with only 0.04 inch of precipitation. Measurable rain fell on only two days. The average temperature for the month was very close to normal. June began with above normal temperatures, with highs in the 80s. On the 26th an upper level trough had arrived off the Washington-Oregon coast. As the trough edged further east that day, thunderstorms developed in northeast Oregon along a weak cold front, but they never got as far as Boise, and that night the front produced no precipitation.

Monitoring Station Summary

A summary of data collected for each monitoring station over the entire monitoring period (May-June) and for the targeted storm is provided in Table 2. Monthly summaries are presented in Tables 3 and 4. Monitoring period summary tables are included in Attachment A.

May – June summary hydrographs are presented in Figures 1 (Edgewood) and 2 (Chrisfield). Monthly hydrographs for each monitoring station in this monitoring period are provided in chronological order in Figures 3– 6. Included on each hydrograph are recorded hourly precipitation at the local rain gauge (inches), flow (cubic feet per second), and sample collection times, as applicable. Hydrographs are included in Attachment B.

Section 3: Storm Narrative

One storm was targeted during the May – June monitoring period. Wet grab samples were collected at both sites on May 16, 2019. Grab samples are qualified for holding time. The time between collection time and analysis time was 37 hours. A successful composite sample was collected at Chrisfield, but the composite sample at Edgewood was unsuccessful. See Section 5 for additional notes about data collected during the monitoring period.

May 16, 2019

On Wednesday afternoon, May 15, the National Weather Service issued a forecast for rain showers in the Boise area from midday Thursday continuing through Friday afternoon. Chance of precipitation was 80-85 percent, with a total of 0.64 inch of precipitation forecasted. Setup was conducted Wednesday afternoon. An expected precipitation depth of 0.19 inch was used to set trigger volumes at Edgewood and Chrisfield. Precipitation started around 1500 on Thursday afternoon, May 16, 2019 and continued steadily through the afternoon until around 1900. Precipitation totals were 0.15 at Chrisfield and 0.21 at Edgewood.

A two-member team mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on the evening of May 16, 2019. Wet grab samples were collected at Edgewood and Chrisfield monitoring stations and submitted to the West Boise Water Quality Lab (WQL) at 1840 on May 16. Laboratory analytical reports are included in Attachment C.

Section 4: Pollutant Loading

Water quality results and pollutant loading estimates for each monitoring station for the May-June monitoring period are included in Table 2. Monthly values and estimates are presented for each individual month as

well (Tables 3–6). Water quality results and pollutant loading estimates for Edgewood were not calculated for this monitoring period since a composite sample was not collected. Field parameters and E. Coli analytical results are included in Tables 2-4.

Section 5: Deviations/Problems

Edgewood


During the May 16, 2019 storm event, the automatic sampler at Edgewood experienced unsuccessful subsamples due to an error in the flow module's firmware. Due to the firmware issue (per conversations with lsco tech support), the sampler bagan collecting double samples sporadically. Eight subsamples were collected successfully at the beginning of the event, but three of these were duplicates. Then from the ninth subsample on, all attempts recorded a 'no more liquid' error. The sampling team was confident that the strainer was submerged and that there were no air gaps in the intake tubing for the duration of the storm. The 'no more liquid' error is attributed to the firmware issue. This composite was taken to the lab, since the error was not realized until after the event. However, these lab results are rejected due to the equipment error.

After this event was completed, firmware was reinstalled and tested for accuracy. Subsamples were taken correctly during this trial run. In future monitoring events both grab and composite samples will be targeted for all analytical parameters, except e. coli (grab sample only), until successful composite samples can be collected consistently.

Section 6: References

National Weather Service Boise Forecast Office. (2018). Monthly Weather Summary. Retrieved July 20, 2019, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi

National Weather Service Boise Forecast Office. (2018). Preliminary Monthly Climate Data. Retrieved July 20, 2019, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi

Attachment A: Monitoring Period Summary Tables

Table 2

	Monitoring P	eriod Summary	May 1 - June 30 (WY19)					
		Edgewo	od		Chris	sfield		
	cubic	cubic feet percent			c feet	percent		
Measured Stormwater Runoff Volume (cf)	75,0	80 ¹	15%	32,0)76 ¹	87%		
Background Discharge Volume (cf)	841,6	689 ²	85%	4,7	52 ²	13%		
Total Discharge Volume (cf)	916,	769	100%	36,	828	100%		
Estimated Runoff for Monitored Area ³	Edgev	vood	Eagle	Chris	field	Meridian		
Period Precipitation (in)		2.81	1		2.5	58 ⁵		
Drainage Area (acres)	55.	86	22,765	1	2	26,690		
Estimated Stormwater Runoff Volume ⁶ (cf)	49,9	949	52,267,871	20,	836	68,739,695		
Nonitored Storm Information		Edgewood (5/2	16/2019)		Chrisfield (5	5/16/2019)		
Precipitation Amount (in)		0.21			0.	15		
Storm Duration (hrs)		5				4		
Antecedent Dry Period (hrs)		622			7:	33		
Recorded Runoff Volume (cf)		4,230)		1,3	332		
Sample Information								
ample Date and Time		5/16/2019 18:11 5/16/2019 17:29						
vissolved Oxygen (mg/L)		7.33			8.38			
H (S.U.)		7.40			9.01			
conductivity (uS/cm)		123.2			71	1.7		
emperature (°C)		15.57			17	.18		
itrate + Nitrite as N (mg/L)					0.5	570		
otal Suspended Solids (mg/L)					75	5.0		
otal Kjeldahl Nitrogen (mg/L)					6.	71		
Dissolved Orthophospate as P (mg/L)					0.2	249		
otal Phosphorus as P (mg/L)					0.7	789		
.Coli (MPN/100 mL)		6090.0) ⁷		341	0.07		
Pollutant Loading Estimates	Edgev	vood	Eagle	Chris	sfield	Meridian		
Unitant Luaung Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)		
itrate + Nitrite as N				0.10	1.14	2,538		
otal Suspended Solids				12.51	150.17	333,993		
otal Kjeldahl Nitrogen				1.12	13.43	29,881		
Dissolved Orthophosphate as P				0.04	0.50	1,109		
Fotal Phosphorus as P				0.13	1.58	3,514		

Notes:

¹ Estimated runoff volume is used when flow data is not available.

 $^{2}\,\mathrm{Background}$ discharge volume does not include dates with missing data.

³ The "Monitored Area" includes only the area drained by the individual monitoring station.

⁴ Hourly rainfall data are supplemented with available hourly rainfall data from Chrisfield.

⁵ Hourly rainfall data are supplemented with available hourly rainfall data from Edgewood.

⁶ Estimated stormwater runoff volume is calculated using local precipitation data.

 $^{7}\,\mathrm{E.Coli}$ results are qualified due to exceeded holding time.

Table 3

	Monitoring P	eriod Summa	ary May 1 - May 31 (WY18)				
		Edge	wood		Chris	field		
	cubic	feet	percent	cubic feet		percent		
Measured Stormwater Runoff Volume (cf)	74,8	46 ¹	14%	31,7	52 ¹	97%		
Background Discharge Volume (cf)	447,9	07 ²	86%	1,04	44 ²	3%		
Fotal Discharge Volume (cf)	522,	753	100%	32,	796	100%		
Estimated Runoff for Monitored Area ³	Edgev	vood	Eagle	Chris	field	Meridian		
Nonthly Precipitation (in)		2.7	78 ⁴		2.5	i6 ⁵		
Drainage Area (acres)	55.	86	22,765	1	2	26,690		
stimated Stormwater Runoff Volume ⁶ (cf)	49,2	97	51,586,116	20,	675	68,206,829		
Ionitored Storm Information		Edgewood (5/16/2019)		Chrisfield (5	6/16/2019)		
Precipitation Amount (in)		0.	21		0.	15		
storm Duration (hrs)			5			1		
Intecedent Dry Period (hrs)		6	22		73	33		
Recorded Runoff Volume (cf)		4,2	230		1,3	32		
ample Information								
ample Date and Time		5/16/2019 18:11 5/16/2019 17:2				19 17:25		
issolved Oxygen (mg/L)		7.33			8.38			
H (S.U.)		7.	40	9.01				
onductivity (uS/cm)		123.2			71	7		
emperature (°C)		15.57			17	.18		
itrate + Nitrite as N (mg/L)					0.5	570		
otal Suspended Solids (mg/L)					75	5.0		
otal Kjeldahl Nitrogen (mg/L)		-			6.	71		
Dissolved Orthophospate as P (mg/L)					0.2	249		
otal Phosphorus as P (mg/L)			-		0.7	789		
.Coli (MPN/100 mL)		609	0.07		341	0.0 7		
Allutent Looding Fatimates	Edgew	vood	Eagle	Chris	field	Meridian		
Pollutant Loading Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)		
itrate + Nitrite as N				0.09	1.13	2,513		
otal Suspended Solids				12.39	148.65	330,619		
otal Kjeldahl Nitrogen				1.11	13.30	29,579		
Dissolved Orthophosphate as P				0.04	0.49	1,098		
Fotal Phosphorus as P				0.13	1.56	3,478		

Notes:

¹ Estimated runoff volume is used when flow data is not available.

 $^{2}\,\mathrm{Background}$ discharge volume does not include dates with missing data.

³ The "Monitored Area" includes only the area drained by the individual monitoring station.

⁴ Hourly rainfall data are supplemented with available hourly rainfall data from Chrisfield.

⁵ Hourly rainfall data are supplemented with available hourly rainfall data from Edgewood.

⁶ Estimated stormwater runoff volume is calculated using local precipitation data.

 $^{7}\,\mathrm{E.Coli}$ results are qualified due to exceeded holding time.

Table 4

	Monitoring P	eriod Summary	/ June 1 - June 30 (WY18)			
		Edge	wood		Chris	sfield
	cubi	c feet	percent	cubio	percent	
Measured Stormwater Runoff Volume (cf)	2	34	0%	32	24	8%
Background Discharge Volume (cf)	393	,814 ¹	100%	3,7	08	92%
Total Discharge Volume (cf)	394	,016	100%	4,0	32	100%
Estimated Runoff for Monitored Area ²	Edge	ewood	Eagle	Chris	field	Meridian
Monthly Precipitation (in)		0.0	3 ³		0.0	02 ⁴
Drainage Area (acres)	55	5.86	22,765	1	2	26,690
Estimated Stormwater Runoff Volume ⁵ (cf)	6	52	681,755	16	62	532,866
Monitored Storm Information		Edgewood (5	5/16/2019)		Chrisfield (5	5/16/2019)
Precipitation Amount (in)		0.2	21		0.	15
Storm Duration (hrs)		5	j			4
Antecedent Dry Period (hrs)		62	22		7	33
Recorded Runoff Volume (cf)		4,2	30		1,3	332
Sample Information						
Sample Date and Time		5/16/20		5/16/2019 17:25		
Dissolved Oxygen (mg/L)		7.3	33		8.	38
oH (S.U.)		7.40			9.	01
Conductivity (uS/cm)		123.2			7:	1.7
emperature (°C)		15.	57		17	.18
litrate + Nitrite as N (mg/L)					0.5	570
otal Suspended Solids (mg/L)		-	-		75	5.0
otal Kjeldahl Nitrogen (mg/L)		-	-		6.	71
Dissolved Orthophospate as P (mg/L)		-	-		0.2	249
ōtal Phosphorus as P (mg/L)		-	-		0.7	789
E.Coli (MPN/100 mL)		609	0.0 ⁶		341	0.0 6
Collutent Loading Estimator	Edge	ewood	Eagle	Chris	field	Meridian
Pollutant Loading Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)
litrate + Nitrite as N				0.00	0.01	26
otal Suspended Solids				0.13	1.52	3,374
otal Kjeldahl Nitrogen				0.01	0.14	302
Dissolved Orthophosphate as P				0.00	0.01	11
Total Phosphorus as P				0.00	0.02	36

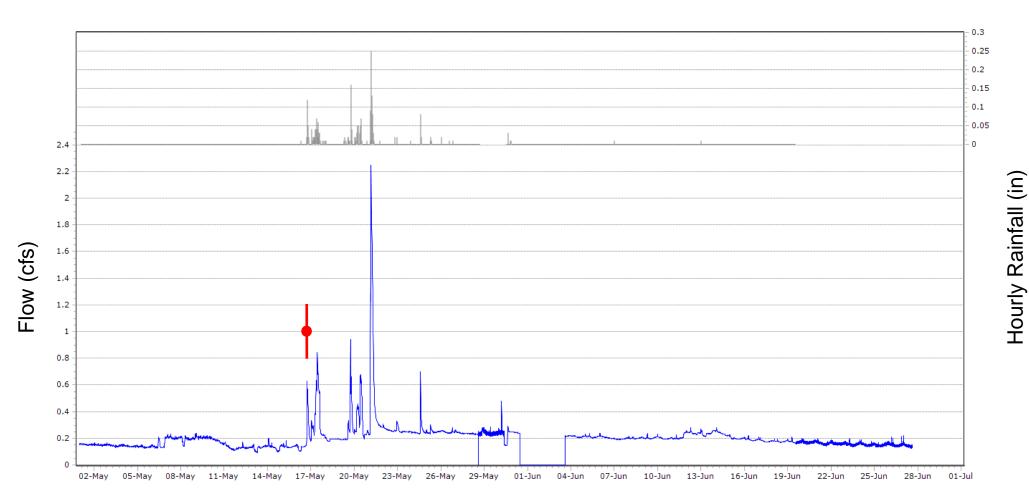
Notes:

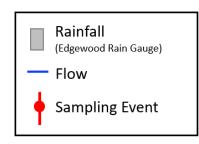
¹ Background discharge volume does not include dates with missing data.

 $^{2}\,\mbox{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

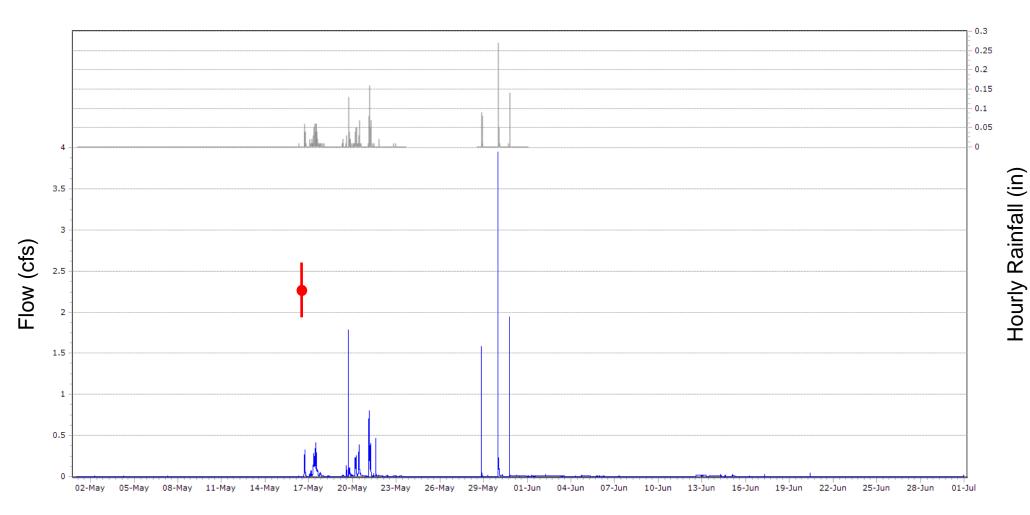
 $^{\rm 3}$ Hourly rainfall data are supplemented with available hourly rainfall data from Chrisfield.

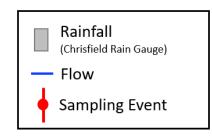
 $^{\rm 4}$ Hourly rainfall data are supplemented with available hourly rainfall data from Edgewood.

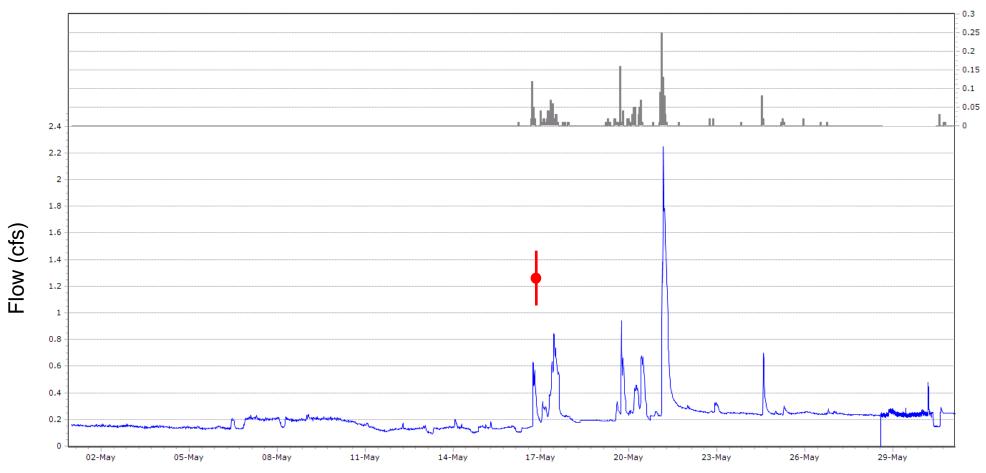

 $^{\rm 5}$ Estimated stormwater runoff volume is calculated using local precipitation data.

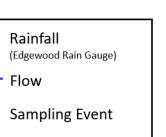

⁶ E.Coli results are qualified due to exceeded holding time.

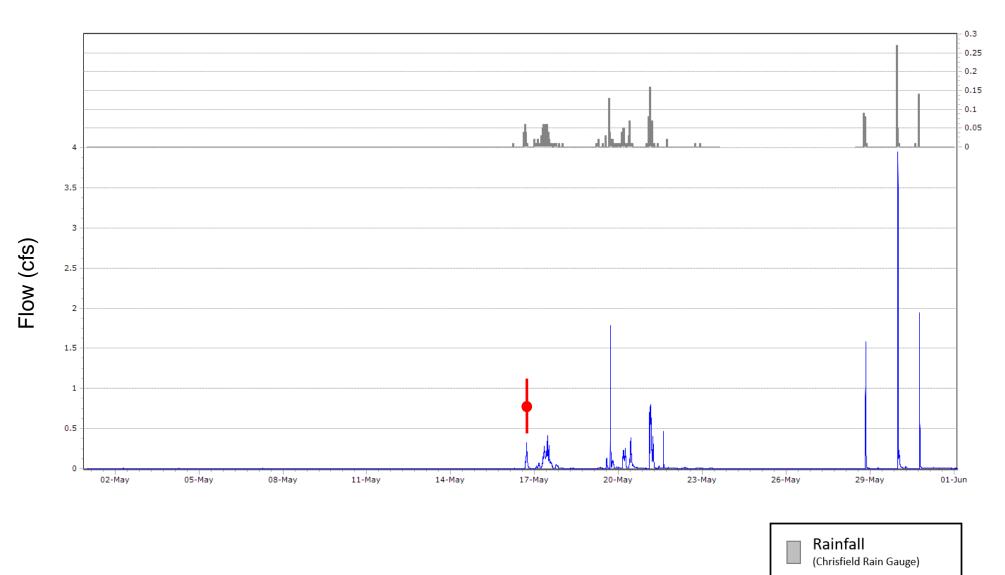
Attachment B: Monitoring Period Hydrographs




Edgewood - Water Year 2019 - May 2019 through June 2019

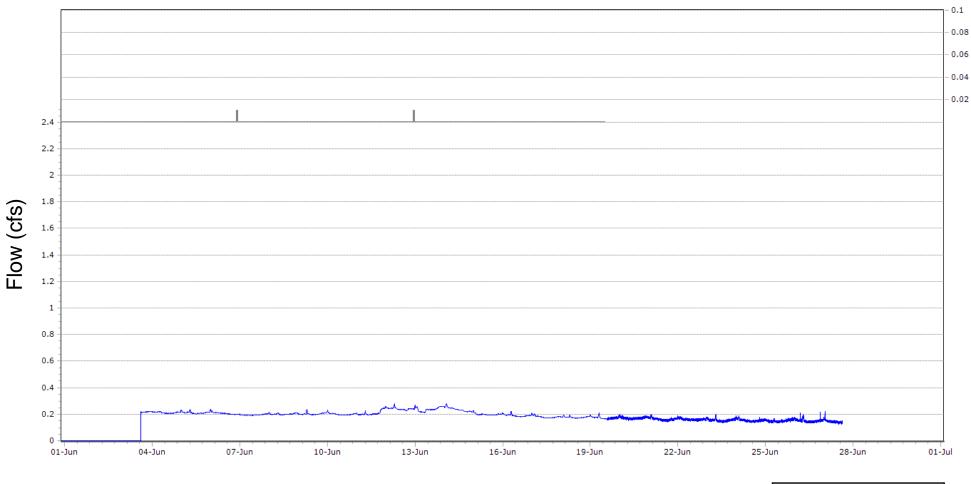



Chrisfield - Water Year 2019 - May 2019 through June 2019



Edgewood - Water Year 2019 - May 2019

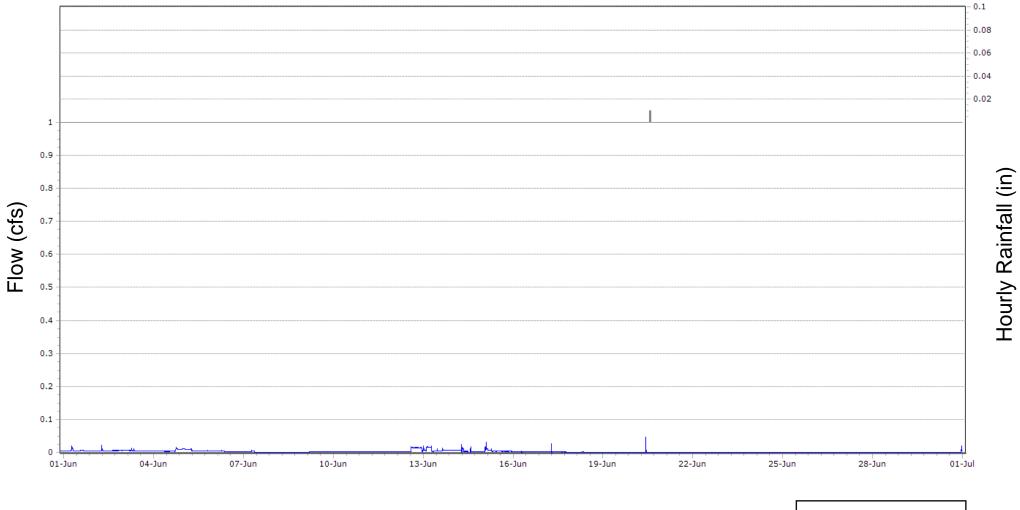
Chrisfield - Water Year 2019 - May 2019


Hourly Rainfall (in)

- Flow

Sampling Event

Figure 4


Edgewood - Water Year 2019 - June 2019

Rainfall (Edgewood Rain Gauge) Hourly Rainfall (in)

Figure 5

Chrisfield- Water Year 2019 - June 2019

Attachment C: Analytical Reports and Field Sheets

3

н

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualit	fiers Date Sampled	Date Received
9AC0022-01	ACST2B	190516-09-WG	Water	05/16/2019	05/17/2019
9AC0022-02	ACST2B	190516-08-WG	Water	05/16/2019	05/17/2019
9AC0022-03	ACST2B	190516-08-001	Water	05/16/2019	05/17/2019

.

ı

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST2	2B				Location Description:	190516-08	3-WG			
Date/Time Collect	ed: 05/16/2	2019 18: 1 1									
Lab Number:	9AC00	22-02				Sample Collector:	ABW				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analy Tim		Analyst Initials	Qual
Microbiology E. Coli	B9E1701	6090.0 M	PN/100 mL	100.0	1.0	Colilert	05/17/19 05:39	5/18/19	6:50	LRF	НD
Wet Chemistry Chlorine Screen	B9E1708	Absent				SM 4500-CL G-2000 mod	05/17/19	5/17/19	5:33	KMR	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location:	ACST2	2B				Location Description:	190516-08	3-001		
Date/Time Collecte		2019 12:00								
Lab Number:	9AC00	22-03				Sample Collector:	ABW			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology E. Coli	B9E1701	<1.0M	PN/100 mL	1.0	1.0	Colilert	05/17/19 05:39	5/18/19 6:50	LRF	ΗU
Wet Chemistry Chlorine Screen	B9E1708	Absent				SM 4500-CL G-2000 mod	05/17/19	5/17/19 5:33	KMR	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

4

Analysis Report

Location:	ACST2					Location Description:	190516-09	-WG		
Date/Time Collecte Lab Number: Sample Type:	9AC00 Grab	2019 17:25 22-01				Sample Collector: Sample Matrix:	ABW Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *		·	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology E. Coli	B9E1701	3410.0M	PN/100 mL	. 100.0	1.0	Colilert	05/17/19 05:26	5/18/19 6:50	LRF	НD
Wet Chemistry Chlorine Screen	B9E1708	Absent				SM 4500-CL G-2000 mod	05/17/19	5/17/19 5:23	KMR	

ę

ŧ

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Microbiology									
Batch: B9E1701 Blank (B9E1701-BLK1) E. Coli	Absent						05/18/2019	LRF	
L. 001	Absein						05/16/2019	LRF	4944664661641961661744744747474747474747474
LCS (B9E1701-BS1) E. Coli				Present			05/18/2019	LRF	
Duplicate (B9E1701-DUP2)	Source ID: 9AC0	022-01RE	1						
E. Coli					Pass	128	05/18/2019	LRF	

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
Н	Hold time Exceeded.
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert, IDEXX Laboratories, Inc.
Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
USGS Techniques of Water-Resources Investigations
Hach Spectrophotometer Procedures Manual
Standard Methods for the Examination of Water and Wastewater
Test methods for Evaluating Solid Waste, SW-846

Johet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

-10/18
22
8
QAC

Ada County Highway District	/ Highv	vay Dis	strict						-										
Attn: Monica Lowe 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	owe treet daho 837 -6255 -6391 +r:	14-6418		63046446 Stormwater-PII 71a m. y , Ardy W	1 ight/e	sie	Matrix	Type	510.8	000	50		te - EPA 365.1 - d9 - 500.7	2002 A93 - 620 200.7	and the second sec	1.081 AS		and the second se	sus
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initi	Water	Grab	Composite SMS - SM 5	8 Hash - GOD T55 - SM 254	TDS - SM 254	TP - EPA 200		Diss. Cd Cu.	Total Ha - El	3 - vtibidtu T	Hardness - S Hardness - E	094 MS - 8M 450	Total Containe
Ac0022-01	5	6/19		1725	1905/6-09- NG	AB-0	X	X							×	-			
20-	- Horsenson		1	811	1905/6-08- 11905/	ABN	X	X				-			X				~
20- N		\rightarrow	2.1	002.	1	ABV	X	X							×				~
Relinquished by (sign)	shed by	(sign)	2///2	Date & Time Transferred //6//9 / 8//0	received by (sign) 40 OpuMJJJ 5-17-19 5010				ပိ	Comments/Special Instructions:	its/S _I		linst	ructi	Suo				

Report Date: 06/05/2019 15:06

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix	Qualifiers	Date Sampled	Date Received
9AC0025-01	ACST2C	190516-08-WC	Water		05/16/2019	05/17/2019
Comme	ents:					
	No dissolved p	parameters. Low sample volume.				
9AC0025-02	ACST2C	190516-09-WC	Water		05/16/2019	05/17/2019

Analysis Report

Phosphorus as P

Hardness

B9E2009

B9E2009

0.978

62.9

mg/L

mg/L

6.00E-3

0.125

Location:	ACST2	2C				Location Description:	190516-08	3-WC		
Date/Time Collected	l: 05/16/2	2019 18:20) - 05/16/	2019 21:20						
Lab Number:	9AC00	25-01				Sample Collector:	ABC			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Wet Chemistry										
Ammonia, as N	B9E2905	904	ug/L	35.0	35.0	SM 4500-NH3 D-1997	05/29/19	5/29/19 9:28	ASM	
BOD5	B9E1805	80.9	mg/L	2.00	2.00	SM 5210 B-2001	05/18/19	5/23/19 8:59	ALD	
COD	B9E1801	360	mg/L	7.00	7.00	SM 5220 D-2017	05/18/19	5/18/19 10:45	CJP	
TKN	B9E2901	5.72	mg/L	0.130	0.130	EPA 351.2	05/29/19	5/30/19 10:05	LRF	
Total Dissolved Solids	B9E1634	159	mg/L	20.0	20.0	SM 2540 C-1997	05/17/19	5/18/19 8:30	ASM	
Total Suspended Solids	B9E1707	230	mg/L	0.900	0.900	SM 2540 D-1997	05/17/19	5/17/19 14:24	CPC	
Turbidity	B9E1710	29.7	NTU	0.3	0.3	EPA180.1 R2.0 (1993)	05/17/19	5/17/19 14:00	ALD	
Total Metals										
Mercury	B9E2215	0.0752	ug/L	4.71E-3	4.71E-3	EPA 245.2	05/23/19	5/24/19 8:13	SAS	
Arsenic	B9E2009	<5.72	ug/L	5.72	5.72	EPA 200.7	05/20/19	5/22/19 17:47	EDM	U
Cadmium	B9E2009	<1.00	ug/L	1.00	1.00	EPA 200.7	05/20/19	5/22/19 17:47	EDM	U
Calcium	B9E2009	18000	ug/L	50.0	50.0	EPA 200.7	05/20/19	5/22/19 17:47	EDM	
Lead	B9E2009	7.19	ug/L	6.94	6.94	EPA 200.7	05/20/19	5/22/19 17:47	EDM	
Magnesium	B9E2009	4380	ug/L	50.0	50.0	EPA 200.7	05/20/19	5/22/19 17:47	EDM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

6.00E-3

0.125

EPA 200.7

EPA 200.7

05/20/19

05/20/19

5/22/19 17:47

5/22/19 17:47

EDM

EDM

Analysis Report

Location:	ACST					Location Description:	190516-0	9-WC		
Date/Time Collecter Lab Number: Sample Type:	d: 05/16/ 9AC00 Compo	25-02) - 05/16/	2019 18:29)	Sample Collector: Sample Matrix:	ABC Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	I Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Wet Chemistry										
Ammonia, as N	B9E2905	1570	ug/L	35.0	35.0	SM 4500-NH3 D-1997	05/29/19	5/29/19 9:06	ASM	
BOD5	B9E1805	38.1	mg/L	2.00	2.00	SM 5210 B-2001	05/18/19	5/23/19 8:41	ALD	
COD	B9E1801	207	mg/L	7.00	7.00	SM 5220 D-2017	05/18/19	5/18/19 10:45	CJP	
Nitrate-Nitrite, as N	B9E3103	0.570	mg/L	0.0250	0.0250	EPA 353.2	05/31/19	5/31/19 11:10	SMC	
TKN	B9E2901	6.71	mg/L	0.130	0.130	EPA 351.2	05/29/19	5/30/19 10:07	LRF	
Total Dissolved Solids	B9E1634	129	mg/L	20.0	20.0	SM 2540 C-1997	05/17/19	5/18/19 8:30	ASM	
Total Suspended Solids	B9E1707	75.0	mg/L	0.900	0.900	SM 2540 D-1997	05/17/19	5/17/19 14:25	CPC	
Turbidity	B9E1710	36.9	NTU	0.3	0.3	EPA180.1 R2.0 (1993)	05/17/19	5/17/19 13:07	ALD	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B9E1709	0.249	mg/L	2.00E-3	2.00E-3	EPA 365.1	05/17/19	5/17/19 12:49	ALN	
Total Metals										
Mercury	B9E2215	0.0175	ug/L	4.71E-3	4.71E-3	EPA 245.2	05/23/19	5/24/19 9:16	SAS	
Arsenic	B9E2009	<5.72	ug/L	5.72	5.72	EPA 200.7	05/20/19	5/22/19 17:52	EDM	U
Cadmium	B9E2009	<1.00	ug/L	1.00	1.00	EPA 200.7	05/20/19	5/22/19 17:52	EDM	U
Calcium	B9E2009	12200	ug/L	50.0	50.0	EPA 200.7	05/20/19	5/22/19 17:52	EDM	
Lead	B9E2009	<6.94	ug/L	6.94	6.94	EPA 200.7	05/20/19	5/22/19 17:52	EDM	U
Magnesium	B9E2009	1900	ug/L	50.0	50.0	EPA 200.7	05/20/19	5/22/19 17:52	EDM	
Phosphorus as P	B9E2009	0.789	mg/L	6.00E-3	6.00E-3	EPA 200.7	05/20/19	5/22/19 17:52	EDM	
Hardness	B9E2009	38.2	mg/L	0.125	0.125	EPA 200.7	05/20/19	5/22/19 17:52	EDM	
Dissolved Metals										
Cadmium	B9F0312	<1.00	ug/L	1.00	1.00	EPA 200.7	06/03/19	6/3/19 15:48	EDM	U
Copper	B9F0312	18.7	ug/L	10.0	10.0	EPA 200.7	06/03/19	6/3/19 15:48	EDM	
Lead	B9F0312	<6.94	ug/L	6.94	6.94	EPA 200.7	06/03/19	6/3/19 15:48	EDM	U
Zinc	B9F0312	56.3	ug/L	10.0	10.0	EPA 200.7	06/03/19	6/3/19 15:48	EDM	

Quality Control Report

	Method		%	Recovery		RPD	Date	Analyst	0 10
Analyte Name	Blank	Units	Recovery	Limits	RPD	Limit	Analyzed	Initials	Qualifier
Wet Chemistry									
Batch: B9E1634									
Blank (B9E1634-BLK1)									
Total Dissolved Solids	< 20	mg/L					05/16/2019	ASM	U
LCS (B9E1634-BS1) Total Dissolved Solids			106	90-110			05/10/0040	4014	
			106	90-110			05/16/2019	ASM	
Duplicate (B9E1634-DUP1) Total Dissolved Solids	Source ID: 9EN	0006-02			1.98	10	05/16/2019	ASM	
			un van sensen aan de skerker van de ble kerker van de ble kerker van de skerker van de skerker van de skerker v		1.30	10	03/10/2013	AOIVI	
Batch: B9E1707									
Blank (B9E1707-BLK1) Total Suspended Solids	< 0.9	mg/L					05/17/2019	CPC	U
LCS (B9E1707-BS1) Total Suspended Solids			98.0	90-110			05/17/2019	CPC	
Duplicate (B9E1707-DUP1)	Source ID: 9BB	0293-01		ale lan lan têf landardî else kur nara ara kur dan dan dan da		an ann 7 m an Martin Shaffin Shaffin Taor an San Andre Sa			
Total Suspended Solids		0200 01			1.03	20	05/17/2019	CPC	
Batch: B9E1710			81 PEL PEL PEL PER CONTACTOR CONTACTOR CONTACTOR CONTACTOR CONTACTOR CONTACTOR CONTACTOR CONTACTOR CONTACTOR CO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	hel-Ondersond-Althoused-anthous				
Blank (B9E1710-BLK1)									
Turbidity	< 0.3	NTU					05/17/2019	ALD	U
LCS (B9E1710-BS1)									
Turbidity			99.3	90-110			05/17/2019	ALD	****
Duplicate (B9E1710-DUP1)	Source ID: 9AC	0024-01							
Turbidity					15.8	25	05/17/2019	ALD	
Batch: B9E1801									
Blank (B9E1801-BLK1)							05/40/0045	0.5	
COD	< 7	mg/L					05/18/2019	CJP	U
LCS (B9E1801-BS1)			00.2	00 110			05/10/2010	CIR	
COD			98.3	90-110			05/18/2019	CJP	
Duplicate (B9E1801-DUP1)	Source ID: 9AC	0024-01			1.86	10	05/10/0040		
COD					00.1	10	05/18/2019	CJP	

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)								
Batch: B9E1805 Blank (B9E1805-BLK1) BOD5	< 2	mg/L					05/23/2019	ALD	U
LCS (B9E1805-BS1) BOD5			105	84.6-115.4			05/23/2019	ALD	
L CS (B9E1805-BS2) BOD5			108	84.6-115.4			05/23/2019	ALD	
Duplicate (B9E1805-DUP1) BOD5	Source ID: 9BB	0301-01			6.35	30	05/23/2019	ALD	D
Batch: B9E2901 Blank (B9E2901-BLK1) TKN	< 0.13	mg/L					05/30/2019	LRF	U
Blank (B9E2901-BLK2) TKN	< 0.13	mg/L					05/30/2019	LRF	U
Blank (B9E2901-BLK3) TKN	< 0.13	mg/L			*****	((((()))))))))))	05/30/2019	LRF	U
LCS (B9E2901-BS1) TKN			99.1	80-120			05/30/2019	LRF	
LCS (B9E2901-BS2) TKN			101	80-120			05/30/2019	LRF	
Duplicate (B9E2901-DUP1) TKN	Source ID: 9AC	024-01		HUTAN Adama da an Utan Utan Utan Adama da Adama	1.33	20	05/30/2019	LRF	
Duplicate (B9E2901-DUP2) TKN	Source ID: 9PK	014-03		ananan da karan mahar jak ta siya anan ng karan da karan	9.95	20	05/30/2019	LRF	All handling y by a gray property of all thinks think you, any gray g
Duplicate (B9E2901-DUP3) TKN	Source ID: 9BB0	286-01			4.80	20	05/30/2019	LRF	D
Matrix Spike (B9E2901-MS1) TKN	Source ID: 9A	C0024-01	102	80-120			05/30/2019	LRF	
Matrix Spike (B9E2901-MS2) TKN	Source ID: 9PI	<0014-03	101	80-120			05/30/2019	LRF	
Matrix Spike (B9E2901-MS4) TKN	Source ID: 9W	Q0023-01	95.9	80-120			05/30/2019	LRF	D
Matrix Spike (B9E2901-MS5) TKN [Spk] 50mL->100mL; 5mL	Source ID: 9BI		1 103	80-120			05/30/2019	LRF	D
Matrix Spike Dup (B9E2901-M TKN	(ISD1) Source	D: 9AC0024	-01 91.2	80-120	3.44	20	05/30/2019	LRF	
Matrix Spike Dup (B9E2901-M	(SD2) Source	D: 9PK0014	-03 101	80-120	8.91E-3	20	05/30/2019	LRF	

Quality Control Report

Analyte Name		Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contin	ued)									
Batch: B9E2905	-									
Blank (B9E2905-BLK1)								05/00/00/0		
Ammonia, as N		< 35	ug/L					05/29/2019	ASM	U
Blank (B9E2905-BLK2) Ammonia, as N		< 35	ug/L					05/29/2019	ASM	U
LCS (B9E2905-BS1) Ammonia, as N				104	90-110			05/29/2019	ASM	
LCS (B9E2905-BS2) Ammonia, as N				110	90-110	GEHERAN GEHERAN GEHERAN SPANNEG		05/29/2019	ASM	
Duplicate (B9E2905-DUP1) Ammonia, as N	Source	ID: 9WC	0023-08			1.45	10	05/29/2019	ASM	
Duplicate (B9E2905-DUP2) Ammonia, as N	Source	e ID: 9BB()314-01			0.443	10	05/29/2019	ASM	
-	Source	e ID: 9BB()317-01			0.252	10	05/29/2019	ASM	
Matrix Spike (B9E2905-MS1) Ammonia, as N	Sour	ce ID: 9W	Q0023-08	105	80-120			05/29/2019	ASM	
Matrix Spike (B9E2905-MS2) Ammonia, as N	Sour	ce ID: 9BI	B0314-01	108	80-120		******	05/29/2019	ASM	
Matrix Spike (B9E2905-MS3) Ammonia, as N	Sour	ce ID: 9BI	B0317-01	115	80-120			05/29/2019	ASM	
Matrix Spike Dup (B9E2905-M Ammonia, as N	ISD1)	Source	ID: 9WQ002	3-08 101	80-120	2.46	10	05/29/2019	ASM	
Matrix Spike Dup (B9E2905-M Ammonia, as N	ISD2)	Source	ID: 9BB0314	I-01 110	80-120	1.48	10	05/29/2019	ASM	
Matrix Spike Dup (B9E2905-M Ammonia, as N	ISD3)	Source	ID: 9BB0317	7-01 114	80-120	0.525	10	05/29/2019	ASM	
Batch: B9E3103										
Blank (B9E3103-BLK1) Nitrate-Nitrite, as N		< 0.025	mg/L					05/31/2019	SMC	U
Blank (B9E3103-BLK2) Nitrate-Nitrite, as N		< 0.025	mg/L				****	05/31/2019	SMC	U
LCS (B9E3103-BS1) Nitrate-Nitrite, as N				96.8	90-110			05/31/2019	SMC	
LCS (B9E3103-BS2) Nitrate-Nitrite, as N			*****	95.6	90-110	4,000,000,000,000,000,000,000,000,000,0	1993 (sq 6494 (g) af 1939 () q, 1959 (g) a	05/31/2019	SMC	
Duplicate (B9E3103-DUP1) Nitrate-Nitrite, as N	Source	ID: 9AC)025-02			0.648	10	05/31/2019	SMC	
Duplicate (B9E3103-DUP2) Nitrate-Nitrite, as N	Source	D: 9BBC	286-01			2.23	10	05/31/2019	SMC	www.energie

Quality Control Report

Qualifier
U
D
D
D
D
D
-

Quality Control Report (Continued)

	Method		%	Recovery		RPD	Date	Analyst	
Analyte Name	Blank	Units	Recovery	Limits	RPD	Limit	Analyzed	Initials	Qualifier
Total Metals									
Batch: B9E2009									
Blank (B9E2009-BLK1)									
Arsenic	< 5.72	ug/L					05/22/2019	EDM	U
Cadmium	< 1	ug/L					05/22/2019	EDM	υ
Calcium	< 50	ug/L					05/22/2019	EDM	U
Lead	< 6.94	ug/L					05/22/2019	EDM	U
Magnesium	< 50	ug/L					05/22/2019	EDM	U
Phosphorus as P	< 0.006	mg/L					05/22/2019	EDM	U
LCS (B9E2009-BS1)									
Arsenic			105	85-115			05/22/2019	EDM	
Cadmium			102	85-115			05/22/2019	EDM	
Calcium			102	85-115			05/22/2019	EDM	
Lead			102	85-115			05/22/2019	EDM	
Magnesium			104	85-115			05/22/2019	EDM	
Phosphorus as P			106	85-115			05/22/2019	EDM	
	Source ID: 9AC	0024-01							
Arsenic					8.26	20	05/22/2019	EDM	
Cadmium					NR	20	05/22/2019	EDM	U
Calcium Lead					0.264	20	05/22/2019	EDM	U
Lead Magnesium					NR 0.255	20 20	05/22/2019 05/22/2019	EDM EDM	0
Phosphorus as P					0.255	20	05/22/2019	EDM	
				a rumun an ann ann an an an an an an an an an	0.220	20	05/22/2019	EDIVI	
Matrix Spike (B9E2009-MS1)	Source ID: 9A	C0024-01	407	70 400			05/00/0040	5014	
Arsenic Cadmium			107 103	70-130 70-130			05/22/2019 05/22/2019	EDM EDM	
Calcium			103	70-130			05/22/2019	EDM	
Lead			105	70-130			05/22/2019	EDM	
Magnesium			105	70-130			05/22/2019	EDM	
Phosphorus as P			97.9	70-130			05/22/2019	EDM	
				10 100			00/22/2010		
Matrix Spike Dup (B9E2009-M Arsenic	SD1) Source	ID: 9AC002	24-01 107	70-130	0.452	20	05/00/0040	EDM	
Arsenic Cadmium			107	70-130	0.452	20 20	05/22/2019 05/22/2019	EDM	
Calcium			103	70-130	0.208	20	05/22/2019	EDM	
Lead			102	70-130 70-130	0.319	20 20	05/22/2019	EDM	
Magnesium			105	70-130	0.772	20	05/22/2019	EDM	
Phosphorus as P			96.0	70-130	0.403	20	05/22/2019	EDM	
			.U.U	10-100	0.001	20	00/22/2019		

Quality Control Report (Continued)

Analyte Name		/lethod Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Total Metals (Continue	d)									
Batch: B9E2215	,									
Blank (B9E2215-BLK1)										
Mercury	<	0.00471	ug/L					05/24/2019	SAS	U
LCS (B9E2215-BS1)							********			Manhaman Anna Anna Anna Anna Anna Anna Anna
Mercury				101	85-115			05/24/2019	SAS	
Duplicate (B9E2215-DUP1)	Source		025.04							
Mercury	Source	D. 3AG	JUZJ-01			10.3	20	05/24/2019	SAS	
	0		007.04							
Duplicate (B9E2215-DUP2) Mercury	Source	ID: 9BB()287-01			4.08	20	05/24/2019	SAS	D
						4.00	20	00/24/2010	070	
Matrix Spike (B9E2215-MS1) Mercury	Source	e ID: 9A	C0025-01	99.8	70-130			05/24/2019	SAS	
				99.0	70-150			03/24/2019	343	
Matrix Spike (B9E2215-MS2)	Source	e ID: 9BI	30287-01	00.4	70 400			05/04/0040	0.4.0	D
Mercury				99.4	70-130			05/24/2019	SAS	D
Matrix Spike Dup (B9E2215-N	/ISD1)	Source	ID: 9AC0025							
Mercury				103	70-130	2.03	20	05/24/2019	SAS	
Matrix Spike Dup (B9E2215-N	ISD2)	Source	ID: 9BB0287							_
Mercury				99.1	70-130	0.281	20	05/24/2019	SAS	D
Dissolved Metals										
Batch: B9F0312										
Blank (B9F0312-BLK1)										
Cadmium		< 1	ug/L					06/03/2019	EDM	U
Copper		< 10	ug/L					06/03/2019	EDM	U
Lead		< 6.94	ug/L					06/03/2019	EDM	U
Zinc		< 10	ug/L					06/03/2019	EDM	U
LCS (B9F0312-BS1)										
Cadmium				101	85-115			06/03/2019	EDM	
Copper Lead				99.8 101	85-115 85-115			06/03/2019 06/03/2019	EDM EDM	
Zinc				· 98.0	85-115			06/03/2019	EDM	
	0	D- 04 00				Hantaa ka ayaa ahaa ahaa ahaa ahaa ahaa ahaa				
Duplicate (B9F0312-DUP1) Cadmium	Source	D: 9ACU	025-02			NR	10	06/03/2019	EDM	U
Copper						3.69	10	06/03/2019	EDM	0
Lead						NR	10	06/03/2019	EDM	U
Zinc						0.943	10	06/03/2019	EDM	
Matrix Spike (B9F0312-MS1)	Source	D: 940	0025-02							
Cadmium	200100			99.6	70-130			06/03/2019	EDM	
Copper				98.8	70-130			06/03/2019	EDM	
Lead				97.9	70-130			06/03/2019	EDM	
Zinc				94.5	70-130			06/03/2019	EDM	
Matrix Spike Dup (B9F0312-M	ISD1)	Source I	D: 9AC0025							
Cadmium				99.9	70-130	0.325	10	06/03/2019	EDM	
Copper				91.5	70-130	5.50	10	06/03/2019	EDM	
Lead Zinc				99.5 95.6	70-130 70-130	1.69 0.517	10 10	06/03/2019 06/03/2019	EDM EDM	
					10 100			30/00/2010		******

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

Janet Finegan-Kelly Water Quality Laboratory Manager 1

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Aug County Inginway Disurce		way Ula					Matrix	TVD	-											
Attn: Monica Lowe 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	a Lowe s Street 4 Idaho 83 87–6391 rder: rder:	114-6418		63046446 Stormwater-PII		S	YINDA				r n 0	, ,	- EPA 365.1	b. Zn - EPA 200.7	/ /		10015		A - 2-8HN	s
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Initia	Water	Grab	Composite BOD ₆ - SM 52	COD - Hach 80	TDS - SM 2540	TKN - Perston	Orthophosohao		Total Ha - EP	E. Coll - IDEX	Turbidity - EP	NO*+NO° E	0094 MS - 8HN	Total Container
10-5007	5/16/14	5/16/19 1820	1820	2126	190516-08-WC	Acc	2		x R	X X	X	X X	X	X	×	×	XX	×	X	
10-	-02 5/16/19 5/16/16 160	5/16/19	(604	1831	1905/16 - 09- WC	象	R	Q	×	X	х Х	2	X	2	X	X	X	X	ý.	~
																				-
							a and a second se		an original second					None of the second seco		_				
	•													-						
Relinc	Relinquished by (sign)	y (sign)	Ē	Uate & Lime Transferred	ed Received by (sign)				Ö	Comments/Special Instructions:	nts/S	peci	alln	stru	ctio	ls:				
Aci	2		1/11	5/12	19 St a. G. astista	7111	Ib not prioritize		Sueva	volume f	non	CE 5	2 ou		enalyte Jissolue	1/2/ solu	200	Plea	÷50	
						10	14C0025-01		> No disadved promotes, low serve volume	A'Sod	ved p	Normey	is?	- ABC	& B	vole	· m	Ĩ	-Sac	
													U V	ÌÀC	9ALCO2S	SS SS		Ť	40/18	

Form 21A Grab Sample Data Form – Phase II

Date/Time - On-sit	te: <u>\$/16/19</u>	1808		e one)	
GRAB INFORMAT					
Is this a QA/QC St	tation? Yes \geq	< No	(if YES, fill out	Form 21B on b	ack)
Photographs Take	n? Yes_	No 🗡	_ Swing Sampler	Used? Yes X_1^{i}	_ No
Sample ID: 1905/6	- 08	-WG (fill in ap	ppropriate sequential numbe	r)	
Date	/Time	Cont	ainer - Test (Subs	ample Result	Labeled
5/16/19	1811	(1) 25	0mL sterile plastic	– E. coli	X
FIELD PARAMET	ERS: Fill (1)	500mL Am	ber Date/Time:	Stillig	18/
	Value	Unit		Value	Unit
Diss. O2-DO Meter	7.33	Mg/L	Temp - DO Meter	15.57	°C
	123.2	μS/cm	Temp - Cond Meter		°C
Conductivity –					
	7.40	S.U.	Temp – pH Meter	15.57	°C
	7. 40 CURRENT S	TATUS:	Temp — pH Meter		°C
оН — _{рН Meter} AUTO SAMPLER First Subsample tal	7.40 CURRENT S ken: Yes / No	TATUS: o (circle one		ne <u>5/16/19</u>	°C 1705 9
оН — _{рН Meter} AUTO SAMPLER First Subsample tal	7.40 CURRENT S ken: Yes / No	TATUS: o (circle one	Temp – pH Meter e) ; if Yes, Date/Tim	ne <u>5/16/19</u>	°C 1705 9
DH – pH Meter AUTO SAMPLER First Subsample tal _ast Subsample tal	7.40 CURRENT S ken: Yes / No	TATUS: o (circle one	Temp – pH Meter e) ; if Yes, Date/Tim	ne <u>5/16/19</u>	°C 1705 9
DH – pH Meter AUTO SAMPLER First Subsample tal _ast Subsample tal	7.40 CURRENT S ken: Yes / No	TATUS: o (circle one	Temp – pH Meter e) ; if Yes, Date/Tim	ne <u>5/16/19</u>	°C 1705 9
DH – pH Meter AUTO SAMPLER First Subsample tal _ast Subsample tal	7.40 CURRENT S ken: Yes / No	TATUS: o (circle one	Temp – pH Meter e) ; if Yes, Date/Tim	ne <u>5/16/19</u>	°C 1705 9
DH – pH Meter AUTO SAMPLER First Subsample tal _ast Subsample tal	7.40 CURRENT S ken: Yes / No	TATUS: o (circle one	Temp – pH Meter e) ; if Yes, Date/Tim	ne <u>5/16/19</u>	°C 1705 9
DH – pH Meter AUTO SAMPLER First Subsample tal _ast Subsample tal	7.40 CURRENT S ken: Yes / No	TATUS: o (circle one	Temp – pH Meter e) ; if Yes, Date/Tim	ne <u>5/16/19</u>	°C 1705 9
DH – pH Meter AUTO SAMPLER First Subsample tal _ast Subsample tal	7.40 CURRENT S ken: Yes / No	TATUS: o (circle one	Temp – pH Meter e) ; if Yes, Date/Tim	ne <u>5/16/19</u>	°C 1705 9
DH – pH Meter AUTO SAMPLER First Subsample tal _ast Subsample tal	7.40 CURRENT S ken: Yes / No	TATUS: o (circle one	Temp – pH Meter e) ; if Yes, Date/Tim	ne <u>5/16/19</u>	°C 1705 9

(

£

Form 21B QA/QC Grab Sample Data Form – Phase II

FIELD DUPLICATE:

SUBSAMPLE INFORMATION:

Date/Time	Container - Test (Subsample Result)	Labeled
	(1) 250mL sterile plastic – E. Coli	

Comments:

FIELD BLANK:

Sample ID: -/90576 - 08 -001 (fill in appropriate sequential number)

(Fill bottle with Ultra-pure water supplied by WQL)

SUBSAMPLE INFORMATION:

Date/Tin	ne	Container - Test (Subsample Result)	Labeled
5/18/19	1816	(1) 250mL sterile plastic – E. Coli	×
· · · /	States		

Comments:		

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 21A Grab Sample Data Form – Phase II

Station: Christield Personnel: ABW TLL
Date/Time - On-site: 5/16/19 1722 MDT/MST*(circle one)
GRAB INFORMATION:
Is this a QA/QC Station? Yes No $\underline{\times}$ (if YES, fill out Form 21B on back)
Photographs Taken? Yes No Swing Sampler Used? Yes 🗶 No
Sample ID: 190516 - 09 -WG (fill in appropriate seguential number)
Date/Time Container - Test (Subsample Result) Labeled
5/16/19 172.5 (1) 250mL sterile plastic – E. coli
FIELD PARAMETERS: Fill (1) 500mL Amber Date/Time: 5/16/19 1725
<u>Value Unit</u> <u>Value Unit</u>
Diss. O2-D0 Meter 8.38 Mg/L Temp - D0 Meter 17.18 °C
Conductivity – 71.7 µS/cm Temp - cond Meter 17.18 ABC °C pH – pH Meter 9.01 S.U. Temp – pH Meter 17.18 ABC °C
<u>pH - pH Meter</u> <u>9.01</u> S.U. <u>Тетр - pH Meter</u> <u>17.18</u> мвс °С
AUTO SAMPLER CURRENT STATUS:
First Subsample taken: Yes No (circle one); if Yes, Date/Time 190577 1609 Last Subsample taken, Date/Time 190516 1734 # of Subsamples taken: 10
COMMENTS:
Date/Time - Off-site: 5/16/19 1734
Station: Personnel:

Form 21B QA/QC Grab Sample Data Form – Phase II

FIELD DUPLICATE:

Date/Time	Container - Test (Subsample Result)	Labeled
and the fair family for	(1) 250mL sterile plastic – E. Coli	
	and the second sec	

Comments:							

FIELD BLANK:

Sample ID: - -001 (fill in appropriate sequential number)

(Fill bottle with Ultra-pure water supplied by WQL)

Date/Time	Container - Test (Subsample Result)	Labeled	
	(1) 250mL sterile plastic – E. Coli		

Comment	s:			
				44

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 22 SET-UP/SHUT DOWN CHECKLIST - Phase II

Station SET-U Date/T Remot		ABC (MD)	PMST*(circle one)	Bottle	
/		Flow Motor	Statue	& Velocity C	ut-off Chart	
	Replace batteries if v<11.9		Status	a velocity o	dt-on onart	
$\overline{}$	Verify Flow Meter operation	Time/Date				in
	(Flowlink) & Check to determine	Level				in.
1	if flow present	Flow				cfs
	Program sampler per PG 320	Velocity	0.61			fps
,	Trigger condition VzI >0. 7 Flow Pulse Interval 270 ct	Voltage		_		V
. /	Set Modem Access to "Storm	Temp				C°
$-\mathbf{\nabla}$	Event" -24/7 (Flowlink)					
	Change Data Storage Rates to 1 m	vipute for Leve		ity and Flow	(Flowlink)	
~	Change Data Storage Rates to 15					nectruim
	ratio, and velocity signal to 15 minut		mperat	no, volocity o	poorani, volooity o	poordin
	Perform decon. cycle					
<u> </u>	Verify Sampler date and time are o	orrect				
	Place 15L sample bottle in sample		ith 2 bac	ice		
J	Remove jar lid and place in a clear					
- <u>,</u>	Verify all cable and tubing connect			•		
$\overline{\mathbf{J}}$	Verify Sampler Program is Running					
	Verify latches are secure	-				
Comm	ents:					10 10110
				Date/Time C	Off-site: 5/15/	15 1248
COMP						
	COSITE SAMPLE COLLECTION	0		Personnel:	Apr	And in case of the local division of the loc
	Halt Sampler program	•	÷	r ersonner.	TIPU	
-5	Put lid on sample bottle					
-50	Properly label sample bottle; Reco	rd Sample ID	on back	of sheet		
-X	Record liquid height/sample volum				of sheet	
121212	Record subsample information on					
lf Sa	ampling is Complete:				sample bottle cha	nge out):
<u>\</u>	Power off Sampler			w 15 L bottle		
<u>×</u>	Add ice to sample cooler			ampling prog		
<u> </u>	Complete COC form;			e Restarted:		
'	Arrange transport to lab	\	Verify Ru	inning		
Comm	ents:		5	Off aller		_
			Date/11	me Off-site:		
SHUT	-DOWN:					
	'ime On-site:	MD	 Б/MST			
	te Date/Time: //9520	MD	D/MST	Personnel:	ABC	
NA	Record Flow Meter status (Flowlink					
NK/	Replace battery if v<11.9			Flow Meter	Status	
	Retrieve Data (Flowlink)			Level		in.
J.	Change modem access to "Dry We	eather" 8-6 M-	F	Flow		cfs
$\overline{\checkmark}$	Change data storage rates for leve			Velocity		fps
	rate to 15 min (Flowlink)			Voltage		V

rate to 15 min (Flowlink) Change data storage rates for temp, vel. Spectrum, 2 A.

Velocity ratio, and velocity signal to 30 minutes.

Comments:

Date/Time Off-site: 190520

Remote/On-site (circle one)

Form 22 COMPOSITE INFORMATION- Phase II

	5	190516		ample Qu	antitativ	Result	ts		of
Compon	ent			Value		Result			Unit
	ite Sample	Volume	(Approx.)	3500)				mL
	se Interva		(/ (pp/0x.)		70				ft^3
	Se li ilei va		uid Height ve			Volume (Conversion Cha	rt .	<u> </u>
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5")	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
		Sample	Qualitative	e Results					
Compon	ent	Desc	ription				Examples	6	
Clarity		Cla	ity					oudy, Silty	
Color		Gr			The second	1-			rown, Black
	e .	_	Informatio	00'	F= 3-0			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	erri, Didok
Trigger #		Time	Sampler I		Trigge	r#	Date/Time	Sample	r Message /
inggor #	Dato	THIC	Subsamp		11990		Date/Thine		ple Result
1	190516	1716		uess	21	190	516 2031		1
2	1	1730		1	22		1 2046		-
3		1731			23	-	2116		-
					24				V
4		1745		-		2	2131	-	~
5	-	1746			25		and the second second		2
6		1800			26			-	
7	()) · · · · ·	1801		1	27		a setter the	A PROPERTY	1.010-0.02
8		1815		V	28	Dim		12	
9		1831	No	More Lievi	29				LIT IN THE REAL
10		1832		1	30				12-12
11		1846			31	1.1		-	
12		1847	1	1	32				
13		second state in the second state of the second			33			-	
14	1	1901		1				-	-
		1902			34				
15		1916		-	35	-			
16		1931	1		36			-	and the second
17		1932		-	37		_14		
18		1946	0		38				
19	,V	2001		1	39				
20	V	2011		9	40				
and the second s	date/time fo		igger is the "S	tart Date/Tim		e/time for	the final trigger i	s the "End Da	ate/Time"
COMMEN				tan Date/Im	ie, ine dai	e/ume for	une final ungger i	s the End Da	
	QA/QC Sta	ation?	at the set terms and / r		-		ll out informat		
Sample I		-		II in appropri	ate sequenti	al number) QA Sam	pie Type:L	aboratory S
SUBSAN	IPLE INFO		DN:						-
	Dat	te/Time			Containe	r - Test	(Subsample	Result)	
			12:00	COC	Sample I	Date & T	Time		

Notes: Use the "Start Date/Time" and "End Date/Time" for the parent sample.

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 22 SET-UP/SHUT DOWN CHECKLIST – Phase II

Station	: Chrisfield			Bottle o	ıf
SET-U Date/T	P: ime On-site: 0565	MDT/MST*	(circle one) Pe	sonnel: AML	, ABL
		Flow Meter Status		-off Chart	
ΑJ .	Replace batteries if v<11.9	Time/Date			
	Verify Flow Meter operation	Level	_		in.
	(Flowlink) & Check to determine if flow present	Flow			cfs
00	Program sampler per PG 320	Velocity			fps
<u>~</u>	Trigger condition $V_{el} > 0, 0$	Voltage			V
1	Flow Pulse Interval /00 43	Temp			C°
]	Set Modem Access to "Storm	Temp			
7	Event" -24/7 (Flowlink)				
<u> </u>	Change Data Storage Rates to 1 m				
	Change Data Storage Rates to 15 r		ure, velocity spe	ectrum, velocity sp	ectrum
/	ratio, and velocity signal to 15 minu	te (Flowlink)			
<u>/</u>	Perform decon. cycle				
1	Verify Sampler date and time are co Place 15L sample bottle in sampler		a ioo		
$\frac{1}{c}$	Remove jar lid and place in a clean				
टे	Verify all cable and tubing connection		Jay		
\overline{X}	Verify Sampler Program is Running				
<u>S</u>	Verify latches are secure				
nm	ents:			-	
			Date/Time Off	-site:	
ate/Ti	OSITE SAMPLE COLLECTION me On-site: <u>10517</u> 1645 Halt Sampler program Put lid on sample bottle Properly label sample bottle; Recor Record liquid height/sample volume Record subsample information on b mpling is Complete: Power off Sampler Add ice to sample cooler Complete COC form; Arrange transport to lab ents:	e and visual observa back of sheet If Continuin Install n Restart Date/Tin Verify R	tions on back of g Sampling (sa ew 15 L bottle, a sampling progra me Restarted: cunning	sheet mple bottle chan add ice	ge out):
		Date/1	ime Off-site:		_
	DOWN:	MDI/MST			
	me On-site:	MDT/MST	Personnel:	ABC	
A	Record Flow Meter status (Flowlink				
<u>,</u>	Replace battery if v<11.9	,	Flow Meter S	tatus	
-/	Retrieve Data (Flowlink)		Level		in.
7	Change modem access to "Dry We	ather" 8-6 M-F	Flow		cfs
/	Change data storage rates for level		Velocity		fps
_/	rate to 15 min (Flowlink)		Voltage		V
_	Change data storage rates for temp				
	Velocity ratio, and velocity signal to	30 minutes.			
m	Velocity ratio, and velocity signal to ents:	30 minutes.			

Date/Time Off-site: /105.20 Remote/On-site (circle one)

1

Form 22 COMPOSITE INFORMATION- Phase II

	se Interva		id Height v		nate Sample 1	/olume C	onversion Cha	art	ft^3
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5" 11.0"	14750 mL 15500 mL
1.0" 1.5"	800 mL 1400 mL	3.5" 4.0"	4250 mL 5000 mL	6.0" 6.5"	8000 mL 8750 mL	8.5" 9.0"	11750 mL 12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.0	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
	-		Qualitativ						
Compon	ent		iption	•	10000		Example	S	
Clarity			o by					loudy, Silty	
Color			and the		· Contractory			ray, Tan, Br	wwn Black
	-		iny	-				ray, ran, bi	Own, Diack
Teles #		Ibsample			Tologra		Dete There	Consta	Manageral
Trigger #	Date	/Time		Message /	Trigge	#	Date/Time		Message /
1	192516	1609		Suciss	21		1 1 1 1 1		10-11-TOT
2	1	1624		1	22				
3		11.15			23				
4	1	475			24				
5	1	1655		-	25				
	1	1702						-	
6		1703		-1	26				
7		1703		-	27				in the second
8		1719			28		_		
9	1	174	1		29			and the lot of the	1
10	1	1-1-1-			30				
11		17:45			31		The second		
12	I see	1900	T		32				
13	11/	1523		1 110	33				
14	1	200		1-	34				New York
15		Abe			35			1 100	The second second
16					36				
17			1000		37				
18					38				-
19									
					39	-			
20	a data litura d	andh a Frist ()	analis the state	Dia di Dia da Tr	40	Wine of the	the final tites		to Office of
COMMEN		or the first th	yger is the "	Start Date/ []	ine; The dat	evantie tor	the final trigger	is me End Da	ate/1mp
	QA/QC St	ation?	Yes				l out informa		
Sample I				fill in approp	oriate sequent	al number) QA Sar	nple Type;	aboratory Sp
SUBSAN	IPLE INF	ORMATIC	DN:					a state	

*MST is observed during fall and winter; MDT is observed in spring and summer.

Technical Memorandum

950 West Bannock Street, Suite 350 Boise, ID 83702

Phone: 208-389-7700 Fax: 208-389-7750

- Prepared for: Ada County Highway District (ACHD)
- Project Title: Phase II Stormwater Outfall Monitoring

Project No.: 152760

Technical Memorandum

- Subject: ACHD Phase II Monitoring Period Summary for July through August 2019
- Date: January 3, 2020
- To: Monica Lowe
- Cc: Tammy Lightle
- From: Andy Weigel, Project Manager

Prepared by:

when Lonard

Andrea Leonard, Project Scientist

Reviewed by:

Andy Weigel, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 1, 2018. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List of Tables	ii
Section 1: Project Summary	1
Section 2: Monitoring Period Narrative National Weather Service Summary	
Monitoring Station Summary	2
Section 3: Storm Narrative	2
Section 4: Pollutant Loading	3
Section 5: Deviations/Problems	3
Section 6: References	3
Attachment A: Monitoring Period Summary Tables	A
Attachment B: Monitoring Period Hydrographs	B
Attachment C: Analytical Reports and Field Sheets	C

List of Tables

Table 1. Project Summary Error! Bookmark not defined
--

Section 1: Project Summary

Table 1 is a summary of the types of data collected during Water Year (WY) 2019 Phase II Stormwater Monitoring. Since the July–August monitoring period uses analytical results from the September 6, 2019 storm event, the September–October monitoring period information is included as well.

				Table 1. I	Project Sum	mary				
Sample Period	Novembei February		March-4	April 2019	May-Ju	ne 2019	July-Aug	ust 2019	September– October 2019	
Station	E	С	E	С	E	С	E	С	E	С
Rain (inches)	8.04 ¹	6.88 ¹	3.14	2.62	2.81 ²	2.58 ³	.12	.09	1.14	1.21
Storm data flow (cubic feet)	229,023 ⁴	64,026 ⁴	99,994	46,761 4	46,080 ⁴	32,076 4	1,213	648	36,188 4	12,780
Grab sample	Yes	Yes	Yes	Yes	Yes 5	Yes 5	No	No	Yes	Yes
Field parameters	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes
Composite sample	Yes	No	No	No	No	Yes	No	No	No	Yes
QA/QC	No	Yes	No	Yes	Yes	No	No	No	Yes	No

C = Chrisfield.

E = Edgewood.

¹ Rainfall data gaps were supplemented with Agrimet data, maintained by the U.S. Bureau of Reclamation.

² Hourly rainfall data are supplemented with available hourly rainfall data from Chrisfield.

³ Hourly rainfall data are supplemented with available hourly rainfall data from Edgewood.

⁴ Estimated runoff volume is used when flow data is not available.

⁵ E.Coli results are qualified due to exceeded holding time.

Section 2: Monitoring Period Narrative

This technical memorandum describes the Phase II Stormwater Monitoring completed for Ada County Highway District (ACHD) from July through August 2019. Flow and rain data were collected during this period from the Edgewood and Chrisfield Phase II monitoring stations. No storms were targeted during this monitoring period. Both months were hot and dry with no rain events that met sampling criteria. A targeted storm from September 6, 2019 is used for pollutant loading for this monitoring period.

National Weather Service Summary

The National Weather Service (NWS) prepares a summary of precipitation observations each month for inclusion in an overall monthly climate summary. The NWS monthly climate summary is made available through the local Boise Weather Forecast Office on the NWS website at http://www.nws.noaa.gov/climate/index.php?wfo=boi. Precipitation summaries from the NWS are included in the text below. Summaries are pared down but are otherwise quoted directly with minor punctuation and grammatical edits for readability.

July and August are normally the driest months of the year, and this year was no different. Only 0.01 inch of rain fell in July. As is common this time of year, upper level troughs from the north Pacific weakened as they encountered the strong summer high pressure ridge over the western United States. The ridge diverted these systems too far north to bring measurable rain to the Boise area.

August 2019 resulted in three days of measurable precipitation, totaling 0.09 inch. Precipitation for June, July, and August only totaled 0.14 inch at the airport, making this the second driest summer on record. Southerly flow aloft brought enough moisture for light showers on the 2nd and again on the 8th. On the 9th and 10th, a low pressure trough moved inland, which triggered thunderstorms that produced light but measurable precipitation and gusty outflow winds.

Monitoring Station Summary

A summary of data collected for each monitoring station over the entire monitoring period (July-August) and for the targeted storm (September 6, 2019) is provided in Table 2. Monthly summaries are presented in Tables 3 and 4. Monitoring period summary tables are included in Attachment A.

July – August summary hydrographs are presented in Figures 1 (Edgewood) and 2 (Chrisfield). Monthly hydrographs for each monitoring station in this monitoring period are provided in chronological order in Figures 3–6. Included on each hydrograph are recorded hourly precipitation at the local rain gauge (inches), flow (cubic feet per second), and sample collection times, as applicable. Hydrographs are included in Attachment B.

Section 3: Storm Narrative

No storms were targeted during the July–August monitoring period. For this monitoring period, pollutant loads are calculated using water quality results from a storm on September 6, 2019. Wet grab samples were collected at both sites on September 6, 2019. Composite samples were unsuccessful at both sites due to equipment issues. See Section 5 for additional notes about data collected during the monitoring period.

September 6, 2019

On Thursday morning, September 5, the National Weather Service issued a forecast for isolated showers and thunderstorms in the Boise area from Thursday evening continuing through Friday. Chance of precipitation was 80 percent, with as much as 0.25 inch of precipitation forecasted. Setup was conducted Thursday afternoon. An expected precipitation depth of 0.11 inch was used to set trigger volumes at Edgewood and Chrisfield. Precipitation started around 1000 on Friday morning, September 6, 2019 and continued heavily in isolated areas for a few hours. Precipitation data was lost at both sites due to equipment errors. Precipitation data is discussed further in Section 5.

A two-member team mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on the morning of September 6, 2019. Full suite grab samples were collected at Edgewood and Chrisfield monitoring stations and submitted to the West Boise Water Quality Lab (WQL) at 1258 on September 6. Composite samples were unsuccessful at both monitoring stations and no composite samples were submitted to WQL. Composite sample details are explained further in Section 5. Laboratory analytical reports are included in Attachment C.

Section 4: Pollutant Loading

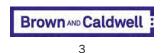
Water quality results from the September 6, 2019 storm event and pollutant loading estimates for each monitoring station for the July – August monitoring period are included in Table 2. Monthly values and estimates are presented for each individual month as well (Tables 2–4). Field parameters and E. Coli analytical results are included in Tables 2-4.

Section 5: Deviations/Problems

Composite Samples

Both Edgewood and Chrisfield experienced sampling errors associated with ISCO's firmware. Neither site collected any samples. Troubleshooting at both monitoring locations has occurred since this storm event. Equipment errors are being tested and resolved as they are recognized. Equipment testing has been performed outside of storm events at both sites to try to correct errors before another storm event.

Precipitation data


Precipitation data was collected continuously during the July – August monitoring period. However, the storm event used for pollutant loads does not have precipitation data available for the Edgewood or Chrisfield rain gauges. An error with the ISCO firmware caused precipitation data to be deleted at both stations during monitored events. This issue has since been resolved.

For the September 6, 2019 storm event, the AgriMet Weather Station rain gauge data is used. The AgriMet weather station is maintained by the U.S. Bureau of Reclamation and located at the Western Idaho Fairgrounds, which is approximately 4 miles southeast of the Edgewood monitoring station and 6 miles northeast of the Chrisfield monitoring station.

Section 6: References

National Weather Service Boise Forecast Office. (2018). Monthly Weather Summary. Retrieved July 20, 2019, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi

National Weather Service Boise Forecast Office. (2018). Preliminary Monthly Climate Data. Retrieved July 20, 2019, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi

Attachment A: Monitoring Period Summary Tables

Table 2

	Monitoring Per	iod Summ <u>ary</u>	July 1 - August 31 (WY1	9)			
		Edge	wood		Chri	sfield	
	cubic	feet	percent	cubic	feet	percent	
Measured Stormwater Runoff Volume (cf)	1,2	13	0%	64	8	75%	
Background Discharge Volume (cf)	1,286	6,327	100%	21	.6	25%	
Total Discharge Volume (cf)	1,287	7,540	100%	86	64	100%	
Estimated Runoff for Monitored Area ¹	Edge	wood	Eagle	Christ	field	Meridian	
Monthly Precipitation (in)		0.12			0.	.09	
Drainage Area (acres)	55.	86	22,765	1:	12		
Estimated Stormwater Runoff Volume ² (cf)	2,6	06	2,727,019	72	!6	2,397,896	
Monitored Storm Information		Edgewood (9/6/2019)			Chrisfield (9/6/2019)		
Precipitation Amount ³ (in)		0.	30		0.30		
Storm Duration (hrs)		4				4	
Antecedent Dry Period (hrs)		6	55		2369		
Recorded Runoff Volume (cf)		10,	505		1,	512	
Sample Information							
Sample Date and Time		9/6/2019 12:17			9/6/20	19 11:24	
Dissolved Oxygen (mg/L)		7.47			7.52		
oH (S.U.)		7.	45	7.74			
Conductivity (uS/cm)		11:	3.96	114.6			
Femperature (°C)		23	.01	24.07			
Nitrate + Nitrite as N (mg/L)		1.	21	0.695			
fotal Suspended Solids (mg/L)		64	1.9	165			
Γotal Kjeldahl Nitrogen (mg∕L)		2.	05		5.	.57	
Dissolved Orthophospate as P (mg/L)		0.:	218		0.2	267	
Total Phosphorus as P (mg/L)		0.3	369		0.9	501	
E.Coli (MPN/100 mL)		24	19.6		64	40.0	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian	
onutant Loading Loundtes	(Ibs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
Nitrate + Nitrite as N	0.00	0.09	37.0	0.00	0.03	62.5	
Fotal Suspended Solids	0.09	4.87	1,985	0.56	6.67	14,844	
Fotal Kjeldahl Nitrogen	0.00	0.15	62.7	0.02	0.23	501.1	
Dissolved Orthophosphate as P	0.00	0.02	6.7	0.00	0.01	24.0	
Total Phosphorus as P	0.00	0.03	11.3	0.00	0.02	45.1	

Notes:

 $^{1}\mbox{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

 $^{\rm 2}\,{\rm Estimated}$ stormwater runoff volume is calculated using local precipitation data

 $^3\,\text{Missing}$ rain gauge data has been supplemented by Agrimet weather station daily precipitation data. See Section 5.

Table 3

	Monitoring P	eriod Summa	ıry July 1 - July 31 (WY19)				
			ewood		Chrisfield		
	cubio	feet	percent	cubi	c feet	percent	
Measured Stormwater Runoff Volume (cf)	()	0%	()	0%	
Background Discharge Volume (cf)	579,	528	100%	18	30	100%	
Total Discharge Volume (cf)	579,	528	100%	18	30	100%	
Estimated Runoff for Monitored Area ¹	Edge	wood	Eagle	Chris	field	Meridian	
Monthly Precipitation (in)			0		0.	01	
Drainage Area (acres)	55.	86	22,765	1	2	26,690	
stimated Stormwater Runoff Volume ² (cf)	()	0	8	1	266,433	
Nonitored Storm Information		Edgewood	(9/6/2019)		Chrisfield (9/6/2019)	
Precipitation Amount ³ (in)		0	.30		0.	30	
Storm Duration (hrs)			4			4	
Intecedent Dry Period (hrs)		6	55	2369			
Recorded Runoff Volume (cf)		10	,505	1,512			
Sample Information							
Sample Date and Time		9/6/20	19 12:17	9/6/2019 11:24			
issolved Oxygen (mg/L)		7	.47	7.52			
H (S.U.)		7	.45	7.74			
onductivity (uS/cm)		11	3.96	114.6			
emperature (°C)		23	3.01	24.07			
itrate + Nitrite as N (mg/L)		1	.21	0.695			
otal Suspended Solids (mg/L)		6	4.9	165			
otal Kjeldahl Nitrogen (mg/L)		2	.05	5.57			
vissolved Orthophospate as P (mg/L)		0.:	218		0.2	267	
otal Phosphorus as P (mg/L)		0.	369		0.9	501	
E.Coli (MPN/100 mL)		24	19.6		644	40.0	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian	
Unitant Loading Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
itrate + Nitrite as N							
otal Suspended Solids							
otal Kjeldahl Nitrogen							
Dissolved Orthophosphate as P							
Total Phosphorus as P							

Notes:

 $^{1}\mbox{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

 $^{2}\,\mbox{Estimated}$ stormwater runoff volume is calculated using local precipitation data

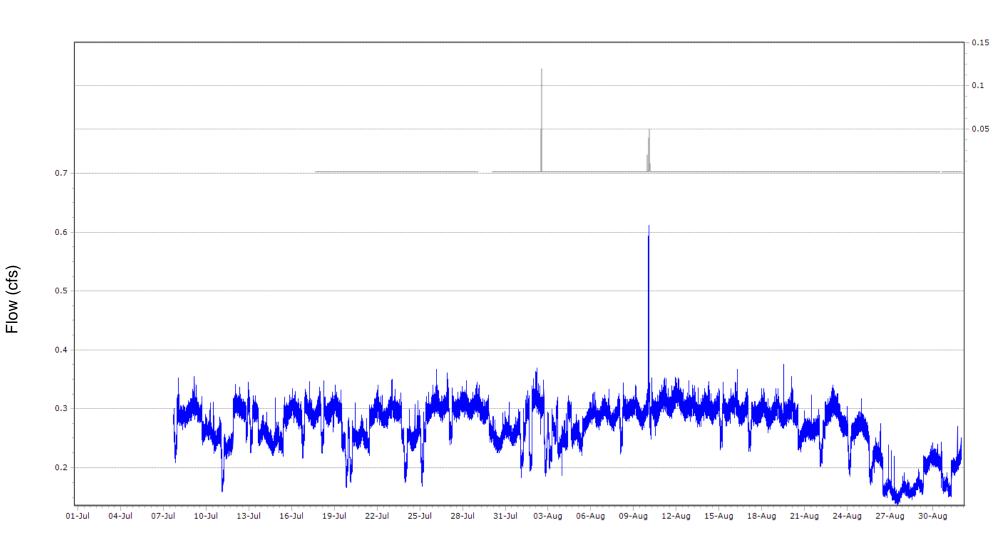
³ Missing rain gauge data has been supplemented by Agrimet weather station daily precipitation data. See Section 5.

Table 4

	Monitoring Perio	od Summarv I	August 1 - August 31 (WY1	.9)			
		Edgewood			Chrisfield		
	cubi	cubic feet percent			feet	percent	
Measured Stormwater Runoff Volume (cf)	1,2	02	0%	64	18	95%	
Background Discharge Volume (cf)	706	,810	100%	3	6	5%	
Total Discharge Volume (cf)	708	,012	100%	68	34	100%	
Estimated Runoff for Monitored Area ¹	Edge	wood	Eagle	Chris	field	Meridian	
Monthly Precipitation (in)		0.	12		0.	08	
Drainage Area (acres)	55	.86	22,765	1	2	26,690	
Estimated Stormwater Runoff Volume ² (cf)	2,6	06	2,727,019	64	16	2,131,463	
Monitored Storm Information		Edgewood	(9/6/2019)		Chrisfield (9/6/2019)	
Precipitation Amount ³ (in)		0.	30		0.	30	
Storm Duration (hrs)			4			4	
Antecedent Dry Period (hrs)		6	55	2369			
Recorded Runoff Volume (cf)		10,	505	1,512			
Sample Information							
Sample Date and Time		9/6/20	19 12:17	9/6/2019 11:24			
Dissolved Oxygen (mg/L)		7.	47	7.52			
pH (S.U.)		7.	45	7.74			
Conductivity (uS/cm)		113	3.96	114.6			
Femperature (°C)		23	.01	24.07			
Nitrate + Nitrite as N (mg/L)		1.	21	0.695			
fotal Suspended Solids (mg/L)		64	4.9	165			
Γotal Kjeldahl Nitrogen (mg∕L)		2.	05	5.57			
Dissolved Orthophospate as P (mg/L)		0.2	218		0.2	267	
Fotal Phosphorus as P (mg/L)		0.3	369	0.501			
E.Coli (MPN/100 mL)		24:	19.6		64	40.0	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian	
Fondant Loading Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
Nitrate + Nitrite as N	0.00	0.09	37.0	0.00	0.03	62.5	
Fotal Suspended Solids	0.09	4.87	1,985	0.56	6.67	14,844	
Total Kjeldahl Nitrogen	0.00	0.15	62.7	0.02	0.23	501.1	
Dissolved Orthophosphate as P	0.00	0.02	6.7	0.00	0.01	24.0	
Total Phosphorus as P	0.00	0.03	11.3	0.00	0.02	45.1	

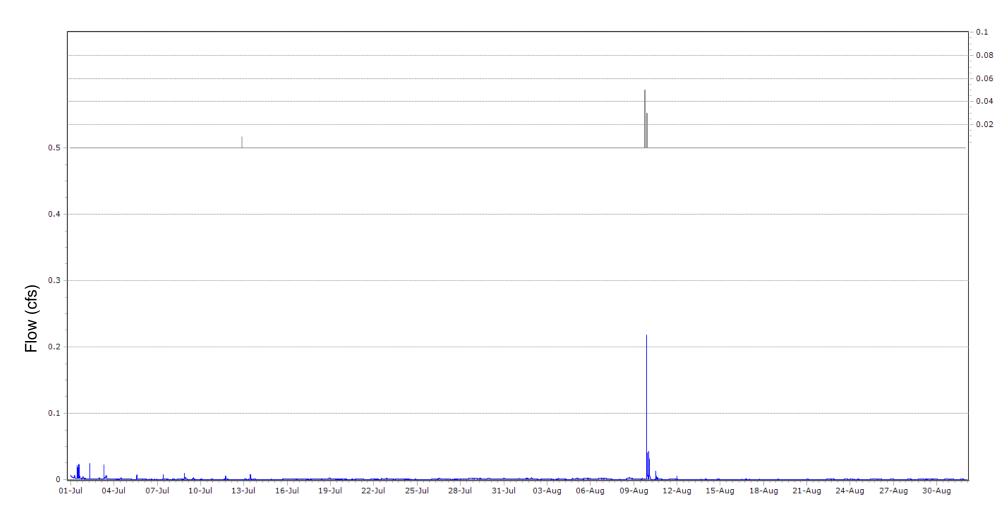
Notes:

 $^{1}\,\mbox{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

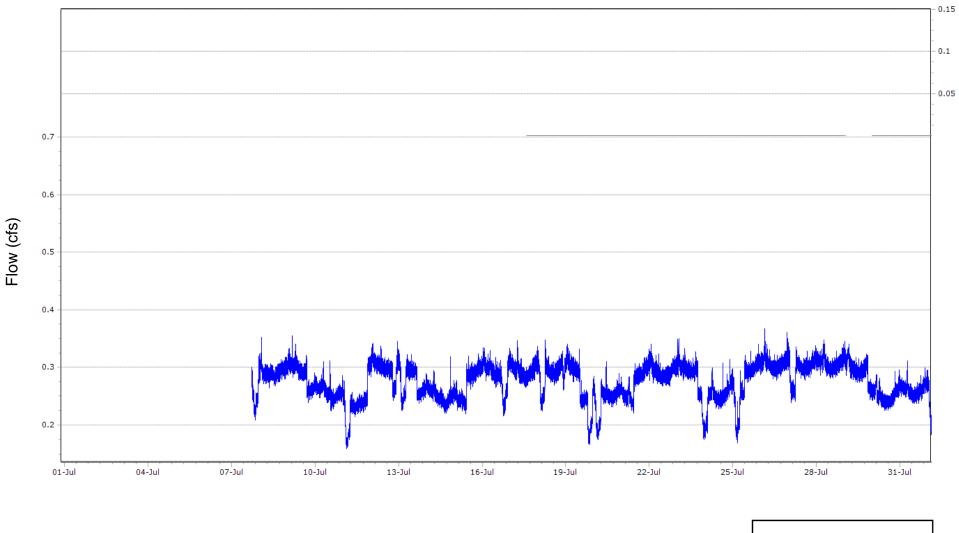

²Storm data flow is estimated from rainfall data

³ Missing rain gauge data has been supplemented by Agrimet weather station daily precipitation data. See Section 5.

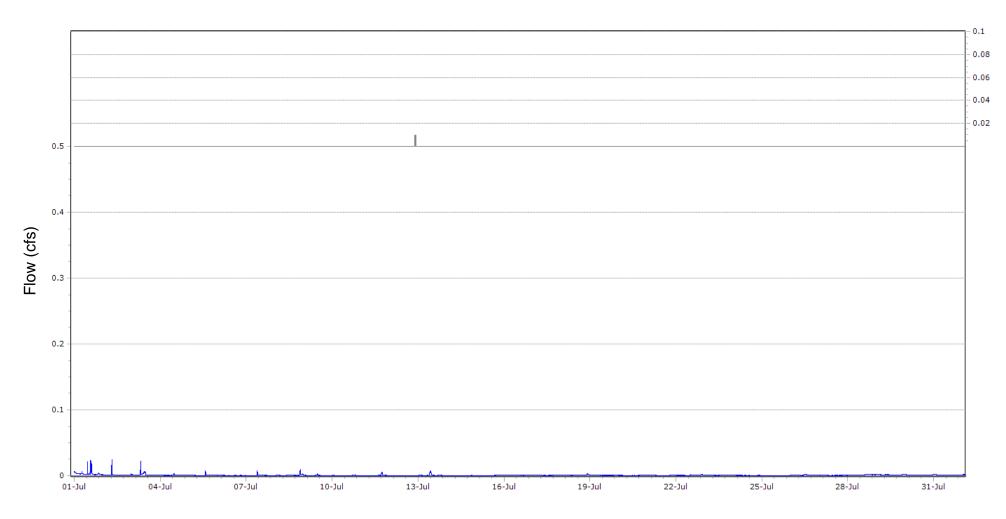
Attachment B: Monitoring Period Hydrographs

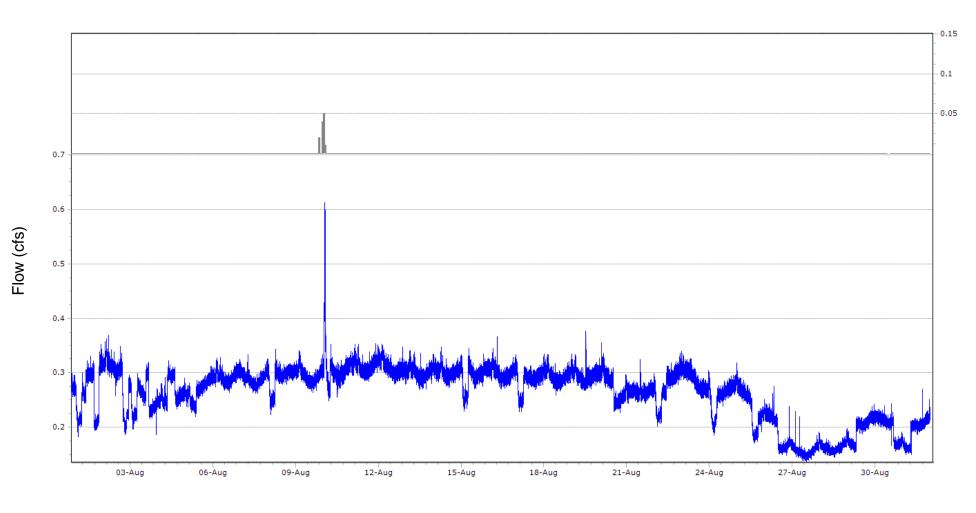


Edgewood - Water Year 2019 - July through August 2019

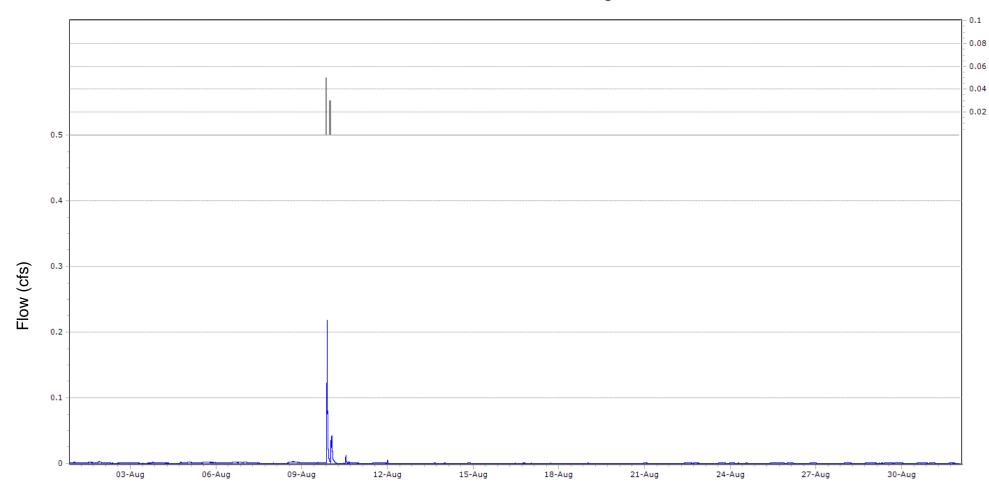


Chrisfield - Water Year 2019 - July through August 2019


Edgewood - Water Year 2019 - July 2019


Hourly Rainfall (in)

Chrisfield - Water Year 2019 - July 2019



Edgewood - Water Year 2019 - August 2019

Chrisfield - Water Year 2019 - August 2019

Rainfall (Chrisfield Rain Gauge)
— Flow

Attachment C: Analytical Reports and Field Sheets

Report Date: 10/01/2019 14:02

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qu	ualifiers	Date Sampled	Date Received
9AC0064-01	ACST2	190906-09-WG	Water		09/06/2019	09/06/2019
9AC0064-02	ACST2	190906-08-WG	Water		09/06/2019	09/06/2019
9AC0064-03	ACST2	190906-08-101	Water		09/06/2019	09/06/2019

Analysis Report

Location: ACST2						Location Description:	190906-09-WG				
Date/Time Collected	: 09/06/2	2019 11:24									
Lab Number:	9AC00	064-01				Sample Collector:	ABW				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	l Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual	
Microbiology											
E. Coli	B9I0617	6440.0 M	PN/100 mL	100.0	1.0	Colilert	09/06/19 13:48	9/7/19 13:48	JAL	D	
Wet Chemistry											
Chlorine Screen	B9I0619	Absent				SM 4500-CL G-2000 mod	09/06/19	9/6/19 13:23	LRF		
Nitrate-Nitrite, as N	B9I1205	0.695	mg/L	0.0250	0.0250	EPA 353.2	09/12/19	9/12/19 9:07	JAL		
TKN	B9I3010	5.57	mg/L	0.130	0.130	EPA 351.2	09/30/19	10/1/19 10:06	ALN		
Total Suspended Solids	B910703	165	mg/L	0.900	0.900	SM 2540 D-1997	09/07/19	9/7/19 9:58	F.A		
Dissolved Wet Ch	emistry										
Orthophosphate, as P	B910701	0.267	mg/L	2.00E-3	2.00E-3	EPA 365.1	09/07/19	9/7/19 9:17	JAL		
Total Metals											
Phosphorus as P	B910902	0.501	mg/L	6.00E-3	6.00E-3	EPA 200.7	09/09/19	9/10/19 15:53	AMO		

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

8

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location: ACST2						Location Description:	190906-08-WG				
Date/Time Collected	: 09/06/2	2019 12:17									
Lab Number:	9AC00	64-02				Sample Collector:	ABW				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	l Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual	
Microbiology											
E. Coli	B910617	2419.6M	PN/100 mL	. 1.0	1.0	Colilert	09/06/19 13:48	9/7/19 13:48	JAL		
Wet Chemistry											
Chlorine Screen	B910619	Absent				SM 4500-CL G-2000 mod	09/06/19	9/6/19 13:23	LRF		
Nitrate-Nitrite, as N	B9i1205	1.21	mg/L	0.0250	0.0250	EPA 353.2	09/12/19	9/12/19 9:12	JAL		
TKN	B9I3010	2.05	mg/L	0.130	0.130	EPA 351.2	09/30/19	10/1/19 10:07	ALN		
Total Suspended Solids	B910703	64.9	mg/L	0.900	0.900	SM 2540 D-1997	09/07/19	9/7/19 9:58	F.A		
Dissolved Wet Ch	emistry								_		
Orthophosphate, as P	B910701	0.218	mg/L	2.00E-3	2.00E-3	EPA 365.1	09/07/19	9/7/19 9:18	JAL		
Total Metals											
Phosphorus as P	B910902	0.369	mg/L	6.00E-3	6.00E-3	EPA 200.7	09/09/19	9/10/19 16:07	AMO		

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Analysis Report

Location:	ACST2	2				Location Description:	190906-08	3-101		
Date/Time Collected	: 09/06/2	2019 12:00								
Lab Number:	9AC00	64-03				Sample Collector:	ABW			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology										
E. Coli	B9I0617	1460.0 MI	PN/100 mL	. 100.0	1.0	Colilert	09/06/19 13:48	9/7/19 13:48	JAL	D
Wet Chemistry										
Chlorine Screen	B9I0619	Absent				SM 4500-CL G-2000 mod	09/06/19	9/6/19 13:23	LRF	
Nitrate-Nitrite, as N	B9I1205	1.22	mg/L	0.0250	0.0250	EPA 353.2	09/12/19	9/12/19 9:13	JAL	
TKN	B9I3010	1.95	mg/L	0.130	0.130	EPA 351.2	09/30/19	10/1/19 10:09	ALN	
Total Suspended Solids	B910703	67.3	mg/L	0.900	0.900	SM 2540 D-1997	09/07/19	9/7/19 9:59	F.A	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B910701	0.217	mg/L	2.00E-3	2.00E-3	EPA 365.1	09/07/19	9/7/19 9:23	JAL	
Total Metals										
Phosphorus as P	B910902	0.368	mg/L	6.00E-3	6.00E-3	EPA 200.7	09/09/19	9/10/19 16:12	AMO	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

Analyte Name	Method Blank Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Microbiology								
Batch: B9/0617								
Blank (B910617-BLK1)								
E. Coli	Absent					09/07/2019	JAL	
		*****	an ad 11100 an 1403			03/07/2019	JAL	
LCS (B9I0617-BS1)			_					
E. Coli			Present			09/07/2019	JAL	
Duplicate (B9I0617-DUP1)	Source ID: 9WB0682-06							
E. Coli				Pass	128	09/07/2019	JAL	
Duplicate (B9I0617-DUP2)	Source ID: 9AC0064-02						*****	
E. Coli	500100 ID. 5A00004-02			Pass	128	09/07/2019	JAL	
		-		1 000	120	00/01/2019	UAL	****
Duplicate (B9I0617-DUP3) E. Coli	Source ID: 9AC0064-02RE	E1		_				
E. Coll				Pass	128	09/07/2019	JAL	
Net Chemistry								
Batch: B9/0703								
Blank (B910703-BLK1)								
Total Suspended Solids	<0.9 mg/L					09/07/2019	F.A	U
				l ballad bill bil alla and has say our support sys sugge		00/07/2010	1.77	~
LCS (B9I0703-BS1) Total Suspended Solids		00.0	00.440					
Total Suspended Solids		96.2	90-110			09/07/2019	F.A	
Duplicate (B9I0703-DUP1)	Source ID: 9BB0573-02							
Total Suspended Solids				7.19	20	09/07/2019	F.A	
Batch: B9I1205								
Blank (B9I1205-BLK1)								
Nitrate-Nitrite, as N	<0.025 mg/L					09/12/2019	JAL	U
		(14 (b))),	******			03/12/2019	JAL	<u> </u>
Blank (B9I1205-BLK2)	-0.005							
Nitrate-Nitrite, as N	<0.025 mg/L				-	09/12/2019	JAL	U
LCS (B9I1205-BS1)								
Nitrate-Nitrite, as N		103	90-110			09/12/2019	JAL	
LCS (B9I1205-BS2)		a names at the second second second because i and so had not been as a second second second second second second					BARBAN MANAGERI I KANA MUTUK KANA MUTUK KANA MUTUK KANA KANA	
Nitrate-Nitrite, as N		104	90-110			09/12/2019	JAL	
						00/12/2010	071	
Duplicate (B9I1205-DUP1)	Source ID: 9AC0064-01					· · · ·		
Nitrate-Nitrite, as N		FFF care to use every constant and the back of the back of the state of the state of the state of the state of	an 1981 i bala kanan ana ang ing pangan pangan sa	0.514	10	09/12/2019	JAL	
Duplicate (B9I1205-DUP2)	Source ID: 9BB0562-02							
Nitrate-Nitrite, as N				NR	10	09/12/2019	JAL	
Duplicate (B9I1205-DUP3)	Source ID: 9WB0677-05							
Nitrate-Nitrite, as N	COULCE ID: 340 D0077-00			NR	10	09/12/2019	JAL	
					IU	03/12/2019	JAL	u men men un sectore de sociale de la desta de la desta desta desta de sociale de sector de sociale de sociale
Matrix Spike (B9I1205-MS1)	Source ID: 9AC0064-01		00.115					
Nitrate-Nitrite, as N	un autoritation de seconde seconde seconde seconde seconde (Marine Marine Marine Marine Marine Marine Marine M	98.8	90-110			09/12/2019	JAL	
Matrix Spike (B9I1205-MS2)	Source ID: 9BB0562-02						****	
Nitrate-Nitrite, as N		104	90-110			09/12/2019	JAL	
Matrix Spike (B9I1205-MS3)	Source ID: 9WB0677-05							
Nitrate-Nitrite, as N		104	90 -1 10			09/12/2019	JAL	
Matrix Spike (B9I1205-MS4)		Maddin (da lar ancas a sur la skalar can ancas kalar landar (da secar se	_				-/ \=	and a second
WIGUIN OPING (DUI IZVO-WO4)	Source ID: 9EP0071-01							

Matrix Spike (B9I1205-MS4) Source ID: 9EP0071-01

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Continued)									
Batch: B9I1205 (Continued)									
Matrix Spike (B9I1205-MS4) (Contin Nitrate-Nitrite, as N	nued) S	Source ID: 9E	P0071-01 104	90-110			09/12/2019	JAL	
Matrix Spike (B9I1205-MS5) Source Nitrate-Nitrite, as N	ce ID: 9E	P0071-02	103	90-110			09/12/2019	JAL	
Matrix Spike Dup (B9I1205-MSD1) Nitrate-Nitrite, as N	Source	ID: 9AC0064	-01 93.8	90-110	1.86	10	09/12/2019	JAL	
Matrix Spike Dup (B9I1205-MSD2) Nitrate-Nitrite, as N	Source	ID: 9BB0562	-02 104	90-110	0.245	10	09/12/2019	JAL	
Matrix Spike Dup (B9I1205-MSD3) Nitrate-Nitrite, as N	Source	ID: 9WB0677	7-05 103	90-110	0.582	10	09/12/2019	JAL	
Batch: B9I3010 Blank (B9I3010-BLK1) TKN	<0.13	mg/L					10/01/2019	ALN	U
LCS (B9I3010-BS1) TKN			107	80-120			10/01/2019	ALN	
Duplicate (B9I3010-DUP1) Source TKN	D: 9WE	80701-05			0.196	20	10/01/2019	ALN	D
Duplicate (B9I3010-DUP2) Source	D: 9WE	80701-09		,	9.04	20	10/01/2019	ALN	D
Matrix Spike (B9I3010-MS1) Sour	ce ID: 9V	/B0701-05	109	80-120			10/01/2019	ALN	D
Matrix Spike (B9I3010-MS2) Sour	ce ID: 9V	/B0701-09	99.1	80-120	6. 49. 49. 49. 49. 49. 49. 49. 49. 49. 49		10/01/2019	ALN	D
Matrix Spike Dup (B9l3010-MSD1) TKN	Source	ID: 9WB070	1-05 83.9	80-120	9.19	20	10/01/2019	ALN	D
Matrix Spike Dup (B9I3010-MSD2) TKN	Source	ID: 9WB070	1-09 98.3	80-120	0.165	20	10/01/2019	ALN	D

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Dissolved Wet Chemistry									
Batch: B910701									
Blank (B9I0701-BLK1) Orthophosphate, as P	<0.002	mg/L					09/07/2019	JAL	U
LCS (B9I0701-BS1) Orthophosphate, as P			98.3	90-110			09/07/2019	JAL	******
Duplicate (B9I0701-DUP1) Sour Orthophosphate, as P	ce ID: 9AC0	064-02			0.173	10	09/07/2019	JAL	
Matrix Spike (B9I0701-MS1) Sou Orthophosphate, as P	urce ID: 9A0	20064-02	106	90-110			09/07/2019	JAL	
Matrix Spike Dup (B9I0701-MSD1) Orthophosphate, as P) Source	ID: 9AC0064	1-02 108	90-110	0.539	10	09/07/2019	JAL	11111117 out too out out out out of a gr
Total Metals									
3atch: B9I0902 Blank (B9I0902-BLK1)									
Phosphorus as P	<0.006	mg/L					09/10/2019	AMO	U
LCS (B9I0902-BS1) Phosphorus as P			102	85-115			09/10/2019	AMO	
	ce ID: 9WB	0679-04							
Phosphorus as P					9.27	20	09/10/2019	AMO	D
Matrix Spike (B9I0902-MS1) Sol Phosphorus as P	urce ID: 9W	B0679-04	118	70-130			09/10/2019	AMO	D
Matrix Spike Dup (B910902-MSD1) Phosphorus as P) Source	ID: 9WB067	9-04 121	70-130	1.14	20	09/10/2019	AMO	D

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

For Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

	IIWay Ei					Matrix	Type	Г									
Attn: Monica Lowe 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	3714-6418	Sto 830	146446 rmwater-PII Jandy Le	te Ayala Wala	2 Ibi					ore PAI-DK01	0.7 18te - EPA 365.1	Pb-EPA 200.7	EPA 245.2 EPA 245.2	EXX Colilert		5.55A 353.2	200 NH ^a - D
Lab# Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Init	Water	Grab	Composite	LSS - SM 25 COD - Hach	TKN - Perst	05 AGE - 97 JasodaodhO		Diss. Cd Cu Tolal Ha -	E. Coli - ID	Turbidity - Turbidity -		
ghecodery 9/6	5/19	1120	1124	190906 - 09 - WG	ABW	X	×		X	X	XX			X		×	0
6	6/19	1205	1217	190906-08-14	ABW	X	×		يد	X	×			j.	1	~	0
6 20	6/19	12.0	0	101-80-906061					×	~	X			<u>×</u>		×	0
Relinquished by (sign)	y (sign)	Da	Date & Time Transferred	B Received by (sign)				Com	Comments/Special Instructions:	s/Spe	cial Ir	Istru	Ictio	us:			
Berley 4	1	6	9-10-12	& Kathy Z' Buy													
)						GALCOLO-Y	g	5.0					

ψ .<u>)</u>.γ

le of art art in. cfs fps V C°
art in. cfs fps V C°
art in. cfs fps V C°
in. cfs fps V C°
in. cfs fps V C°
in. cfs fps V C°
cfs fps V C°
cfs fps V C°
V C°
C°
-
1-5 1350
ottle change out):
-
in
in.
cfs
fps V
V

h.

Date/Time Off-site: _____ Remote/On-site (circle one)

Form 22 COMPOSITE INFORMATION- Phase II

Station/S	Sample ID:	371	122		<u>VC</u>			Bottle _	of
	- (192		S		uantitativ	e Result	s		
Compon				Value					<u>Unit</u>
Compos	ite Sample	Volume	(Approx.)		- + + 1 C				mL
	lse Interval				ALL DESCRIPTION				ft^3
		Liq	uid Height va	s. Approxim	nate Sample	Volume C	onversion Cha	art	
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0" 2.5"	2000 mL 2750 mL	4.5" 5.0"	5750 mL 6500 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5	2750 mL	-		7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
_			Qualitativ	e Results	5				
Compon	lent	Desc	ription				Example	S	
Clarity							Clear, Cl	oudy, Silty	
Color									rown, Black
	Ŝu	bsample	Informati	00.					
Trigger #	Date/			Message /	Trigge	r#	Date/Time	Sample	r Message /
	Dater	. mile	Subsamp	le Result					ple Result
1		-	oussump		21			ouvoui	
2	-		11.2.2		22		3		
							pal-		
3					23		and the second second		
4					24		the second second		
5					25				
6			1000	and the second second	26		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	
7	1		1.1.1		27		Level to a state		A REAL PROPERTY.
8		-			28				
9					29			1 1 1 1 1 1	1 2 1 1
10		10.000		-				1	
	-				30				
11					31				
12			1		32	-			
13					33	_ a 1 / 1 to			
14				1 1 1 1 1	34		ALC: NO	Til Conter	
15	1		1	110000	35				
16			10000		36				T poster
17									
				1	37				
18					38	1			all and
19			the second		39				
20				I FRANK	40				
Notes: Th	e date/time fo	or the first tr	igger is the "S	Start Date/Ti	me"; The dat	e/time for	the final trigger	is the "End Da	ate/Time"
COMME	NTS:								
					1-	-			
Is this a	QA/QC Sta	ation?	Yes	No	(it	YES, fil	l out informa	tion below)	
					`				
Sample				fill in approp	riate sequent	ial number) QA San	nple Type: L	_aboratory S
SUBSA	MPLE INFO	ORMATIC	DN:					all all all a	
	Dat	te/Time			Containe	r - Test	(Subsample	Result)	

12:00 COC Sample Date & Time

Notes: Use the "Start Date/Time" and "End Date/Time" for the parent sample.

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 21A GRAB SAMPLE DATA FORM – (Phase II)

Station:	Mishell			Personnel:	ABW J	A
ate/Time On-site:	9/6/19	1110		MDT/MST (circle one)	
FLOW METER CU	JRRENT STATUS	5:		0		
	Value	<u>Unit</u>			Value	<u>Unit</u>
Level		inch	Vel	ocity		fps
Flow		cfs	Bat	tery		v
Total Flow		cf	Flov	w Start		(time)
Rainfall		in. (if appli	cable)			(
BRAB INFORMAT s this a QA/QC		No	x	(if YES, fill	out Form 21B o	on back)
Photographs Ta	aken? Yes	No	×	Swing Samp	oler Used? Yes	\times No
Storm Event Sa	mplo? Voc	7° No		Ģ P		
Sample ID:	190906-0	8- Wet/ I	Dry (Grab (fill in stati	on name)	
SUBSAMPLE INF Collection	ORMATION.	er - Analyte		Preserved*	Filtered	Labeled
Time				(H2SO4)	ritered	Labeleu
11:23	(4) L plastic – T	SS		N/A	N/A	X
11:21	(1) L plastic – T	KN		Ř	N/A	12
11:22	(1) 500mL plast	ic - TP		N/A	N/A	K
11:21	(1) 500mL plast	ic (square) -	NOx	X	Time:) /30	QXI
11:20	(1) 500mL steril	e plastic – <i>E</i>	E. coli	N/A	N/A	K
11:24	(1) 250 mL plas	tic - OP		N/A	Time: 1/30	Ø
FIELD PARAMETI	ERS: Fill (1) 500r	nL Amber	Time:	11.32		
	Value	<u>Unit</u>			Value	<u>Unit</u>
Diss. O ₂ – Field	7.57	Mg/L	Tem	np – DO Meter	24.070	°C
Diss. $O_2 - Field$	114 b()			Canal		
Conductivity	114.60	µS/cm	Terr Mete	ıp – Cond. er		°C

*NOTE: Use 1 drop of $H_2SO_4\,per$ 100 mL of sample volume & Preserved samples should have pH <2

į.

Form 21B QA/QC SAMPLE DATA FORM – (Phase II)

Date/Time - Off-site:

Station:

Personnel:

 Sample ID:
 -101 (fill in appropriate sequential number)

 QA Sample?
 QA SAMPLE TYPE: FIELD DUPLICATE

UBSAMPLE INFO	ORMATION:			
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
1 3 9 11	(4) L plastic - TSS	N/A	N/A	
1 1917 3 191	(1) L plastic – TKN		N/A	
1000	(1) 500mL plastic - TP	N/A	N/A	
	(1) 500mL plastic (square) - NOx		Time:	
	(1) 500mL sterile plastic – E. coli	N/A	N/A	
	(1) 250 mL plastic - OP	N/A	Time:	

Notes: The date/time for the first and final subsample is the "Start Date/Time" and the "End Date/Time", respectively

Comments:

Sample ID: QA Sample?	-001 QA SAMPLE TYPE: FIELD	(fill in appropriate se		ater supplied by WQL)
SUBSAMPLE IN				
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
	(4) L plastic – TSS	N/A	N/A	
	(1) L plastic – TKN		N/A	
	(1) 500mL plastic - TP	N/A	N/A	
	(1) 500mL plastic (square) - NOx		Time:	
	(1) 500mL sterile plastic – E. coli	N/A	N/A	
A STREET	(1) 250 mL plastic - OP	N/A	Time:	

Notes: The date/time for the first and final subsamples is the "Start Date/Time" and "End Date/Time", respectively.

Comments:

Form 22 SET-UP/SHUT DOWN CHECKLIST – Phase II

ſ

2 ×

i

Station : SET-UP: Date/Time C Remote Cor	Dn-site: <u>9-5-19</u> 140 Inection Date/Time:	<u>5 </u>	/MST*(cii /MST*(ci	cle one) Percle one)	Bottle _		N
	less hetteries if und 4.0	Flow Meter S	Status &	Velocity Cu	ut-off Chart		٦
	lace batteries if v<11.9	Time/Date /					-
	fy Flow Meter operation		2.585	19		in.	-
	wlink) & Check to determine w present		6.214			cfs	-
	gram sampler per PG 320						_
<u> </u>			0.815		-	fps V	-
1	Trigger condition		28		-	V C°	-
√ Set	Modem Access to "Storm	Temp	19.5				
	nt" -24/7 (Flowlink)						
	nge Data Storage Rates to 1 m	ninute for Level	Velocit	and Flow (Flowlink)		
	nge Data Storage Rates to 15					city spectrum	
	, and velocity signal to 15 minu		nporatar	5, volooity 5p		ony opeon and	
	orm decon. cycle						
	fy Sampler date and time are c	correct					
	e 15L sample bottle in sample		h 2 bag i	ce			
	nove jar lid and place in a clear						
	fy all cable and tubing connect			,			
	fy Sampler Program is Running						
	fy latches are secure	5					
Comments:	,				0 /	11120	
			C.			14<1	
				Date/Time Of	ff-site:	110	
				Date/Time Of	ff-site:		
	E SAMPLE COLLECTION				ff-site: 7		
Date/Time C	n-site:			Date/Time Of Personnel: _	ff-site: 7		l)
Date/Time C Halt	on-site: Sampler program				ff-site: 1		l)
Date/Time C Halt Put	on-site: Sampler program lid on sample bottle	rd Sample ID a		ersonnel:	ff- <u>site:</u>		I,
Date/Time C Halt Put Prop	on-site: Sampler program lid on sample bottle perly label sample bottle; Reco		n back c	ersonnel: _			I,
Date/Time C Halt Put Prop Rec	on-site: Sampler program lid on sample bottle perly label sample bottle; Reco ord liquid height/sample volum	e and visual ob	n back c	ersonnel: _			
Date/Time C Halt Put Prop Rec	on-site: Sampler program lid on sample bottle perly label sample bottle; Reco	e and visual ob	n back c	ersonnel: _			L.
Date/Time C Halt Put Prop Rec Rec	On-site: Sampler program lid on sample bottle berly label sample bottle; Reco ord liquid height/sample volum ord subsample information on	e and visual ob back of sheet	n back c	ersonnel: f sheet ns on back o	of sheet	e change out):	1,
Date/Time C Halt Put Prop Rec If Sampli	On-site: Sampler program lid on sample bottle berly label sample bottle; Reco ord liquid height/sample volum ord subsample information on ng is Complete :	e and visual ob back of sheet If Cont	on back coservatio	Personnel: f sheet ns on back o Sampling (s	of sheet ample bottle	e change out):	I, .
Date/Time C — Halt — Put Prop Rec Rec Rec Pow	On-site: Sampler program lid on sample bottle berly label sample bottle; Recor ord liquid height/sample volum ord subsample information on ng is Complete : rer off Sampler	e and visual ob back of sheet If Cont	on back o oservatio tinuing s	Personnel: f sheet ns on back o Sampling (s v 15 L bottle,	of sheet ample bottl e , add ice	e change out):	
Date/Time C Halt Prop Rec Rec If Samplin Pow Add	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete : er off Sampler ice to sample cooler	e and visual ob back of sheet If Conf In Re	on back o oservatio tinuing s ostall new estart sa	Personnel: f sheet ns on back o Sampling (s v 15 L bottle, mpling prog	of sheet ample bottl e , add ice		
Date/Time C	On-site: Sampler program lid on sample bottle berly label sample bottle; Recor ord liquid height/sample volum ord subsample information on ng is Complete : rer off Sampler ice to sample cooler nplete COC form;	e and visual ob back of sheet If Cont In R D	on back o oservatio tinuing s ostall new estart sa	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling progra	of sheet ample bottl e , add ice ram		L
Date/Time C Halt Prop Rec Rec Rec Rec Rec Add Con	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete : er off Sampler ice to sample cooler	e and visual ob back of sheet If Conf In R Di Di	on back o oservatio tinuing s ostall new estart sa ate/Time erify Rur	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling prog Restarted: ining	of sheet ample bottl e , add ice ram		l
Date/Time C	On-site: Sampler program lid on sample bottle berly label sample bottle; Recor ord liquid height/sample volum ord subsample information on ng is Complete : rer off Sampler ice to sample cooler nplete COC form;	e and visual ob back of sheet If Conf In R Di Di	on back o oservatio tinuing s ostall new estart sa ate/Time erify Rur	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling progra	of sheet ample bottl e , add ice ram		
Date/Time C Halt Put Prop Rec If Samplin Pow Add Con Arra Comments:	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete: er off Sampler ice to sample cooler aplete COC form; nge transport to lab	e and visual ob back of sheet If Conf In R Di Di	on back o oservatio tinuing s ostall new estart sa ate/Time erify Rur	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling prog Restarted: ining	of sheet ample bottl e , add ice ram		
Date/Time C Halt Put Prop Rec If Samplin Pow Add Con Arra Comments: SHUT-DOW	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete: ther off Sampler ice to sample cooler aplete COC form; nge transport to lab	e and visual ob back of sheet If Conf In Re Da Ve	on back coservatio tinuing s astall new estart sa ate/Time erify Rur Date/Tim	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling prog Restarted: ining	of sheet ample bottl e , add ice ram		
Date/Time C — Halt Put Prop Rec Rec If Samplin Pow Add Com Arra Comments: SHUT-DOW Date/Time C	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler aplete COC form; nge transport to lab	e and visual ob back of sheet If Cont In Re Di Di Ve	on back coservatio tinuing stall new estart sa ate/Time erify Rur Date/Time	Personnel: f sheet ns on back of Sampling (s 15 L bottle, mpling progr Restarted:_ ining e Off-site:	of sheet ample bottl e , add ice ram		
Date/Time C — Halt — Prop — Rec — Rec If Samplin — Pow — Add — Com Arra Comments: SHUT-DOW Date/Time C Remote Dat	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete: ther off Sampler ice to sample cooler aplete COC form; nge transport to lab	e and visual ob back of sheet If Cont In Back Da Da Da Da Da Da Da Da Da Da Da Da Da	on back coservatio tinuing stall new estart sa ate/Time erify Rur Date/Time	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling progr Restarted: ining e Off-site: Personnel:	of sheet ample bottle add ice ram		
Date/Time C — Halt — Prop — Rec — Rec If Samplin — Pow — Add — Com Arra Comments: SHUT-DOW Date/Time C Remote Dat _ Rec	On-site:	e and visual ob back of sheet If Cont In Back Da Da Da Da Da Da Da Da Da Da Da Da Da	on back coservatio tinuing stall new estart sa ate/Time erify Rur Date/Time	Personnel: f sheet ns on back of Sampling (s 15 L bottle, mpling progr Restarted:_ ining e Off-site:	of sheet ample bottle add ice ram		[[
Date/Time C — Halt — Prop — Rec — Rec — Rec — Rec — Add — Orn — Arra Comments: — Comments: — Rec — Rec — Rec — Rec	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor- ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler nplete COC form; nge transport to lab N: On-site: e/Time: ord Flow Meter status (Flowlink lace battery if v<11.9	e and visual ob back of sheet If Cont In Back Da Da Da Da Da Da Da Da Da Da Da Da Da	on back coservatio tinuing stall new estart sa ate/Time erify Rur Date/Time	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling progr Restarted: ining e Off-site: Personnel:	of sheet ample bottle add ice ram		
Date/Time C — Halt — Prop — Rec — Rec — Rec — Rec — Add — Oon — Add — Comments: — Add — Comments: — Rec — Rec — Rec — Rec — Rec	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor- ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler nplete COC form; nge transport to lab	e and visual ob back of sheet In R V V MDT MDT k)	on back o oservatio tinuing s ostall new estart sa ate/Time erify Rur Date/Time /MST	Personnel: f sheet ns on back of Sampling (s 15 L bottle, mpling program Restarted: ining e Off-site: Personnel: Flow Meter	of sheet ample bottle add ice ram		
Date/Time C Halt Put Prop Rec If Samplin Pow Add Com Arra Comments: SHUT-DOW Date/Time C Remote Dat Remote Dat Rep Retr Cha	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor- ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler oplete COC form; nge transport to lab N: On-site: e/Time: ord Flow Meter status (Flowlink lace battery if v<11.9 ieve Data (Flowlink) nge modem access to "Dry We	e and visual ob back of sheet In R ND MDT MDT k) eather" 8-6 M-F	In back of oservation batelline of oservation back of oservation batelline of oservation back of	Personnel: f sheet ns on back of Sampling (s 15 L bottle, mpling program Restarted: ining e Off-site: Personnel: Flow Meter Level	of sheet ample bottle add ice ram	in.	
Date/Time C Halt Put Prop Rec If Samplin Pow Add Com Arra Comments: SHUT-DOW Date/Time C Remote Dat Rec Rep Retr Cha Cha	On-site:	e and visual ob back of sheet In R ND MDT MDT k) eather" 8-6 M-F	In back of oservation batelline of oservation back of oservation batelline of oservation back of	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling program Restarted: ning e Off-site: Personnel: Flow Meter Level Flow	of sheet ample bottle add ice ram	in. cfs	
Date/Time C Halt Put Prop Rec If Samplin Pow Add Com Arra Comments: SHUT-DOW Date/Time C Remote Dat Remote Dat Retr Cha Cha Cha cha	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor- ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler oplete COC form; nge transport to lab N: On-site: e/Time: ord Flow Meter status (Flowlink lace battery if v<11.9 ieve Data (Flowlink) nge modem access to "Dry We	e and visual ob back of sheet If Conf In Re Di Di Di Di Di Di Di Di Di Di Di Di Di	on back of oservatio tinuing s istall new estart sa ate/Time erify Rur Date/Time /MST /MST	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling program Restarted: ining e Off-site: Personnel: Flow Meter Level Flow Velocity	of sheet ample bottle add ice ram	in. cfs fps	

Date/Time Off-site: _____ Remote/On-site (circle one)

Form 22 COMPOSITE INFORMATION-- Phase II

Station/S	Sample ID:				WC			Bottle _	of
-	The second se		S		uantitativ	e Result	s		
Compon	<u>ient</u>			Value					<u>Unit</u>
Compos	ite Sample	Volume	(Approx.)						mL
	lse Interva		· · · · · /	-					ft^3
		•	uid Height vs	Approxin	nate Sample	Volume C	onversion Cha	art	<u> </u>
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
200	124	Sample	Qualitativ	e Results	s	1999			
Compon	ent		ription				Example	s	
Clarity		2000						oudy, Silty	
						-			
Color		-	1 1 -				Clear, G	ray, Ian, B	rown, Black
			Informati		. T=				5 L
Trigger #	Date	Time	Sampler I Subsamp	Message /	/ Trigge	r#	Date/Time		r Message / ple Result
1			Subsamp	ie Result	21			Subsan	ipie Result
2					22				a statement
	-								
3				-	23				Contraction
4					24				1 Barris
5					25				
6			1	1000	26	1			
7					27				
8					28				
9	-					-			
	-				29				
10					30			1	
11				Dr. Autor	31				
12					32		S. 33		
13			1		33		-	2	
14					34				
15								-	
and the second second second					35			-	
16					36			S. Comment	
17	N			1	37		-		
18					38			1	
19			1		39				
20					40			1	
	e date/time &	or the first to	inger is the "C	tart Data/T		a/time for l	he final trigger	is the "End De	to/Time"
COMME		n uie mst u	igger is the "S		ime ; The dat	erunne for t	are intai trigger		ate/Time
Is this a	QA/QC Sta	ation?	Yes	′No	(if	YES, fill	out informa	tion below)	
Sample SUBSA	ID: Mple info	ORMATIC	A	ill in approp	oriate sequent	al number) QA Sam	ple Type: L	aboratory Sr
	Dat	e/Time	1		Containe	r - Test	Subsample	Result)	100

12:00 COC Sample Date & Time

Notes: Use the "Start Date/Time" and "End Date/Time" for the parent sample.

 $\tilde{v}_{\alpha \alpha}$

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 21A GRAB SAMPLE DATA FORM – (Phase II)

Station: Ed	alla	10 . 2	1	2		
Pate/Time On-site:	<u>9/6/19</u>	1200	=	MDT/MST (c	ircle one)	
FLOW METER CUI	RENISIAIUS	:			and a state of the	
	Value	<u>Unit</u>			Value	<u>Unit</u>
Level		inch	Veloci	ity _		fps
Flow		cfs	Batter	у _		v
Total Flow		cf	Flow S	Start		(time)
Rainfall		in. (if applica	able)			
		Y				
s this a QA/QC S						
Photographs Tal	ken? Yes	No	× Sv	ving Samp	ler Used? Yes	<u>×</u> No
Storm Event Sar	nple? Yes	X No				
		0				
		/	-			
		Wet / Dr	ry Ĝr	ab (fill in station	on name)	
SUBSAMPLE INFO	RMATION:	U				Labeled
	RMATION:	er - Analyte		ab (fill in station Preserved* (H2SO4)	Filtered	Labeled
SUBSAMPLE INFC Collection	RMATION:	er - Analyte		Preserved*		Labeled
SUBSAMPLE INFO	RMATION: Contain	er - Analyte		Preserved* (H2SO4)	Filtered	
SUBSAMPLE INFO Collection Time	RMATION: Contain (4) L plastic – T	er - Analyte SS KN		Preserved* (H2SO4) N/A	Filtered N/A	K K
SUBSAMPLE INFO Collection Time 12:13 12:09	RMATION: Contain (4) L plastic – T (1) L plastic – T	er - Analyte TSS TKN tic - TP		Preserved* (H2SO4) N/A	Filtered N/A N/A	Ø
SUBSAMPLE INFO Collection Time 12:13 12:09	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast	er - Analyte TSS TKN tic - TP tic (square) - N	NOx	Preserved* (H2SO4) N/A K N/A	Filtered N/A N/A N/A	k K K
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast	er - Analyte TSS TKN tic - TP tic (square) - N le plastic – <i>E.</i>	NOx	Preserved* (H2SO4) N/A 文 N/A	Filtered N/A N/A N/A N/A Time: (22 3)	
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06	Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL plast	er - Analyte TSS TKN tic - TP tic (square) - N le plastic – <i>E.</i>	NOx	Preserved* (H2SO4) N/A K/A N/A	Filtered N/A N/A N/A Time: 1223 N/A	
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast	er - Analyte SS KN tic - TP tic (square) - N le plastic – <i>E.</i> stic - OP	NOx coli	Preserved* (H2SO4) N/A K/A N/A	Filtered N/A N/A N/A Time: 1223 N/A	
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06 12 12:05 12:17	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plastic (1) 500mL plastic (1) 500mL plastic (1) 500mL plastic (1) 250 mL plastic (1) 250 mL plastic (1) 250 mL plastic	er - Analyte SS KN tic - TP tic (square) - N le plastic – <i>E.</i> stic - OP mL Amber T	NOx coli	Preserved* (H2SO4) N/A Ø N/A N/A N/A	Filtered N/A N/A N/A Time: (22 3) N/A Time: (22 3)	
SUBSAMPLE INFO Collection Time 12:13 12:04 12:06 12:05 12:05 12:17 FIELD PARAMETE	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL plast (1) 500mL plast (1) 250 mL plast	er - Analyte TSS TKN tic - TP tic (square) - N le plastic – <i>E.</i> stic - OP mL Amber T <u>Unit</u>	NOx coli	Preserved* (H2SO4) N/A Ø N/A N/A 12 21	Filtered N/A N/A N/A Time: (22 3) N/A Time: (22 3) N/A	ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki
SUBSAMPLE INFO Collection Time 12:13 12:04 12:06 12 12:05 12:05 12:17 FIELD PARAMETE Diss. O ₂ – Field	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plastic (1) 250 mL plastic	er - Analyte SS KN tic - TP tic (square) - N le plastic – <i>E</i> . stic - OP mL Amber T <u>Unit</u> Mg/L	NOx coli Time:	Preserved* (H2SO4) N/A 文 N/A 7 N/A N/A 12 21	Filtered N/A N/A N/A Time: (22 3) N/A Time: (22 3) N/A	k k k k k k k k k k k k k k k k k k k
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06 12 12:05 12:17	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL plast (1) 500mL plast (1) 250 mL plast	er - Analyte TSS TKN tic - TP tic (square) - N le plastic – <i>E.</i> stic - OP mL Amber T <u>Unit</u>	NOx coli Time:	Preserved* (H2SO4) N/A Ø N/A N/A 12 21 0 – DO Meter 0 – Cond.	Filtered N/A N/A N/A Time: (22 3) N/A Time: (22 3) N/A	ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki

*NOTE: Use 1 drop of $H_2SO_4\,per$ 100 mL of sample volume & Preserved samples should have pH <2

4.2

Updated 3/25/15

Form 21B QA/QC SAMPLE DATA FORM – (Phase II)

Date/Time - Off-site:

Station:

Personnel:

Sample ID: __<u>190906</u> QA Sample? ☑

<u>900 -- 05 -- 101</u> (fill in appropriate sequential number) QA SAMPLE TYPE: FIELD DUPLICATE

UBSAMPLE INFO	ORMATION:			
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
12:14	(4) L plastic – TSS	N/A	N/A	X
12:09	(1) L plastic – TKN	×	N/A	R
12.08	(1) 500mL plastic - TP	N/A	N/A	×
1217	(1) 500mL plastic (square) - NOx	Ŷ X	Time: /223	Ŕ
12:06	(1) 500mL sterile plastic – E. coli	N/A	N/A	×
12:17	(1) 250 mL plastic - OP	N/A	Time: / 223	ď

Notes: The date/time for the first and final subsample is the "Start Date/Time" and the "End Date/Time", respectively

Comments:

5

Sample ID: A Sample? ☑	(I III bottles with onla-bule water subbiled by v								
SUBSAMPLE IN	FORMATION:								
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled					
and the second	(4) L plastic – TSS	N/A	N/A						
	(1) L plastic – TKN		N/A						
	(1) 500mL plastic - TP	N/A	N/A						
	(1) 500mL plastic (square) - NOx		Time:						
	(1) 500mL sterile plastic – E. coli	N/A	N/A						
	(1) 250 mL plastic - OP	N/A	Time:						

Notes: The date/time for the first and final subsamples is the "Start Date/Time" and "End Date/Time", respectively.

Comments:

Matrix Type	ste De Ayala	Composite Grab	190906-09-WG ABW X X	190906-08-			rred Received by (sign)
	ar-Pl	Time	1124	1217	1200		 Transferred 9-6-19 1258
		Begin	1120	1205	12.1		2F (5
	3714-641	End	14	6/19	6/19		y (sign)
	Sampler(s): 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6391 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	Begin Date	9/6	6	6		Relinquished by (sign)
	Sampler(s): 3775 Adam; Garden City Garden City Fax (208) 38 Fax (208) 38 Purchase O Project: Sampler(s):	Lab#					The Cliff

-coc_wq

Technical Memorandum

950 West Bannock Street, Suite 350 Boise, ID 83702

Phone: 208-389-7700 Fax: 208-389-7750

Prepared for: Ada County Highway District (ACHD)

Project Title: Phase II Stormwater Outfall Monitoring

Project No.: 152760

Technical Memorandum

Subject: ACHD Phase II Monitoring Period Summary for September through October 2019

Date: January 3, 2020

To: Monica Lowe

Cc: Tammy Lightle

From: Andy Weigel, Project Manager

Prepared by:

Reviewed by:

autres Lonard

Andrea Leonard, Project Scientist

Andy Weigel, Project Manager

Limitations:

This document was prepared solely for ACHD in accordance with professional standards at the time the services were performed and in accordance with the contract between ACHD and Brown and Caldwell dated October 1, 2018. This document is governed by the specific scope of work authorized by ACHD; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by ACHD and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List of Tables	ii
Section 1: Project Summary	1
Section 2: Monitoring Period Narrative National Weather Service Summary Monitoring Station Summary	1 1
Section 3: Storm Narrative	2
Section 4: Pollutant Loading Section 5: Deviations/Problems	
References	
Attachment A: Monitoring Period Summary Tables	A
Attachment B: Monitoring Period Hydrographs	B
Attachment C: Analytical Reports and Field Sheets	C

List of Tables

Section 1: Project Summary

Table 1 is a summary of the types of data collected during Water Year (WY) 2019 Phase II Stormwater Monitoring.

Table 1. Project Summary											
Sample Period	· I Mai		March-4	rch-April 2019 May-June 2019			July-Aug	gust 2019	September– October 2019		
Station	E	С	E	С	E	С	E	С	E	С	
Rain (inches)	8.04 ¹	6.88 ¹	3.14	2.62	2.81 ²	2.58 ³	.12	.09	1.14	1.21	
Storm data flow (cubic feet)	229,023 ⁴	64,026 ⁴	99,994	46,761 4	46,080 ⁴	32,0764	1,213	648	36,188 4	12,780	
Grab sample	Yes	Yes	Yes	Yes	Yes ⁵	Yes ⁵	No	No	Yes	Yes	
Field parameters	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	
Composite sample	Yes	No	No	No	No	Yes	No	No	No	Yes	
QA/QC	No	Yes	No	Yes	Yes	No	No	No	Yes	No	

C = Chrisfield.

E = Edgewood.

¹ Rainfall data gaps were supplemented with AgriMet data, maintained by the U.S. Bureau of Reclamation.

² Hourly rainfall data are supplemented with available hourly rainfall data from Chrisfield.

³ Hourly rainfall data are supplemented with available hourly rainfall data from Edgewood.

⁴ Estimated runoff volume is used when flow data is not available.

⁵ E. coli results are qualified due to exceeded holding time.

Section 2: Monitoring Period Narrative

This technical memorandum describes the Phase II Stormwater Monitoring completed for Ada County Highway District (ACHD) from September through October 2019. Flow and rain data were collected during this period from the Edgewood and Chrisfield Phase II monitoring stations. Two storms were targeted during this monitoring period: September 6, 2019, and October 19, 2019. Grab samples were collected at both sites on September 6, 2019, and results were used in September–October pollutant load calculations for Edgewood. A successful composite was collected at Chrisfield on October 19, 2019. The October 19 storm event was used for pollutant loading for Chrisfield for this monitoring period.

National Weather Service Summary

The National Weather Service (NWS) prepares a summary of precipitation observations each month for inclusion in an overall monthly climate summary. The NWS monthly climate summary is made available through the local Boise Weather Forecast Office on the NWS website at <u>http://www.nws.noaa.gov/climate/index.php?wfo=boi</u>. Precipitation summaries from the NWS are included in the text below. Summaries are pared down but are otherwise quoted directly with minor punctuation and grammatical edits for readability.

September brought a total precipitation of 0.84 inch to the Boise area, a quarter inch above normal. Airflow from the southwest brought enough monsoon moisture for isolated thunderstorms on the 5th and 6th. A Pacific cold front generated more precipitation on the 8th. Unseasonable cool weather at the end of the month compensated for hot weather at the beginning and middle of September, making the average temperature a normal 64.9.

October 2019 was unseasonably cool, with an average temperature of 46.1 degrees. Overall, October was a dry month, with measurable precipitation falling on only five days. On the 19th, a broad jet stream over the north Pacific pushed a fast-moving upper level trough inland across Idaho. There was enough moisture and energy with this system to produce a thunderstorm and nearly a quarter inch of rain. Winter weather arrived very early during the final week of the month.

Monitoring Station Summary

A summary of data collected for each monitoring station over the entire monitoring period (September–October) and for the targeted storm is provided in Table 2. Monthly summaries are presented in Tables 3 and 4. Monitoring period summary tables are included in Attachment A.

September–October summary hydrographs are presented in Figures 1 (Edgewood) and 2 (Chrisfield). Monthly hydrographs for each monitoring station in this monitoring period are provided in chronological order in Figures 3–6. Included on each hydrograph are recorded hourly precipitation at the local rain gauge (inches), flow (cubic feet per second), and sample collection times, as applicable. Hydrographs are included in Attachment B.

Section 3: Storm Narrative

Two storms were targeted during the September–October monitoring period. Full suite grab samples were collected at both sites on September 6, 2019. Composite samples were targeted but unsuccessful at both sites due to equipment issues. On October 19, 2019, full suite grab samples were collected at both sites, and a successful composite sample was collected at Chrisfield. Edgewood analytical data was rejected (see Section 5).

For this monitoring period, pollutant loads were calculated using water quality results from the September 6 storm event for Edgewood and the October 19 storm event for Chrisfield. See Section 5 for additional notes about data collected and issues that arose during the monitoring period.

September 6, 2019

On Thursday morning, September 5, the NWS issued a forecast for isolated showers and thunderstorms in the Boise area from Thursday evening continuing through Friday. Chance of precipitation was 80 percent, with as much as 0.25 inch of precipitation forecasted. Setup was conducted Thursday afternoon. An expected precipitation depth of 0.11 inch was used to set trigger volumes at Edgewood and Chrisfield. Precipitation started around 1000 on Friday morning, September 6, 2019, and continued heavily in isolated areas for a few hours. Precipitation data was lost at both sites due to equipment errors. Precipitation data is discussed further in Section 5.

A two-member team mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on the morning of September 6, 2019. Grab samples were collected at Edgewood and Chrisfield monitoring stations and submitted to the West Boise Water Quality Lab (WQL) at 1258 on September 6. Laboratory analytical reports are included in Attachment C.

October 19, 2019

The morning of Friday, October 18, the NWS issued a forecast for isolated rain showers and thunderstorms in the Boise area from Friday evening through Saturday afternoon. Chance of precipitation was 95 percent, with as much as 0.35 inch of precipitation forecasted in localized areas. An expected precipitation depth of 0.11 inch was used to set trigger volumes at Edgewood and Chrisfield. Precipitation started around 0730 on Saturday morning October 19, 2019. Two intense and localized waves of precipitation came at 0900 and 1200, producing two clear flow peaks.

A two-member team mobilized to collect stormwater runoff grab samples and verify operation of the automatic sampling equipment on the morning of October 19, 2019. Grab samples were collected at Edgewood and Chrisfield and submitted to the WQL at 1012 on October 19. The composite sample at Chrisfield was collected and submitted to the WQL at 1607 on October 19.

Section 4: Pollutant Loading

Water quality results used in pollutant loading estimates for each monitoring station for the September–October monitoring period are included in Table 2. Monthly values and estimates are presented for each individual month as well (Tables 3–6). Field parameters and *E. coli* analytical results are included in Tables 2–4.

Section 5: Deviations/Problems

Composite Samples

Both Edgewood and Chrisfield experienced sampling errors associated with ISCO's firmware during this monitoring period. Neither site collected any samples on September 6. Equipment errors were tested and resolved as they were recognized. Equipment testing has been performed outside of storm events at both sites to try to correct errors. The composite sampler at Chrisfield has since been corrected and collected a successful composite sample during the October 19 storm event. New firmware is being installed at Edgewood to ensure successful composite samples in the future. Full suite grab samples will continue to be collected during storm events until all issues are resolved.

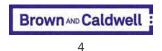
Precipitation Data

Precipitation data was collected continuously during the September–October monitoring period. However, precipitation data is not available for the Edgewood or Chrisfield rain gauges during the September 6 event. An error with the ISCO firmware caused precipitation data to be deleted at both stations during monitored events. This issue has since been resolved.

For the September 6, 2019, storm event, the AgriMet Weather Station rain gauge data was used. The AgriMet weather station is maintained by the U.S. Bureau of Reclamation and located at the Western Idaho Fairgrounds, which is approximately 4 miles southeast of the Edgewood monitoring station and 6 miles northeast of the Chrisfield monitoring station.

Edgewood Flow Data

Flow data is not available for Edgewood from October 21, 2019, until the end of the monitoring period. Upon inspection of the equipment, it was found that an animal had chewed through the AV sensor cable. A new sensor with a protective lining was installed on November 25, 2019.


October 19, 2019, Edgewood samples

On October 19, grab samples were collected from the wrong inlet pipe in the stormwater vault. This mistake has been documented and appropriate training has taken place to correct this error. The water quality results from Edgewood were rejected.

References

National Weather Service Boise Forecast Office. (2018). Monthly Weather Summary. Retrieved November 20,2019, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi

National Weather Service Boise Forecast Office. (2018). Preliminary Monthly Climate Data. Retrieved November 20,2019, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi

Attachment A: Monitoring Period Summary Tables

Table 2

Moni	toring Period Su	mmary Sep	tember 1 - October 31 (Wi	/19)			
		Edge	wood		Chri	sfield	
	cubi	c feet	percent	cubio	c feet	percent	
Measured Stormwater Runoff Volume (cf)	36,1	L88 ¹	3%	12,	780	89%	
Background Discharge Volume (cf)	1,371	,416 ²	97%	1,5	548	11%	
Total Discharge Volume (cf)	1,40	7,604	100%	14,	328	100%	
Estimated Runoff for Monitored Area ³	Edge	wood	Eagle	Chris	field	Meridian	
Monthly Precipitation (in)		1.	14		1.	21	
Drainage Area (acres)	55	.86	22,765	1	2	26,690	
Estimated Stormwater Runoff Volume ⁴ (cf)	24,	757	25,906,684	9,7	72	32,238,384	
Monitored Storm Information		Edgewood	(9/6/2019)		Chrisfield (1	0/19/2019)	
Precipitation Amount (in)		0.	30		0.	23	
Storm Duration (hrs)			4			8	
Antecedent Dry Period (hrs)		6	55		ę	0	
Recorded Runoff Volume (cf)		10,	505		2,8	344	
Sample Information							
Sample Date and Time		9/6/2019 12:17			10/19/2	2019 8:19	
Dissolved Oxygen (mg/L)		7.	47		8	8.8	
pH (S.U.)		7.	45		7.	01	
Conductivity (uS/cm)		113.96					
Temperature (°C)		23.01			7	.0	
Nitrate + Nitrite as N (mg/L)		1.	21		0.3	298	
Total Suspended Solids (mg/L)		64	1.9		1	43	
Total Kjeldahl Nitrogen (mg/L)		2.	05	4.23			
Dissolved Orthophospate as P (mg/L)		0.2	218	0.356			
Total Phosphorus as P (mg/L)		0.3	369		0.	567	
E.Coli (MPN/100 mL)		24:	19.6		34	4.8	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian	
Fondtant Loading Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
Nitrate + Nitrite as N	0.05	2.68	1,094	0.02	0.24	529	
Total Suspended Solids	2.58	143.96	58,668	9.51	114.08	253,724	
Total Kjeldahl Nitrogen	0.08	4.55	1,853	0.28	3.37	7,505	
Dissolved Orthophosphate as P	0.01	0.48	197	0.02	0.28	632	
Total Phosphorus as P	0.01	0.82	334	0.04	0.45	1,006	

Notes:

 $^{1}\ensuremath{\mathsf{Estimated}}\xspace$ runoff volume is used when flow data is not available.

 $^{2}\,\mathrm{Background}$ discharge volume does not include dates with missing data.

 $^{3}\,\mbox{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

⁴Estimated stormwater runoff volume is calculated using local precipitation data

Table 3

м	onitoring Period Sun	nmary Septe	ember 1 - September 30	(WY19)			
		Edgewood			Chris	sfield	
	cubi	c feet	percent	cubio	c feet	percent	
Measured Stormwater Runoff Volume (cf)	28,	015	3%	9,6	684	86%	
Background Discharge Volume (cf)	815	,969	97%	1,5	512	14%	
Fotal Discharge Volume (cf)	843	,984	100%	11,	196	100%	
Estimated Runoff for Monitored Area ³	Edge	wood	Eagle	Chris	field	Meridian	
Monthly Precipitation (in)		0.	75		0.	92	
Drainage Area (acres)	55	.86	22,765	1	2	26,690	
Estimated Stormwater Runoff Volume ⁴ (cf)	16,	288	17,043,870	7,4	130	24,511,829	
Monitored Storm Information		Edgewood	(9/6/2019)		Chrisfield (1	0/19/2019)	
Precipitation Amount (in)		0.	30		0.	23	
Storm Duration (hrs)			4			8	
Antecedent Dry Period (hrs)		6	55		90		
Recorded Runoff Volume (cf)		10,	505		2,8	344	
Sample Information							
Sample Date and Time		9/6/20	19 12:17	10/19/2019 8:19			
Dissolved Oxygen (mg/L)		7.	47	8.8			
oH (S.U.)		7.45			7.	01	
Conductivity (uS/cm)		11:	3.96				
Femperature (°C)		23.01			7	.0	
Nitrate + Nitrite as N (mg/L)		1.	21		0.2	298	
Fotal Suspended Solids (mg/L)		64	4.9		1	43	
Fotal Kjeldahl Nitrogen (mg/L)		2.	05		4.23		
Dissolved Orthophospate as P (mg/L)		0.:	218		0.356		
Fotal Phosphorus as P (mg/L)		0.3	369		0.9	567	
E.Coli (MPN/100 mL)		24	19.6	344.8		4.8	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	field	Meridian	
- onatant Loading Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
Nitrate + Nitrite as N	0.04	2.12	862	0.02	0.18	401	
Fotal Suspended Solids	2.03	113.49	46,252	7.20	86.44	192,259	
Fotal Kjeldahl Nitrogen	0.06	3.58	1,461	0.21	2.56	5,687	
Dissolved Orthophosphate as P	0.01	0.38	155	0.02	0.22	479	
Total Phosphorus as P	0.01	0.65	263	0.03	0.34	762	

Notes:

 $^{1}\ensuremath{\mathsf{Estimated}}\xspace$ runoff volume is used when flow data is not available.

 $^{2}\,\mathrm{Background}$ discharge volume does not include dates with missing data.

 $^{3}\,\mbox{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

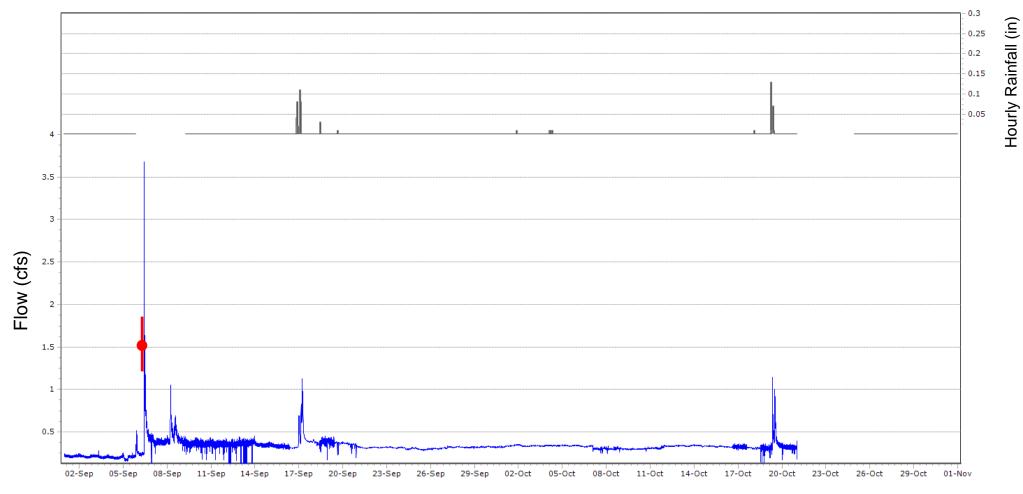
⁴Estimated stormwater runoff volume is calculated using local precipitation data

Table 4

	Monitoring Period	Summary O	ctober 1 - October 31 (W)	(19)			
		Edgewood			Chr	isfield	
	cubi	c feet	percent	cubio	c feet	percent	
Measured Stormwater Runoff Volume (cf)	,	20 ¹	1%	3,0	96	99%	
Background Discharge Volume (cf)	555,	448 ²	99%	3	6	1%	
Total Discharge Volume (cf)	562	,968	100%	3,1	.32	100%	
Estimated Runoff for Monitored Area ³	Edge	wood	Eagle	Chris	field	Meridian	
Monthly Precipitation (in)		0.	36		C	.41	
Drainage Area (acres)	55	.86	22,765	1	2	26,690	
Estimated Stormwater Runoff Volume ⁴ (cf)	7,8	318	8,181,058	3,3	811	10,923,750	
Monitored Storm Information		Edgewood (9/6/2019)		Chrisfield (10/19/2019)	
Precipitation Amount (in)		0.	30		C	.23	
Storm Duration (hrs)		4	1			8	
Antecedent Dry Period (hrs)		6	55		90		
Recorded Runoff Volume (cf)		10,	505		2	,844	
Sample Information							
Sample Date and Time		9/6/2019 12:17			10/19/2019 8:19		
Dissolved Oxygen (mg/L)		7.47			8.8		
oH (S.U.)		7.45			7	.01	
Conductivity (uS/cm)		113	.96				
Femperature (°C)		23	.01			7.0	
Nitrate + Nitrite as N (mg/L)		1.	21		0	.298	
Fotal Suspended Solids (mg/L)		64	.9		1	143	
Fotal Kjeldahl Nitrogen (mg∕L)		2.	05	4.23			
Dissolved Orthophospate as P (mg/L)		0.2	18	0.356			
fotal Phosphorus as P (mg/L)		0.3	69	0.567			
E.Coli (MPN/100 mL)		241	9.6	344.8		44.8	
Pollutant Loading Estimates	Edge	wood	Eagle	Chris	sfield	Meridian	
onatant Loading Estimates	(lbs/acre)	(lbs)	(lbs)	(lbs/acre)	(lbs)	(lbs)	
Nitrate + Nitrite as N	0.01	0.57	232	0.00	0.06	128	
fotal Suspended Solids	0.55	30.47	12,416	2.30	27.64	61,466	
Fotal Kjeldahl Nitrogen	0.02	0.96	392	0.07	0.82	1,818	
Dissolved Orthophosphate as P	0.00	0.10	42	0.01	0.07	153	
Total Phosphorus as P	0.00	0.17	71	0.01	0.11	244	

Notes:

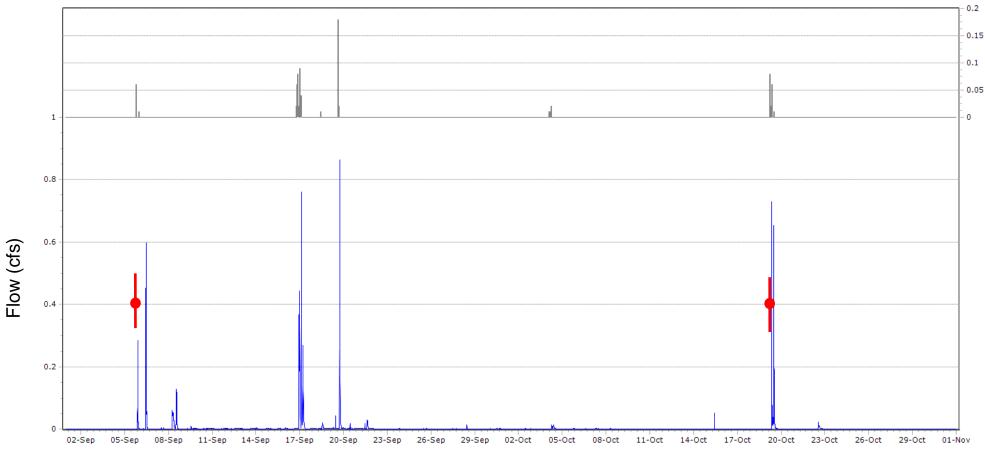
 $^{1}\ensuremath{\mathsf{Estimated}}\xspace$ runoff volume is used when flow data is not available.


 $^{2}\,\mathrm{Background}$ discharge volume does not include dates with missing data.

 $^{3}\,\mbox{The}$ "Monitored Area" includes only the area drained by the individual monitoring station.

⁴Estimated stormwater runoff volume is calculated using local precipitation data

Attachment B: Monitoring Period Hydrographs



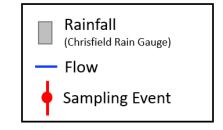
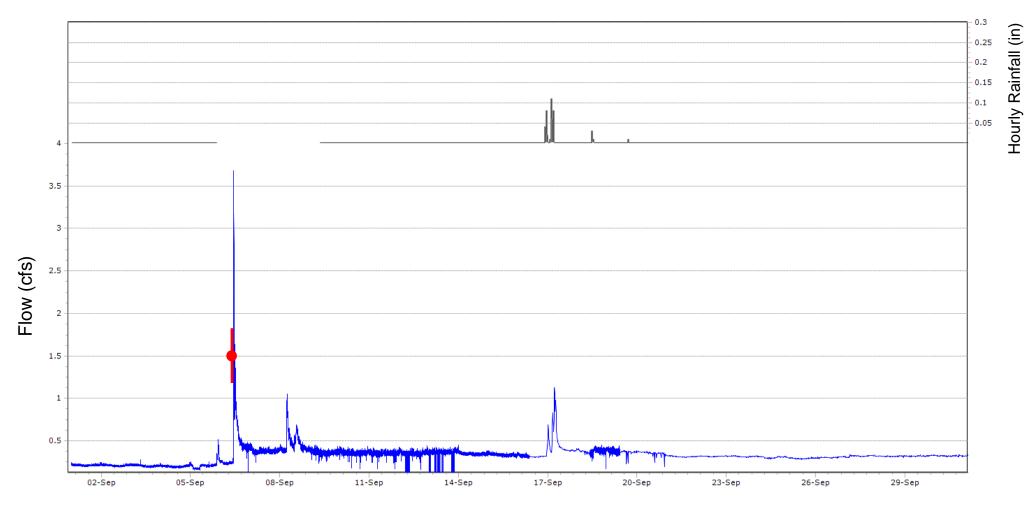
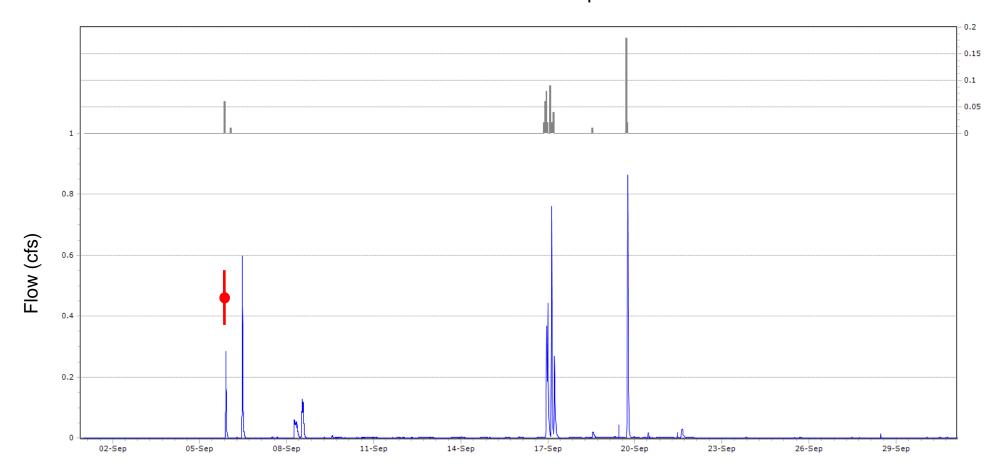

Edgewood - Water Year 2019 - September through October 2019

Figure 1

Chrisfield - Water Year 2019 - September through October 2019



Hourly Rainfall (in)


Figure 3

Edgewood - Water Year 2019 - September 2019

Chrisfield - Water Year 2019 - September 2019

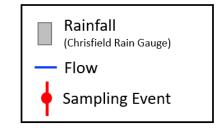
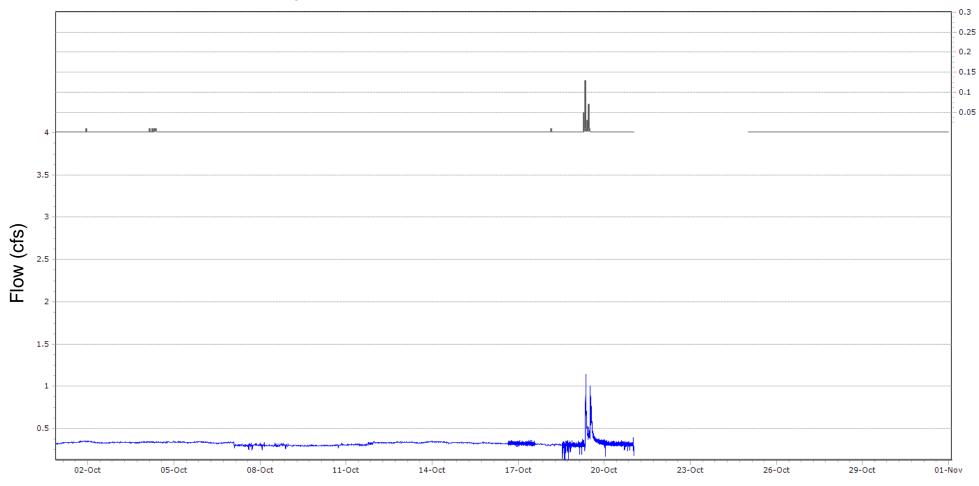
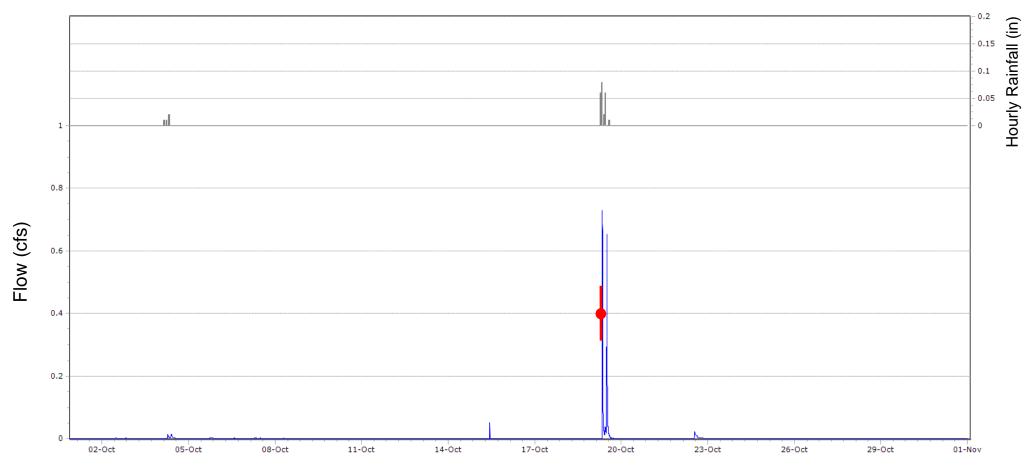



Figure 4


Figure 5

Hourly Rainfall (in)

Chrisfield- Water Year 2019 - October 2019

	Rainfall (Chrisfield Rain Gauge)
	Flow

Attachment C: Analytical Reports and Field Sheets

Report Date: 10/01/2019 14:02

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qua	alifiers Date Sampled	Date Received
9AC0064-01	ACST2	190906-09-WG	Water	09/06/2019	09/06/2019
9AC0064-02	ACST2	190906-08-WG	Water	09/06/2019	09/06/2019
9AC0064-03	ACST2	190906-08-101	Water	09/06/2019	09/06/2019

Analysis Report

Location:	ACST2	2				Location Description:	190906-09	-WG		
Date/Time Collected	: 09/06/2	2019 11:24								
Lab Number:	9AC00	064-01				Sample Collector:	ABW			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	l Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology										
E. Coli	B9I0617	6440.0 M	PN/100 mL	100.0	1.0	Colilert	09/06/19 13:48	9/7/19 13:48	JAL	D
Wet Chemistry										
Chlorine Screen	B9I0619	Absent				SM 4500-CL G-2000 mod	09/06/19	9/6/19 13:23	LRF	
Nitrate-Nitrite, as N	B9I1205	0.695	mg/L	0.0250	0.0250	EPA 353.2	09/12/19	9/12/19 9:07	JAL	
TKN	B9I3010	5.57	mg/L	0.130	0.130	EPA 351.2	09/30/19	10/1/19 10:06	ALN	
Total Suspended Solids	B910703	165	mg/L	0.900	0.900	SM 2540 D-1997	09/07/19	9/7/19 9:58	F.A	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B910701	0.267	mg/L	2.00E-3	2.00E-3	EPA 365.1	09/07/19	9/7/19 9:17	JAL	
Total Metals										
Phosphorus as P	B910902	0.501	mg/L	6.00E-3	6.00E-3	EPA 200.7	09/09/19	9/10/19 15:53	AMO	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

8

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location: ACST2				Location Description:			190906-08-WG				
Date/Time Collected	: 09/06/2	2019 12:17									
Lab Number:	9AC00	64-02				Sample Collector:	ABW				
Sample Type:	Grab					Sample Matrix:	Water				
Analyte Name	Batch	Result	Units	Adjusted MDL *	l Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual	
Microbiology											
E. Coli	B910617	2419.6M	PN/100 mL	. 1.0	1.0	Colilert	09/06/19 13:48	9/7/19 13:48	JAL		
Wet Chemistry											
Chlorine Screen	B910619	Absent				SM 4500-CL G-2000 mod	09/06/19	9/6/19 13:23	LRF		
Nitrate-Nitrite, as N	B9i1205	1.21	mg/L	0.0250	0.0250	EPA 353.2	09/12/19	9/12/19 9:12	JAL		
TKN	B9I3010	2.05	mg/L	0.130	0.130	EPA 351.2	09/30/19	10/1/19 10:07	ALN		
Total Suspended Solids	B910703	64.9	mg/L	0.900	0.900	SM 2540 D-1997	09/07/19	9/7/19 9:58	F.A		
Dissolved Wet Ch	emistry								_		
Orthophosphate, as P	B910701	0.218	mg/L	2.00E-3	2.00E-3	EPA 365.1	09/07/19	9/7/19 9:18	JAL		
Total Metals											
Phosphorus as P	B910902	0.369	mg/L	6.00E-3	6.00E-3	EPA 200.7	09/09/19	9/10/19 16:07	AMO		

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Analysis Report

Location:	ACST2	2				Location Description:	190906-08	3-101		
Date/Time Collected	: 09/06/2	2019 12:00								
Lab Number:	9AC00	64-03				Sample Collector:	ABW			
Sample Type:	Grab					Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology										
E. Coli	B9I0617	1460.0 MI	PN/100 mL	. 100.0	1.0	Colilert	09/06/19 13:48	9/7/19 13:48	JAL	D
Wet Chemistry										
Chlorine Screen	B9I0619	Absent				SM 4500-CL G-2000 mod	09/06/19	9/6/19 13:23	LRF	
Nitrate-Nitrite, as N	B9I1205	1.22	mg/L	0.0250	0.0250	EPA 353.2	09/12/19	9/12/19 9:13	JAL	
TKN	B9I3010	1.95	mg/L	0.130	0.130	EPA 351.2	09/30/19	10/1/19 10:09	ALN	
Total Suspended Solids	B910703	67.3	mg/L	0.900	0.900	SM 2540 D-1997	09/07/19	9/7/19 9:59	F.A	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B910701	0.217	mg/L	2.00E-3	2.00E-3	EPA 365.1	09/07/19	9/7/19 9:23	JAL	
Total Metals										
Phosphorus as P	B910902	0.368	mg/L	6.00E-3	6.00E-3	EPA 200.7	09/09/19	9/10/19 16:12	AMO	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Quality Control Report

Analyte Name	Method Blank Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Microbiology								
Batch: B9/0617								
Blank (B910617-BLK1)								
E. Coli	Absent					09/07/2019	JAL	
		*****	an ad 111101 at 1103			03/07/2019	JAL	
LCS (B9I0617-BS1)			-					
E. Coli			Present			09/07/2019	JAL	
Duplicate (B9I0617-DUP1)	Source ID: 9WB0682-06							
E. Coli				Pass	128	09/07/2019	JAL	
Duplicate (B9I0617-DUP2)	Source ID: 9AC0064-02						ranan kangar tahun kana kana kana kana kana kana kana ka	
E. Coli	500100 ID. 5A00004-02			Pass	128	09/07/2019	JAL	
	A 15 AAAAAA			1 000	120	00/01/2019	UAL	****
Duplicate (B9I0617-DUP3) E. Coli	Source ID: 9AC0064-02RI	E1		_				
E. Coll				Pass	128	09/07/2019	JAL	
Net Chemistry								
Batch: B9/0703								
Blank (B910703-BLK1)								
Total Suspended Solids	<0.9 mg/L					09/07/2019	F.A	U
			14 74414 (1441) and a second state (1419) (1419) (1419) and (1419) and (1419)	l ballad bill bil alla and has say our support sys sugge		00/07/2010	1.77	~
LCS (B9I0703-BS1) Total Suspended Solids		00.0	00.440					
Total Suspended Solids		96.2	90-110			09/07/2019	F.A	
Duplicate (B9I0703-DUP1)	Source ID: 9BB0573-02							
Total Suspended Solids				7.19	20	09/07/2019	F.A	
Batch: B9I1205								
Blank (B9I1205-BLK1)								
Nitrate-Nitrite, as N	<0.025 mg/L					09/12/2019	JAL	U
		(1+10+14				03/12/2019	JAL	<u> </u>
Blank (B9I1205-BLK2)	-0.005 "							
Nitrate-Nitrite, as N	<0.025 mg/L				-	09/12/2019	JAL	U
LCS (B9I1205-BS1)								
Nitrate-Nitrite, as N		103	90-110			09/12/2019	JAL	
LCS (B9I1205-BS2)		an na man a sha na 1999 na ha sha sha sha na sa	alad-1.1				BARBAN MANAGERI I KANA MILA KANA MUTUKA KANA KANA KANA KANA KANA KANA KANA K	
Nitrate-Nitrite, as N		104	90-110			09/12/2019	JAL	
						00/12/2010	071	
Duplicate (B9I1205-DUP1)	Source ID: 9AC0064-01					· · · ·		
Nitrate-Nitrite, as N				0.514	10	09/12/2019	JAL	
Duplicate (B9I1205-DUP2)	Source ID: 9BB0562-02							
Nitrate-Nitrite, as N				NR	10	09/12/2019	JAL	
Duplicate (B9I1205-DUP3)	Source ID: 9WB0677-05							
Nitrate-Nitrite, as N	COULCE ID: 344 DU077-00			NR	10	09/12/2019	JAL	
		ana ang ang ang ang ang ang ang ang ang			IU	03/12/2019	JAL	u men men un sectore de sociale de la desta de la desta desta desta de sociale de sector de sociale de sociale
Matrix Spike (B9I1205-MS1)	Source ID: 9AC0064-01		00.445					
Nitrate-Nitrite, as N		98.8	90-110			09/12/2019	JAL	
Matrix Spike (B9I1205-MS2)	Source ID: 9BB0562-02						****	
Nitrate-Nitrite, as N		104	90-110			09/12/2019	JAL	
Matrix Spike (B9I1205-MS3)	Source ID: 9WB0677-05							
Nitrate-Nitrite, as N		104	90 -1 10			09/12/2019	JAL	
Matrix Spike (B9I1205-MS4)			_				-/ \=	and a second
Wau IA SUINE (DS) (200-1034)	Source ID: 9EP0071-01							

Matrix Spike (B9I1205-MS4) Source ID: 9EP0071-01

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Continued)									
Batch: B9I1205 (Continued)									
Matrix Spike (B9I1205-MS4) (Contin Nitrate-Nitrite, as N	nued) S	Source ID: 9E	P0071-01 104	90-110			09/12/2019	JAL	
Matrix Spike (B9I1205-MS5) Source Nitrate-Nitrite, as N	ce ID: 9E	P0071-02	103	90-110			09/12/2019	JAL	
Matrix Spike Dup (B9I1205-MSD1) Nitrate-Nitrite, as N	Source	ID: 9AC0064	-01 93.8	90-110	1.86	10	09/12/2019	JAL	
Matrix Spike Dup (B9I1205-MSD2) Nitrate-Nitrite, as N	Source	ID: 9BB0562	-02 104	90-110	0.245	10	09/12/2019	JAL	
Matrix Spike Dup (B9I1205-MSD3) Nitrate-Nitrite, as N	Source	ID: 9WB0677	7-05 103	90-110	0.582	10	09/12/2019	JAL	
Batch: B9I3010 Blank (B9I3010-BLK1) TKN	<0.13	mg/L					10/01/2019	ALN	U
LCS (B9I3010-BS1) TKN			107	80-120			10/01/2019	ALN	
Duplicate (B9I3010-DUP1) Source TKN	D: 9WE	80701-05			0.196	20	10/01/2019	ALN	D
Duplicate (B9I3010-DUP2) Source	D: 9WE	80701-09		,	9.04	20	10/01/2019	ALN	D
Matrix Spike (B9I3010-MS1) Sour	ce ID: 9V	/B0701-05	109	80-120			10/01/2019	ALN	D
Matrix Spike (B9I3010-MS2) Sour	ce ID: 9V	/B0701-09	99.1	80-120	6. 49. 49. 49. 49. 49. 49. 49. 49. 49. 49		10/01/2019	ALN	D
Matrix Spike Dup (B9l3010-MSD1) TKN	Source	ID: 9WB070	1-05 83.9	80-120	9.19	20	10/01/2019	ALN	D
Matrix Spike Dup (B9I3010-MSD2) TKN	Source	ID: 9WB070	1-09 98.3	80-120	0.165	20	10/01/2019	ALN	D

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Dissolved Wet Chemistry									
Batch: B910701									
Blank (B9I0701-BLK1) Orthophosphate, as P	<0.002	mg/L					09/07/2019	JAL	U
LCS (B9I0701-BS1) Orthophosphate, as P			98.3	90-110			09/07/2019	JAL	******
Duplicate (B9I0701-DUP1) Sour Orthophosphate, as P	ce ID: 9AC0	064-02			0.173	10	09/07/2019	JAL	
Matrix Spike (B9I0701-MS1) Sou Orthophosphate, as P	urce ID: 9A0	20064-02	106	90-110			09/07/2019	JAL	
Matrix Spike Dup (B9I0701-MSD1) Orthophosphate, as P) Source	ID: 9AC0064	1-02 108	90-110	0.539	10	09/07/2019	JAL	11111117 out out out out out out out out of a set
Total Metals									
3atch: B9I0902 Blank (B9I0902-BLK1)									
Phosphorus as P	<0.006	mg/L					09/10/2019	AMO	U
LCS (B9I0902-BS1) Phosphorus as P			102	85-115			09/10/2019	AMO	
	ce ID: 9WB	0679-04							
Phosphorus as P					9.27	20	09/10/2019	AMO	D
Matrix Spike (B9I0902-MS1) Sol Phosphorus as P	urce ID: 9W	B0679-04	118	70-130			09/10/2019	AMO	D
Matrix Spike Dup (B910902-MSD1) Phosphorus as P) Source	ID: 9WB067	9-04 121	70-130	1.14	20	09/10/2019	AMO	D

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
HH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

For Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

	IIWay Ei					Matrix	Type	Г									
Attn: Monica Lowe 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	3714-6418	Sto 830	146446 rmwater-PII Jandy Le	te Ayala Wala	2 Ibi					ore PAI-DK01	0.7 18te - EPA 365.1	Pb-EPA 200.7	EPA 245.2 EPA 245.2	EXX Colilert		5.55A 353.2	200 NH ^a - D
Lab# Begin Date	End Date	Begin Time	End Time	Sample Identification	Sampler Init	Water	Grab	Composite	LSS - SM 25 COD - Hach	TKN - Perst	05 AGE - 97 JazonaodhO		Diss. Cd Cu Tolal Ha -	E. Coli - ID	- Turbidity - Hardness		
glacoarey 9/6	5/19	1120	1124	190906 - 09 - WG	ABW	X	×		X	X	XX			X		×	0
6	6/19	1205	1217	190906-08-14	ABW	X	×		يز	X	×			j.	1	~	0
6 20	6/19	12.0	0	101-80-906061					×	~	X			<u>×</u>		×	0
Relinquished by (sign)	y (sign)	Da	Date & Time Transferred	B Received by (sign)				Com	Comments/Special Instructions:	s/Spe	cial Ir	Istru	Ictio	us:			
Berley 4	1	6	9-10-12	& Kathy Z' Buy													
)						GALCOLO-Y	g	5.0					

ψ .<u>)</u>.γ

le of art art in. cfs fps V C°
art in. cfs fps V C°
art in. cfs fps V C°
in. cfs fps V C°
in. cfs fps V C°
in. cfs fps V C°
cfs fps V C°
cfs fps V C°
V C°
C°
-
1-5 1350
ottle change out):
-
in
in.
cfs
fps V
V

h.

Date/Time Off-site: _____ Remote/On-site (circle one)

Form 22 COMPOSITE INFORMATION- Phase II

Station/S	Sample ID:	371	122		<u>VC</u>			Bottle _	of
	- (192		S		uantitativ	e Result	s		
Compon				Value					<u>Unit</u>
Compos	ite Sample	Volume	(Approx.)						mL
	lse Interval				ALL DESCRIPTION				ft^3
		Liq	uid Height va	s. Approxim	nate Sample	Volume C	onversion Cha	art	
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0" 2.5"	2000 mL 2750 mL	4.5" 5.0"	5750 mL 6500 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5	2750 mL	-		7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
_			Qualitativ	e Results	5				
Compon	lent	Desc	ription				Example	S	
Clarity							Clear, Cl	oudy, Silty	
Color									rown, Black
	Ŝu	bsample	Informati	00.					
Trigger #	Date/			Message /	Trigge	r#	Date/Time	Sample	r Message /
	Dater	. mile	Subsamp	le Result					ple Result
1		-	oussump		21			ouvoui	
2	-		11.2.2		22		3		
							pal-		
3					23		and the second second		
4					24		the second second		
5					25				
6			1000	and the second second	26		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	
7	1		1.1.1		27		Level to a state		A REAL PROPERTY.
8		-			28				
9					29				1 2 1 1
10		10.000		-				1	
	-				30				
11					31				
12			1		32	-			
13					33	_ a 1 / 1 to			
14				1 1 1 1 1	34		ALC: NO	Til Conter	
15	1		1	110000	35				
16			10000	THE PARTY	36				T poster
17									
				1	37				
18					38	1			all and
19			the second		39				
20				I FRANK	40				
Notes: Th	e date/time fo	or the first tr	igger is the "S	Start Date/Ti	me"; The dat	e/time for	the final trigger	is the "End Da	ate/Time"
COMME	NTS:								
					1-	-			
Is this a	QA/QC Sta	ation?	Yes	No	(it	YES, fil	I out informa	tion below)	
					`				
Sample				fill in approp	riate sequent	ial number) QA San	nple Type: L	_aboratory S
SUBSA	MPLE INFO	ORMATIC	DN:					all all all a	
	Dat	te/Time			Containe	r - Test	(Subsample	Result)	

12:00 COC Sample Date & Time

Notes: Use the "Start Date/Time" and "End Date/Time" for the parent sample.

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 21A GRAB SAMPLE DATA FORM – (Phase II)

Station:	Mishell			Personnel:	ABW J	A
ate/Time On-site:	9/6/19	1110		MDT/MST (circle one)	
FLOW METER CU	JRRENT STATUS	5:		0		
	Value	<u>Unit</u>			Value	<u>Unit</u>
Level		inch	Vel	ocity		fps
Flow		cfs	Bat	tery		v
Total Flow		cf	Flov	w Start		(time)
Rainfall		in. (if appli	cable)			(
FRAB INFORMAT s this a QA/QC		No	x	(if YES, fill	out Form 21B o	on back)
Photographs Ta	aken? Yes	No	×	Swing Samp	oler Used? Yes	\times No
Storm Event Sa	mplo? Voc	7° No		Ģ P		
Sample ID:	190906-0	8- Wet/ D	Dry (Grab (fill in stati	on name)	
SUBSAMPLE INF Collection	ORMATION.	er - Analyte		Preserved*	Filtered	Labeled
Time				(H2SO4)	ritered	Labeleu
11:23	(4) L plastic – T	SS		N/A	N/A	X
11:21	(1) L plastic – T	KN		Ř	N/A	₽ <u>́</u>
11:22	(1) 500mL plast	ic - TP		N/A	N/A	K
11:21	(1) 500mL plast	ic (square) -	NOx	X	Time:) /30	QXI
11:20	(1) 500mL steril	e plastic – <i>E</i>	E. coli	N/A	N/A	K
11:24	(1) 250 mL plas	tic - OP		N/A	Time: 1/30	Ø
FIELD PARAMETI	ERS: Fill (1) 500r	nL Amber	Time:	11.32		
	Value	<u>Unit</u>			Value	<u>Unit</u>
Diss. O ₂ – Field	7.57	Mg/L	Tem	np – DO Meter	24.070	°C
Diss. $O_2 - Field$	114 b()			Canal		
Conductivity	114.60	µS/cm	Terr Mete	ıp – Cond. er		°C

*NOTE: Use 1 drop of $H_2SO_4\,per$ 100 mL of sample volume & Preserved samples should have pH <2

į.

Form 21B QA/QC SAMPLE DATA FORM – (Phase II)

Date/Time - Off-site:

Station:

Personnel:

 Sample ID:
 -101 (fill in appropriate sequential number)

 QA Sample?
 QA SAMPLE TYPE: FIELD DUPLICATE

UBSAMPLE INFO	ORMATION:			
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
1 3 9 11	(4) L plastic - TSS	N/A	N/A	
1 1917 3 191	(1) L plastic – TKN		N/A	
1000	(1) 500mL plastic - TP	N/A	N/A	
	(1) 500mL plastic (square) - NOx		Time:	
	(1) 500mL sterile plastic – E. coli	N/A	N/A	
	(1) 250 mL plastic - OP	N/A	Time:	

Notes: The date/time for the first and final subsample is the "Start Date/Time" and the "End Date/Time", respectively

Comments:

Sample ID: QA Sample?	-001 QA SAMPLE TYPE: FIELD	(fill in appropriate se		ater supplied by WQL)
SUBSAMPLE IN				
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
	(4) L plastic – TSS	N/A	N/A	
	(1) L plastic – TKN		N/A	
	(1) 500mL plastic - TP	N/A	N/A	
	(1) 500mL plastic (square) - NOx		Time:	
	(1) 500mL sterile plastic – E. coli	N/A	N/A	
A STREET	(1) 250 mL plastic - OP	N/A	Time:	

Notes: The date/time for the first and final subsamples is the "Start Date/Time" and "End Date/Time", respectively.

Form 22 SET-UP/SHUT DOWN CHECKLIST – Phase II

ſ

2 ×

i

Station : SET-UP: Date/Time C Remote Cor	Dn-site: <u>9-5-19</u> 190 Inection Date/Time:	<u>5 </u>	/MST*(cii /MST*(ci	cle one) Percle one)	Bottle _		N
	less hetteries if und 4.0	Flow Meter S	Status &	Velocity Cu	ut-off Chart		٦
	lace batteries if v<11.9	Time/Date /					-
	fy Flow Meter operation		2.585	19		in.	-
	wlink) & Check to determine w present		6.214			cfs	-
	gram sampler per PG 320						_
<u> </u>			0.815		-	fps V	-
1	Trigger condition		28		-	V C°	-
√ Set	Modem Access to "Storm	Temp	19.5				
	nt" -24/7 (Flowlink)						
	nge Data Storage Rates to 1 m	ninute for Level	Velocit	and Flow (Flowlink)		
	nge Data Storage Rates to 15					city spectrum	
	, and velocity signal to 15 minu		nporatar	5, volooity 5p		ony opeon and	
	orm decon. cycle						
	fy Sampler date and time are c	correct					
	e 15L sample bottle in sample		h 2 bag i	ce			
	nove jar lid and place in a clear						
	fy all cable and tubing connect			,			
	fy Sampler Program is Running						
	fy latches are secure	5					
Comments:	,				0 /	11120	
			C.			14<1	
				Date/Time Of	ff-site:	110	
				Date/Time Of	ff-site:		
	E SAMPLE COLLECTION				ff-site: 7		
Date/Time C	n-site:			Date/Time Of Personnel: _	ff- <u>site:</u>		l)
Date/Time C Halt	on-site: Sampler program				ff-site: 1		l)
Date/Time C Halt Put	on-site: Sampler program lid on sample bottle	rd Sample ID a		ersonnel:	ff- <u>site:</u>		I,
Date/Time C Halt Put Prop	on-site: Sampler program lid on sample bottle perly label sample bottle; Reco		n back c	ersonnel: _			I,
Date/Time C Halt Put Prop Rec	on-site: Sampler program lid on sample bottle perly label sample bottle; Reco ord liquid height/sample volum	e and visual ob	n back c	ersonnel: _			
Date/Time C Halt Put Prop Rec	on-site: Sampler program lid on sample bottle perly label sample bottle; Reco	e and visual ob	n back c	ersonnel: _			L.
Date/Time C Halt Put Prop Rec Rec	On-site: Sampler program lid on sample bottle berly label sample bottle; Reco ord liquid height/sample volum ord subsample information on	e and visual ob back of sheet	n back c	ersonnel: f sheet ns on back o	of sheet	e change out):	1,
Date/Time C Halt Put Prop Rec If Sampli	On-site: Sampler program lid on sample bottle berly label sample bottle; Reco ord liquid height/sample volum ord subsample information on ng is Complete :	e and visual ob back of sheet If Cont	on back coservatio	Personnel: f sheet ns on back o Sampling (s	of sheet ample bottle	e change out):	I,
Date/Time C — Halt — Put Prop Rec Rec Rec Pow	On-site: Sampler program lid on sample bottle berly label sample bottle; Recor ord liquid height/sample volum ord subsample information on ng is Complete : rer off Sampler	e and visual ob back of sheet If Cont	on back o oservatio tinuing s	Personnel: f sheet ns on back o Sampling (s v 15 L bottle,	of sheet ample bottl e , add ice	e change out):	
Date/Time C Halt Prop Rec Rec If Samplin Pow Add	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete : er off Sampler ice to sample cooler	e and visual ob back of sheet If Conf In Re	on back o oservatio tinuing s ostall new estart sa	Personnel: f sheet ns on back o Sampling (s v 15 L bottle, mpling prog	of sheet ample bottl e , add ice		
Date/Time C	On-site: Sampler program lid on sample bottle berly label sample bottle; Recor ord liquid height/sample volum ord subsample information on ng is Complete : rer off Sampler ice to sample cooler nplete COC form;	e and visual ob back of sheet If Cont In R D	on back o oservatio tinuing s ostall new estart sa	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling progra	of sheet ample bottl e , add ice ram		L
Date/Time C	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete : er off Sampler ice to sample cooler	e and visual ob back of sheet If Conf In R Di Di	on back o oservatio tinuing s ostall new estart sa ate/Time erify Rur	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling prog Restarted: ining	of sheet ample bottl e , add ice ram		l
Date/Time C	On-site: Sampler program lid on sample bottle berly label sample bottle; Recor ord liquid height/sample volum ord subsample information on ng is Complete : rer off Sampler ice to sample cooler nplete COC form;	e and visual ob back of sheet If Conf In R Di Di	on back o oservatio tinuing s ostall new estart sa ate/Time erify Rur	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling progra	of sheet ample bottl e , add ice ram		
Date/Time C Halt Put Prop Rec If Samplin Pow Add Con Arra Comments:	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete: er off Sampler ice to sample cooler aplete COC form; nge transport to lab	e and visual ob back of sheet If Conf In R Di Di	on back o oservatio tinuing s ostall new estart sa ate/Time erify Rur	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling prog Restarted: ining	of sheet ample bottl e , add ice ram		
Date/Time C Halt Put Prop Rec If Samplin Pow Add Con Arra Comments: SHUT-DOW	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete: ther off Sampler ice to sample cooler aplete COC form; nge transport to lab	e and visual ob back of sheet If Conf In Re Da Ve	on back coservatio tinuing s astall new estart sa ate/Time erify Rur Date/Tim	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling prog Restarted: ining	of sheet ample bottl e , add ice ram		
Date/Time C — Halt Put Prop Rec Rec If Samplin Pow Add Com Arra Comments: SHUT-DOW Date/Time C	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler aplete COC form; nge transport to lab	e and visual ob back of sheet If Cont In Re Di Di Ve	on back coservatio tinuing stall new estart sa ate/Time erify Rur Date/Time	Personnel: f sheet ns on back of Sampling (s 15 L bottle, mpling progr Restarted:_ ining e Off-site:	of sheet ample bottl e , add ice ram		
Date/Time C — Halt Put Prop Rec If Samplin Pow Add Com Arra Comments: SHUT-DOW Date/Time C Remote Dat	On-site: Sampler program lid on sample bottle berly label sample bottle; Record ord liquid height/sample volum ord subsample information on ng is Complete: ther off Sampler ice to sample cooler aplete COC form; nge transport to lab	e and visual ob back of sheet If Cont In Back Da Da Da Da Da Da Da Da Da Da Da Da Da	on back coservatio tinuing stall new estart sa ate/Time erify Rur Date/Time	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling program Restarted: ining e Off-site: Personnel:	of sheet ample bottle add ice ram		1
Date/Time C — Halt — Prop — Rec — Rec If Samplin — Pow — Add — Com Arra Comments: SHUT-DOW Date/Time C Remote Dat _ Rec	On-site:	e and visual ob back of sheet If Cont In Back Da Da Da Da Da Da Da Da Da Da Da Da Da	on back coservatio tinuing stall new estart sa ate/Time erify Rur Date/Time	Personnel: f sheet ns on back of Sampling (s 15 L bottle, mpling progr Restarted:_ ining e Off-site:	of sheet ample bottle add ice ram		[[
Date/Time C — Halt — Prop — Rec — Rec — Rec — Rec — Add — Orn — Arra Comments: — Comments: — Rec — Rec — Rec — Rec	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor- ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler nplete COC form; nge transport to lab N: On-site: e/Time: ord Flow Meter status (Flowlink lace battery if v<11.9	e and visual ob back of sheet If Cont In Back Da Da Da Da Da Da Da Da Da Da Da Da Da	on back coservatio tinuing stall new estart sa ate/Time erify Rur Date/Time	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling program Restarted: ining e Off-site: Personnel:	of sheet ample bottle add ice ram		
Date/Time C — Halt — Prop — Rec — Rec — Rec — Rec — Add — Oon — Add — Comments: — Add — Comments: — Rec — Rec — Rec — Rec — Rec	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor- ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler nplete COC form; nge transport to lab	e and visual ob back of sheet In R V V MDT MDT k)	on back o oservatio tinuing s ostall new estart sa ate/Time erify Rur Date/Time /MST	Personnel: f sheet ns on back of Sampling (s 15 L bottle, mpling program Restarted: ining e Off-site: Personnel: Flow Meter	of sheet ample bottle add ice ram		
Date/Time C Halt Put Prop Rec If Samplin Pow Add Com Arra Comments: SHUT-DOW Date/Time C Remote Dat Remote Dat Rep Retr Cha	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor- ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler oplete COC form; nge transport to lab N: On-site: e/Time: ord Flow Meter status (Flowlink lace battery if v<11.9 ieve Data (Flowlink) nge modem access to "Dry We	e and visual ob back of sheet In R ND MDT MDT k) eather" 8-6 M-F	In back of oservation batelline of oservation back of oservation batelline of oservation back of	Personnel: f sheet ns on back of Sampling (s 15 L bottle, mpling programe Restarted: ining e Off-site: Personnel: Flow Meter Level	of sheet ample bottle add ice ram	in.	
Date/Time C Halt Put Prop Rec If Samplin Pow Add Com Arra Comments: SHUT-DOW Date/Time C Remote Dat Rec Rep Retr Cha Cha	On-site:	e and visual ob back of sheet In R ND MDT MDT k) eather" 8-6 M-F	In back of oservation batelline of oservation back of oservation batelline of oservation back of	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling program Restarted: ning e Off-site: Personnel: Flow Meter Level Flow	of sheet ample bottle add ice ram	in. cfs	
Date/Time C Halt Put Prop Rec If Samplin Pow Add Com Arra Comments: SHUT-DOW Date/Time C Remote Dat Remote Dat Rep Metr Cha Cha Cha	On-site: Sampler program lid on sample bottle perly label sample bottle; Recor- ord liquid height/sample volum ord subsample information on ng is Complete: rer off Sampler ice to sample cooler oplete COC form; nge transport to lab N: On-site: e/Time: ord Flow Meter status (Flowlink lace battery if v<11.9 ieve Data (Flowlink) nge modem access to "Dry We	e and visual ob back of sheet In R ND Va MDT MDT k) eather" 8-6 M-F	on back of oservatio tinuing s istall new estart sa ate/Time erify Rur Date/Time /MST /MST	Personnel: f sheet ns on back of Sampling (s / 15 L bottle, mpling program Restarted: ining e Off-site: Personnel: Flow Meter Level Flow Velocity	of sheet ample bottle add ice ram	in. cfs fps	

Date/Time Off-site: _____ Remote/On-site (circle one)

Form 22 COMPOSITE INFORMATION-- Phase II

Station/S	Sample ID:				WC			Bottle _	of
-	The second se		S		uantitativ	e Result	s		
Compon	<u>ient</u>			Value					<u>Unit</u>
Compos	ite Sample	Volume	(Approx.)						mL
	lse Interva		· · · · · /	-					ft^3
		•	uid Height vs	Approxin	nate Sample	Volume C	onversion Cha	art	<u> </u>
Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample	Liquid	Sample
Height	Volume	Height	Volume	Height	Volume	Height	Volume	Height	Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL
200	124	Sample	Qualitativ	e Results	s	1999			
Compon	ent		ription				Example	s	
Clarity		2000						oudy, Silty	
						-			
Color		-	1 1 -				Clear, Gi	ray, Ian, B	rown, Black
			Informati		. T=				5 L
Trigger #	Date	Time	Sampler I Subsamp	Message /	/ Trigge	r#	Date/Time		r Message / ple Result
1			Subsamp	ie Result	21			Subsan	ipie Result
2					22				a statement
	-								
3					23				Contraction
4					24				1 Barris
5					25				
6			1	1000	26	1			
7					27				
8					28				
9	-					-			
	-				29				
10					30			1	
11				Dr. Autor	31				
12					32		S. 33		
13			1		33		-	2	
14					34				
15								-	
and the second second second					35			-	
16					36			S. Comment	
17	N			1	37		-		
18					38			1	
19			1		39				
20					40			1	
	e date/time &	or the first to	inger is the "C	tart Data/T		a/time for l	he final trigger	is the "End De	to/Time"
COMME		n uie mst u	igger is the "S		ime ; The dat	erunne for t	are intai trigger		ate/Time
Is this a	QA/QC Sta	ation?	Yes	′No	(if	YES, fill	out informa	tion below)	
Sample SUBSA	ID: Mple info	ORMATIC	A	ill in approp	oriate sequent	al number) QA Sam	ple Type: L	aboratory Sr
	Dat	e/Time	1		Containe	r - Test	Subsample	Result)	100

12:00 COC Sample Date & Time

Notes: Use the "Start Date/Time" and "End Date/Time" for the parent sample.

 $\tilde{v}_{\alpha \alpha}$

*MST is observed during fall and winter; MDT is observed in spring and summer.

Form 21A GRAB SAMPLE DATA FORM – (Phase II)

Station: Ed	alla	10 . 2	1	2		
Pate/Time On-site:	<u>9/6/19</u>	1200	=	MDT/MST (c	ircle one)	
FLOW METER CUI	RENISIAIUS	:				
	Value	<u>Unit</u>			Value	<u>Unit</u>
Level		inch	Veloci	ity _		fps
Flow		cfs	Batter	У _		v
Total Flow		cf	Flow S	Start		(time)
Rainfall		in. (if applica	able)			
		Y				
s this a QA/QC S						
Photographs Tal	ken? Yes	No	× Sv	ving Samp	ler Used? Yes	<u>×</u> No
Storm Event Sar	nple? Yes	X No				
		0				
		/	-			
		Wet / Dr	ry Ĝr	ab (fill in station	on name)	
SUBSAMPLE INFO	RMATION:	U				Labeled
	RMATION:	er - Analyte		ab (fill in station Preserved* (H2SO4)	Filtered	Labeled
SUBSAMPLE INFC Collection	RMATION:	er - Analyte		Preserved*		Labeled
SUBSAMPLE INFO	RMATION: Contain	er - Analyte		Preserved* (H2SO4)	Filtered	
SUBSAMPLE INFO Collection Time	RMATION: Contain (4) L plastic – T	er - Analyte SS KN		Preserved* (H2SO4) N/A	Filtered N/A	K K
SUBSAMPLE INFO Collection Time 12:13 12:09	RMATION: Contain (4) L plastic – T (1) L plastic – T	er - Analyte TSS TKN tic - TP		Preserved* (H2SO4) N/A	Filtered N/A N/A	Ø
SUBSAMPLE INFO Collection Time 12:13 12:09	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast	er - Analyte TSS TKN tic - TP tic (square) - N	NOx	Preserved* (H2SO4) N/A K N/A	Filtered N/A N/A N/A	k K K
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast	er - Analyte TSS TKN tic - TP tic (square) - N le plastic – <i>E.</i>	NOx	Preserved* (H2SO4) N/A 文 N/A	Filtered N/A N/A N/A N/A Time: (22 3)	
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06	Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL plast	er - Analyte TSS TKN tic - TP tic (square) - N le plastic – <i>E.</i>	NOx	Preserved* (H2SO4) N/A K/A N/A	Filtered N/A N/A N/A Time: 1223 N/A	
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast	er - Analyte SS KN tic - TP tic (square) - N le plastic – <i>E.</i> stic - OP	NOx coli	Preserved* (H2SO4) N/A K/A N/A	Filtered N/A N/A N/A Time: 1223 N/A	
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06 12 12:05 12:17	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plastic (1) 500mL plastic (1) 500mL plastic (1) 500mL plastic (1) 250 mL plastic (1) 250 mL plastic (1) 250 mL plastic	er - Analyte SS KN tic - TP tic (square) - N le plastic – <i>E.</i> stic - OP mL Amber T	NOx coli	Preserved* (H2SO4) N/A Ø N/A N/A N/A	Filtered N/A N/A N/A Time: (22 3) N/A Time: (22 3)	
SUBSAMPLE INFO Collection Time 12:13 12:04 12:06 12:05 12:05 12:17 FIELD PARAMETE	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL plast (1) 500mL plast (1) 250 mL plast	er - Analyte TSS TKN tic - TP tic (square) - N le plastic – <i>E.</i> stic - OP mL Amber T <u>Unit</u>	NOx coli	Preserved* (H2SO4) N/A Ø N/A N/A 12 21	Filtered N/A N/A N/A Time: (22 3) N/A Time: (22 3) N/A	ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki
SUBSAMPLE INFO Collection Time 12:13 12:04 12:06 12 12:05 12:05 12:17 FIELD PARAMETE Diss. O ₂ – Field	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plastic (1) 250 mL plastic	er - Analyte SS KN tic - TP tic (square) - N le plastic – <i>E</i> . stic - OP mL Amber T <u>Unit</u> Mg/L	NOx coli Time:	Preserved* (H2SO4) N/A 文 N/A 7 N/A N/A 12 21	Filtered N/A N/A N/A Time: (22 3) N/A Time: (22 3) N/A	k k k k k k k k k k k k k k k k k k k
SUBSAMPLE INFO Collection Time 12:13 12:09 12:09 12:06 12 12:05 12:17	Contain Contain (4) L plastic – T (1) L plastic – T (1) 500mL plast (1) 500mL plast (1) 500mL plast (1) 500mL plast (1) 250 mL plast	er - Analyte TSS TKN tic - TP tic (square) - N le plastic – <i>E.</i> stic - OP mL Amber T <u>Unit</u>	NOx coli Time:	Preserved* (H2SO4) N/A Ø N/A N/A 12 21 0 – DO Meter 0 – Cond.	Filtered N/A N/A N/A Time: (22 3) N/A Time: (22 3) N/A	ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki Ki

*NOTE: Use 1 drop of $H_2SO_4\,per$ 100 mL of sample volume & Preserved samples should have pH <2

4.2

Updated 3/25/15

Form 21B QA/QC SAMPLE DATA FORM – (Phase II)

Date/Time - Off-site:

Station:

Personnel:

Sample ID: __<u>190906</u> QA Sample? ☑

<u>900 -- 05 -- 101</u> (fill in appropriate sequential number) QA SAMPLE TYPE: FIELD DUPLICATE

UBSAMPLE INFO	ORMATION:			
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
12:14	(4) L plastic – TSS	N/A	N/A	X
12:09	(1) L plastic – TKN	×	N/A	R
12.08	(1) 500mL plastic - TP	N/A	N/A	×
1217	(1) 500mL plastic (square) - NOx	Ŷ X	Time: /223	Ŕ
12:06	(1) 500mL sterile plastic – <i>E. coli</i>	N/A	N/A	×
12:17	(1) 250 mL plastic - OP	N/A	Time: / 223	ď

Notes: The date/time for the first and final subsample is the "Start Date/Time" and the "End Date/Time", respectively

Comments:

5

Sample ID: A Sample? ☑	QA SAMPLE TYPE: FIEL	(fill in appropriate so D BLANK (Fill bot	equential number) tles with Ultra-pure w	vater supplied by WC
SUBSAMPLE IN	FORMATION:			
Collection Time	Container - Analyte	Preserved* (H2SO4)	Filtered	Labeled
and the second	(4) L plastic – TSS	N/A	N/A	
	(1) L plastic – TKN		N/A	
	(1) 500mL plastic - TP	N/A	N/A	
	(1) 500mL plastic (square) - NOx		Time:	
	(1) 500mL sterile plastic - E. coli	N/A	N/A	
	(1) 250 mL plastic - OP	N/A	Time:	

Notes: The date/time for the first and final subsamples is the "Start Date/Time" and "End Date/Time", respectively.

Report Date: 11/15/2019 11:46

Revised Report

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualif	ers Date Sampled	Date Received
9AC0086-01	ACST2	191019-09-WG	Water	10/19/2019	10/19/2019
9AC0086-02	ACST2	191019-08-WG	Water	10/19/2019	10/19/2019
Work	Order Comm	onfe:			

Work Order Comments:

9AC0086 Revised report by request from ACHD due to incorrect 9AC0086-01 sample name on COC. Sample name changed from 191019-10-WG to 191019-09-WG.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Bolse, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location: Date/Time Collected	ACST2	2 2019 08:19				Location Description:	191019-09	9-WG		
Lab Number: Sample Type:	9AC00 Grab					Sample Collector: Sample Matrix:	J.A Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology E. Coli	B9J1907	344.8M	PN/100 mL	1.0	1.0	Colitert	10/19/19 12:10	10/20/19 12:10	JAL	
Wet Chemistry										
Chlorine Screen	B9J1908	Absent				SM 4500-CL G-2000 mod	10/19/19	10/19/19 10:44	KMR	
Nitrate-Nitrite, as N	B9K0101	0.324	mg/L	0.0250	0.0250	EPA 353.2	11/01/19	11/1/19 9:51	LRF	
TKN	B9J2803	4.64	mg/L	0.0500	0.0500	EPA 351.2	10/28/19	10/29/19 10:10	JAL	
Total Suspended Solids	B9J1906	86.1	mg/L	0.900	0.900	SM 2540 D-1997	10/19/19	10/19/19 12:11	F.A	
Dissolved Wet Ch	emistry							2.1		
Orthophosphate, as P	B9J2001	0.324	mg/L	2.00E-3	2.00E-3	EPA 365.1	10/20/19	10/20/19 11:32	JAL	
Total Metals										
Phosphorus as P	B9J2604	0.580	mg/L	7.30E-3	7.30E-3	EPA 200.7	11/04/19	11/6/19 12:11	EDM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Analysis Report

Location: Date/Time Collected	ACST2	2 2019 09:38	1			Location Description:	191019-0	8-WG		
Lab Number: Sample Type:	9AC00 Grab					Sample Collector: Sample Matrix:	J.A Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Microbiology										
E. Coli	B9J1907	95.9 M	PN/100 mL	1.0	1.0	Colilert	10/19/19 12:10	10/20/19 12:10	JAL	
Wet Chemistry										
Chlorine Screen	B9J1908	Absent				SM 4500-CL G-2000 mod	10/19/19	10/19/19 10:44	KMR	
Nitrate-Nitrite, as N	B9K0101	0.439	mg/L	0.0250	0.0250	EPA 353.2	11/01/19	11/1/19 9:52	LRF	
TKN	B9J2803	1.37	mg/L	0.0500	0.0500	EPA 351.2	10/28/19	10/29/19 10:15	JAL	
Total Suspended Solids	B9J1906	16.0	mg/L	0.900	0.900	SM 2540 D-1997	10/19/19	10/19/19 12:12	F.A	
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B9J2001	0.247	mg/L	2.00E-3	2.00E-3	EPA 365.1	10/20/19	10/20/19 11:36	JAL	
Total Metals										
Phosphorus as P	B9J2604	0.328	mg/L	7.30E-3	7.30E-3	EPA 200.7	11/04/19	11/6/19 12:05	EDM	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Microbiology									
Batch: B9J1907 Blank (B9J1907-BLK1) E. Coli	Absent						10/20/2019	JAL	
LCS (B9J1907-BS1) E. Coli				Present			10/20/2019	JAL	
Duplicate (B9J1907-DUP1) E. Coli	Source ID: 9AC	0085-01			Pass	128	10/20/2019	JAL	
Wet Chemistry									
Batch: B9J1906 Blank (B9J1906-BLK1) Total Suspended Solids	< 0.9	mg/L					10/19/2019	F.A	U
LCS (B9J1906-BS1) Total Suspended Solids			95.8	90-110			10/19/2019	F.A	
Duplicate (B9J1906-DUP1) Total Suspended Solids	Source ID: 9BB	0676-01			3.30	20	10/19/2019	F.A	
Batch: B9J2803			an a sharen a san arra kanan i ka ƙafa in an		No. and Mark (1999) (1999) (1999)		,		
Blank (B9J2803-BLK1) TKN	< 0.05	mg/L					10/29/2019	JAL	U
Blank (B9J2803-BLK2) TKN	< 0.05	mg/L					10/29/2019	JAL	U
LCS (B9J2803-BS1) TKN			100	80-120			10/29/2019	JAL	
LCS (B9J2803-BS2) TKN			103	80-120			10/29/2019	JAL	
Duplicate (B9J2803-DUP1) TKN	Source ID: 9AC	0086-01			5.04	20	10/29/2019	JAL	
Matrix Spike (B9J2803-MS1) TKN	Source ID: 9A	C0086-01	82.3	80-120			10/29/2019	JAL	
Matrix Spike Dup (B9J2803- TKN	MSD1) Source	ID: 9AC00)86-01 103	80-1 20	11.4	20	10/29/2019	JAL	

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Bolse, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

(Continued)

1

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)			04.5					
Batch: B9K0101	·								
Blank (B9K0101-BLK1) Nitrate-Nitrite, as N	< 0.025	mg/L					11/01/2019	LRF	U
Blank (B9K0101-BLK2) Nitrate-Nitrite, as N	< 0.025	mg/L	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.				11/01/2019	LRF	U
Blank (B9K0101-BLK3) Nitrate-Nitrite, as N	< 0.025	mg/L					11/01/2019	LRF	U
LCS (B9K0101-BS1) Nitrate-Nitrite, as N			96.4	90-110			11/01/2019	LRF	
LCS (B9K0101-BS2) Nitrate-Nitrite, as N			102	90-110		****	11/01/2019	LRF	
LCS (B9K0101-BS3) Nitrate-Nitrite, as N			97.0	90-110			11/01/2019	LRF	
Duplicate (B9K0101-DUP1) Nitrate-Nitrite, as N	Source ID: 9BB	0642-01			1.14	10	11/01/2019	LRF	
Duplicate (B9K0101-DUP2) Nitrate-Nitrite, as N	Source ID: 9BB	0664-01			0.272	10	11/01/2019	LRF	94 (1 4 1 4 4 5 4 4 1 4 4 4 4 4 4 4 4 4 4 4
Duplicate (B9K0101-DUP3) Nitrate-Nitrite, as N	Source ID: 9AC	0087-03			1.77	10	11/01/2019	LRF	
Duplicate (B9K0101-DUP4) Nitrate-Nitrite, as N	Source ID: 9TM	0068-03			0.886	10	11/01/2019	LRF	
Duplicate (B9K0101-DUP5) Nitrate-Nitrite, as N	Source ID: 9WE	80770-05	57811-7-0-14-		1.90	10	11/01/2019	LRF	
Matrix Spike (B9K0101-MS1) Nitrate-Nitrite, as N	Source ID: 9B	B0642-01	93.5	90-110			11/01/2019	LRF	
Matrix Spike (B9K0101-MS2) Nitrate-Nitrite, as N	Source ID: 9B	B0664-01	94.6	90-110			11/01/2019	LRF	
Matrix Spike (B9K0101-MS3) Nitrate-Nitrite, as N	Source ID: 9A	C0087-03	94.6	90-110			11/01/2019	LRF	
Matrix Spike (B9K0101-MS4) Nitrate-Nitrite, as N	Source ID: 9T	M0068-03	94.9	90-110			11/01/2019	LRF	Serve - Connection and Annual
Matrix Spike (B9K0101-MS5) Nitrate-Nitrite, as N	Source ID: 9W	/B0770-05	90.9	90-110			11/01/2019	LRF	
Matrix Spike (B9K0101-MS6) Nitrate-Nitrite, as N	Source ID: 9A	C0087-03	93.0	90-110			11/01/2019	LRF	
Matrix Spike Dup (B9K0101-Nitrate-Nitrite, as N	MSD1) Source	ID: 988064	2-01 95.2	90-110	1.15	10	11/01/2019	LRF	
Matrix Spike Dup (B9K0101-I Nitrate-Nitrite, as N	MSD2) Source	ID: 9BB066	4-01 98.2	90-110	0.751	10	11/01/2019	LRF	
Matrix Spike Dup (B9K0101-I Nitrate-Nitrite, as N	MSD3) Source	ID: 9AC008	7-03 92.9	90-110	1.68	10	11/01/2019	LRF	

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

(Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Continued)									
Batch: B9K0101 (Continued) Matrix Spike Dup (B9K0101-MSD4)	Source	ID: 9TM006	58-03 103	90-110	0.646	10	11/01/2019	LRF	
Nitrate-Nitrite, as N				90-110	0.040	10	11/01/2019	LINE	
Matrix Spike Dup (B9K0101-MSD5) Nitrate-Nitrite, as N	Source	ID: 9WB07	70-05 90.5	90-110	0.443	10	11/01/2019	LRF	
Matrix Spike Dup (B9K0101-MSD6) Nitrate-Nitrite, as N	Source	ID: 9AC008	37-03 90.8	90-110	1.15	10	11/01/2019	LRF	
Dissolved Wet Chemistry									
Batch: B9J2001 Blank (B9J2001-BLK1) Orthophosphate, as P	< 0.002	mg/L					10/20/2019	JAL	U
LCS (B9J2001-BS1) Orthophosphate, as P			95.8	90-110			10/20/2019	JAL	
Duplicate (B9J2001-DUP1) Source Orthophosphate, as P	e ID: 9AC	0086-01			0.332	10	10/20/2019	JAL	
Matrix Spike (B9J2001-MS1) Sou Orthophosphate, as P	rce ID: 9A	C0086-01	105	90-110			10/20/2019	JAŁ	
Matrix Spike Dup (B9J2001-MSD1) Orthophosphate, as P	Source	ID: 9AC008	36-01 105	90-110	0.0375	10	10/20/2019	JAL	
Total Metals	10.90 million (10.90 million)	an a							
Batch: B9J2604 Blank (B9J2604-BLK1) Phosphorus as P	< 0.0073	mg/L					11/06/2019	EDM	U
LCS (B9J2604-BS1) Phosphorus as P			103	85-115			11/06/2019	EDM	<u>Depairmento - a un con - an - a</u>
Duplicate (B9J2604-DUP1) Source Phosphorus as P	e ID: 9BB	0694-01			18.2	20	11/06/2019	EDM	D
Matrix Spike (B9J2604-MS1) Sou Phosphorus as P	rce ID: 9B	B0694-01	112	70-130			11/06/2019	EDM	D
Matrix Spike Dup (B9J2604-MSD1) Phosphorus as P	Source	ID: 9BB06	94-01 112	70-130	0.121	20	11/06/2019	EDM	D

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Notes and Definitions

ltem	Definition	
D	Data reported from a dilution	
U	Analyte included in the analysis, but not detected	
U	Analyte included in the analysis, but not detected	

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
ΗH	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

Ada County I	1	way District	trict		ć	Matrix	X Type	<u> </u>							Ć			
Attn: Monica Lowe 3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	t Lowe i Street i Idaho 837 i7–6255 i7–6391 der:	14-6418	63050897 Stormwater-PII	97 ater-PII							1.238		7.002.42					
			Jeunette Zach		Anala Zapiceta	[-Z ' √ sle			0.01	DXG-IA9 00				XX Colilect				ers
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification $w_{4}^{(1)}$	Sampler Initia J Water	Grab	Composite COD - Hach 5 COD - Hach 8	252 WS - SQ1	TKN - Persto	Odhophosohi	Total As. Cd.	Total Ha - E	E. Coli - IDE	Turbidity - E	- "ON+"ON	194 MS - 5HN	nistnoO letoT
1345086-01	10-19-19		8:13	61:8	10-Wer	JA, ZD X			X	X X	×			×		4		e.
9			6:29	9:38	191019-08-Wg 3	JA,20 X			<u>×</u>	×	XX			X		×		ف
												+-+						
														-	-	_		
								_								_		
Reling	Relinquished by (sign)	(sign)	ĎF	Date & Time Transferred	re Received by (sign)	-		Comr	Comments/Special Instructions:	Spec	ial Ir	Istru	lictio	:su				
Que	RC		1-01	61-61-01	10:12 Kelly Der 10-19-19	3-19	Plea	easc	dilute	4 H		~	191019-10-W4	0 / C	-	-01	M	Y
			_)	(but	utes by	9, Thereard	24 54	Light	gutte	200	11/2	12	- Coly			
			-			12 /20	610161	~ N	CORRECT 09-W6	2 v	107 404	t RIC	RIOLG	101	-606	3	A.	×L
606_weh-p2	p2					-		ť				OAN NOS6	2	00	2	1	61-101	

Report Date: 11/12/2019 09:38

ъ

¥.

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Samples in this Report

Lab ID	Sample	Sample Description	Matrix Qualifiers	Date Sampled D	ate Received
9AC0088-01	ACST2C	191019-09-WC	Water	10/19/2019 10	0/19/2019

Analysis Report

Location:	ACST2	2C				Location Description:	191019-0	9-WC		
Date/Time Collected	d: 10/19/2	2019 08:01	- 10/19/	2019 08:39						
Lab Number:	9AC00	88-01				Sample Collector:	T.L			
Sample Type:	Compo	osite				Sample Matrix:	Water			
Analyte Name	Batch	Result	Units	Adjusted MDL *	Method MDL	Analysis Method Reference	Prepared Time	Analysis Time	Analyst Initials	Qual
Wet Chemistry										
Ammonia, as N	B9J2602	2120	ug/L	35.0	35.0	SM 4500-NH3 D-1997	10/26/19	10/26/19 11:17	ALN	
BOD5	B9J2114	34.5	mg/L	2.00	2.00	SM 5210 B-2001	10/21/19	10/26/19 8:05	LRF	
COD	B9J2102	200	mg/L	7.00	7.00	SM 5220 D-2017	10/21/19	10/21/19 9:53	ALN	
Nitrate-Nitrite, as N	B9K0101	0.298	mg/L	0.0250	0.0250	EPA 353.2	11/01/19	11/1/19 10:03	LRF	
TKN	B9J2803	4.23	mg/L	0.0500	0.0500	EPA 351.2	10/28/19	10/29/19 10:23	JAL	
Total Dissolved Solids	B9J2121	114	mg/L	20.0	20.0	SM 2540 C-1997	10/19/19	10/21/19 15:10	ASM	
Total Suspended Solids	B9J2116	143	mg/L	0.900	0.900	SM 2540 D-1997	10/21/19	10/21/19 10:53	F.A	
Turbidity	B9J2101	44.9	NTU	0.6	0.3	EPA180.1 R2.0 (1993)	10/21/19	10/21/19 8:02	LRF	D
Dissolved Wet Ch	emistry									
Orthophosphate, as P	B9J2001	0.356	mg/L	2.00E-3	2.00E-3	EPA 365.1	10/20/19	10/20/19 11:45	JAL	
Total Metals										
Mercury	B9J2314	0.0113	ug/L	4.71E-3	4.71E-3	EPA 245.2	10/24/19	10/25/19 10:23	SAS	
Arsenic	B9K0110	<5.50	ug/L	5.50	5.50	EPA 200.7	11/01/19	11/5/19 10:06	EDM	U
Cadmium	B9K0110	<0.700	ug/L	0.700	0.700	EPA 200.7	11/01/19	11/5/19 10:06	EDM	U
Calcium	B9K0110	9700	ug/L	25.0	25.0	EPA 200.7	11/01/19	11/5/19 10:06	EDM	
Lead	B9K0110	5.31	ug/L	5.00	5.00	EPA 200.7	11/01/19	11/5/19 10:06	EDM	
Magnesium	B9K0110	1870	ug/L	53.0	53.0	EPA 200.7	11/01/19	11/5/19 10:06	EDM	
Phosphorus as P	B9K0110	0.567	mg/L	7.30E-3	7.30E-3	EPA 200.7	11/01/19	11/5/19 10:06	EDM	
Hardness	B9K0110	31.9	mg/L	0.280	0.280	EPA 200.7	11/01/19	11/5/19 10:06	EDM	
Dissolved Metals										
Cadmium	B9K0613	<0.700	ug/L	0.700	0.700	EPA 200.7	11/06/19	11/6/19 17:30	AMO	U
Copper	B9K0613	<11.5	ug/L	11.5	11.5	EPA 200.7	11/06/19	11/6/19 17:30	AMO	U
Lead	B9K0613	<5.00	ug/L	5.00	5.00	EPA 200.7	11/06/19	11/6/19 17:30	AMO	U
Zinc	B9K0613	41.8	ug/L	7.50	7.50	EPA 200.7	11/06/19	11/6/19 17:30	AMO	

* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

4 4

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry									
Batch: B9J2101 Blank (B9J2101-BLK1) Turbidity	<0.3	NTU					10/21/2019	LRF	U
LCS (B9J2101-BS1) Turbidity		D.) (0), 1	99.6	90-110			10/21/2019	LRF	
Duplicate (B9J2101-DUP1) Turbidity	Source ID: 9AC	0087-01			1.96	25	10/21/2019	LRF	
Batch: B9J2102 Blank (B9J2102-BLK1) COD	<7	mg/L					10/21/2019	ALN	U
LCS (B9J2102-BS1) COD			100	90-110			10/21/2019	ALN	
Duplicate (B9J2102-DUP1) COD	Source ID: 9AC	087-01			4.82	10	10/21/2019	ALN	
Batch: B9J2114 Blank (B9J2114-BLK1) BOD5	<2	mg/L					10/26/2019	LRF	U
LCS (B9J2114-BS1) BOD5			100	84.6-115.4			10/26/2019	LRF	
LCS (B9J2114-BS2) BOD5			93.8	84.6-115.4			10/26/2019	LRF	
Duplicate (B9J2114-DUP1) BOD5	Source ID: 9LS0	406-01			2.54	30	10/26/2019	LRF	
Batch: B9J2116 Blank (B9J2116-BLK1) Total Suspended Solids	<0.9	mg/L					10/21/2019	F.A	U
LCS (B9J2116-BS1) Total Suspended Solids		_	98.7	90-110			10/21/2019	F.A	
Duplicate (B9J2116-DUP1) Total Suspended Solids	Source ID: 9WB	0766-07			9.95	20	10/21/2019	F.A	
Duplicate (B9J2116-DUP2) Total Suspended Solids	Source ID: 9LS0	406-01	***************************************		8.30	20	10/21/2019	F.A	

Quality Control Report (Continued)

Analyte Name		/lethod Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contir	nued)									
Batch: B9J2121 Blank (B9J2121-BLK1) Total Dissolved Solids	·	<20	mg/L					10/21/2019	ASM	U
LCS (B9J2121-BS1) Total Dissolved Solids				105	90-110			10/21/2019	ASM	
Duplicate (B9J2121-DUP1) Total Dissolved Solids	Source	ID: 9AC	0087-03			0.669	10	10/21/2019	ASM	
Batch: B9J2602 Blank (B9J2602-BLK1) Ammonia, as N		<35	ug/L					10/26/2019	ALN	U
LCS (B9J2602-BS1) Ammonia, as N				98.5	90-110			10/26/2019	ALN	
Duplicate (B9J2602-DUP1) Ammonia, as N	Source	ID: 9BB(0657-01			1.89	10	10/26/2019	ALN	
Duplicate (B9J2602-DUP2) Ammonia, as N	Source	ID: 9BB(0667-01			1.57	10	10/26/2019	ALN	
Matrix Spike (B9J2602-MS1) Ammonia, as N	Source	e ID: 9B	B0657-01	98.8	80-120			10/26/2019	ALN	
Matrix Spike (B9J2602-MS2) Ammonia, as N	Source	e ID: 9B	B0667-01	105	80-120			10/26/2019	ALN	
Matrix Spike Dup (B9J2602-N Ammonia, as N	MSD1)	Source	ID: 9BB0657	7-01 99.6	80-120	0.462	10	10/26/2019	ALN	
Matrix Spike Dup (B9J2602-M Ammonia, as N	MSD2)	Source	ID: 9BB0667	7-01 104	80-120	0.710	10	10/26/2019	ALN	
Batch: B9J2803 Blank (B9J2803-BLK1) TKN		<0.05	mg/L					10/29/2019	JAL	U
Biank (B9J2803-BLK2) TKN		<0.05	mg/L					10/29/2019	JAL	U
LCS (B9J2803-BS1) TKN				100	80-120			10/29/2019	JAL	
LCS (B9J2803-BS2) TKN				103	80-120			10/29/2019	JAL	
Duplicate (B9J2803-DUP1) TKN	Source	ID: 9AC	0086-01			5.04	20	10/29/2019	JAL	
Duplicate (B9J2803-DUP2) TKN	Source	ID: 9EP(0082-01			0.151	20	10/29/2019	JAL	D
Matrix Spike (B9J2803-MS1) TKN	Source	e ID: 9A	C0086-01	82.3	80-120			10/29/2019	JAL	
Matrix Spike Dup (B9J2803-N TKN	MSD1)	Source	ID: 9AC0086	6-01 103	80-120	11.4	20	10/29/2019	JAL	

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

٠r

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

 (\mathbf{a})

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Contin	ued)								
Batch: B9K0101 Blank (B9K0101-BLK1) Nitrate-Nitrite, as N	<0.025	mg/L					11/01/2019	LRF	U
Blank (B9K0101-BLK2) Nitrate-Nitrite, as N	<0.025	mg/L					11/01/2019	LRF	U
Blank (B9K0101-BLK3) Nitrate-Nitrite, as N	<0.025	mg/L					11/01/2019	LRF	· U
LCS (B9K0101-BS1) Nitrate-Nitrite, as N			96.4	90-110			11/01/2019	LRF	
LCS (B9K0101-BS2) Nitrate-Nitrite, as N			102	90-110			11/01/2019	LRF	
LCS (B9K0101-BS3) Nitrate-Nitrite, as N			97.0	90-110			11/01/2019	LRF	
Duplicate (B9K0101-DUP1) Nitrate-Nitrite, as N	Source ID: 9BE	0642-01			1.14	10	11/01/2019	LRF	
Duplicate (B9K0101-DUP2) Nitrate-Nitrite, as N	Source ID: 9BE	0664-01			0.272	10	11/01/2019	LRF	
Duplicate (B9K0101-DUP3) Nitrate-Nitrite, as N	Source ID: 9AC	0087-03			1.77	10	11/01/2019	LRF	***********
Duplicate (B9K0101-DUP4) Nitrate-Nitrite, as N	Source ID: 9TM	10068-03			0.886	10	11/01/2019	LRF	
Duplicate (B9K0101-DUP5) Nitrate-Nitrite, as N	Source ID: 9WI	30770-05			1.90	10	11/01/2019	LRF	
Matrix Spike (B9K0101-MS1) Nitrate-Nitrite, as N	Source ID: 9E	B0642-01	93.5	90-110			11/01/2019	LRF	
Matrix Spike (B9K0101-MS2) Nitrate-Nitrite, as N	Source ID: 9E	B0664-01	94.6	90-110			11/01/2019	LRF	
Matrix Spike (B9K0101-MS3) Nitrate-Nitrite, as N	Source ID: 9A	C0087-03	94.6	90-110		Anno 2019 - 20	11/01/2019	LRF	
Matrix Spike (B9K0101-MS4) Nitrate-Nitrite, as N	Source ID: 9T	M0068-03	94.9	90-110	****		11/01/2019	LRF	
Matrix Spike (B9K0101-MS5) Nitrate-Nitrite, as N	Source ID: 9V	VB0770-05	90.9	90-110			11/01/2019	LRF	dala an
Matrix Spike (B9K0101-MS6) Nitrate-Nitrite, as N	Source ID: 9A	C0087-03	93.0	90-110	1884 (11/01/2019	LRF	
Matrix Spike Dup (B9K0101-M Nitrate-Nitrite, as N	ISD1) Source	ID: 9BB064	2-01 95.2	90-110	1.15	10	11/01/2019	LRF	
Matrix Spike Dup (B9K0101-M Nitrate-Nitrite, as N	ISD2) Source	ID: 9BB066	64-01 98.2	90-110	0.751	10	11/01/2019	LRF	
Matrix Spike Dup (B9K0101-M Nitrate-Nitrite, as N	ISD3) Source	ID: 9AC008	37-03 92.9	90-110	1.68	10	11/01/2019	LRF	

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Quality Control Report (Continued)

			•						
Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Wet Chemistry (Continued)									
Batch: B9K0101 (Continued) Matrix Spike Dup (B9K0101-MSD4) Nitrate-Nitrite, as N	Source	ID: 9TM00	68-03 103	90-110	0.646	10	11/01/2019	LRF	
Matrix Spike Dup (B9K0101-MSD5) Nitrate-Nitrite, as N	Source	ID: 9WB07	70-05 90.5	90-110	0.443	10	11/01/2019	LRF	
Matrix Spike Dup (B9K0101-MSD6) Nitrate-Nitrite, as N	Source	ID: 9AC008	37-03 90.8	90-110	1.15	10	11/01/2019	LRF	
Dissolved Wet Chemistry									
Batch: B9J2001									
Blank (B9J2001-BLK1) Orthophosphate, as P	<0.002	mg/L					10/20/2019	JAL	U
LCS (B9J2001-BS1) Orthophosphate, as P			95.8	90-110			10/20/2019	JAL	
Duplicate (B9J2001-DUP1) Source Orthophosphate, as P	e ID: 9AC	0086-01			0.332	10	10/20/2019	JAL	
Matrix Spike (B9J2001-MS1) Sour Orthophosphate, as P	rce ID: 9A	C0086-01	105	90-110			10/20/2019	JAL	
Matrix Spike Dup (B9J2001-MSD1) Orthophosphate, as P	Source	ID: 9AC008	86-01 105	90-110	0.0375	10	10/20/2019	JAL	

.4

Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

Quality Control Report

4

Analyte Name	Metho Blani		% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
Total Metals									
Batch: B9J2314									
Blank (B9J2314-BLK1) Mercury	<0.004	71 ug/L					10/25/2019	SAS	U
LCS (B9J2314-BS1) Mercury			99.0	85-115			10/25/2019	SAS	
Duplicate (B9J2314-DUP1) Mercury	Source ID: 9A	C0087-01			12.6	20	10/25/2019	SAS	
Duplicate (B9J2314-DUP2) Mercury	Source ID: 9B	B0641-01			13.2	20	10/25/2019	SAS	
Matrix Spike (B9J2314-MS1) Mercury	Source ID: 9	9AC0087-01	99.9	70-130			10/25/2019	SAS	
Matrix Spike (B9J2314-MS2) Mercury	Source ID: 9	9BB0641-01	101	70-130			10/25/2019	SAS	
Matrix Spike Dup (B9J2314- Mercury	MSD1) Sourc	ce ID: 9AC00	87-01 98.4	70-130	1.51	20	10/25/2019	SAS	
Matrix Spike Dup (B9J2314- Mercury	MSD2) Sourc	e ID: 9BB06	41-01 98.2	70-130	2.38	20	10/25/2019	SAS	
Batch: B9K0110	WIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	******	ala da da Manda ya mahadika da Shina na 1999 Mahada ku 2013 a ca ca daya						
Blank (B9K0110-BLK1)									
Arsenic	<5.5	ug/L					11/05/2019	EDM	U
Cadmium	<0.7	ug/L					11/05/2019	EDM	U
Calcium	<25	ug/L					11/05/2019	EDM	U
Lead	<5	ug/L					11/05/2019	EDM	U
Magnesium	<53	ug/L					11/05/2019	EDM	U
Phosphorus as P	<0.007	3 mg/L					11/05/2019	EDM	U
LCS (B9K0110-BS1)			400	05 445			44/05/00/15		
Arsenic			103	85-115			11/05/2019	EDM	
Cadmium			96.5	85-115			11/05/2019	EDM	
Calcium			101	85-115			11/05/2019	EDM	
Lead			101	85-115			11/05/2019	EDM	
Magnesium Phosphorus as P			101	85-115			11/05/2019	EDM	
			103	85-115			11/05/2019	EDM	
Duplicate (B9K0110-DUP1)	Source ID: 9A	C0087-02				00	11/05/0010	5014	
Arsenic					NR	20	11/05/2019	EDM	U
Cadmium					NR	20	11/05/2019	EDM	U
Calcium					0.643	20	11/05/2019	EDM	
Lead					1.14	20	11/05/2019	EDM	
Magnesium					0.618	20	11/05/2019	EDM	
Phosphorus as P					0.759	20	11/05/2019	EDM	

Quality Control Report (Continued)

Analyte Name	Method Blank	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Date Analyzed	Analyst Initials	Qualifier
	Dialik	onits	Necovery	EIIII(3	INF D	Linit	Analyzeu		Quaimer
Total Metals (Continued)									
Batch: B9K0110 (Continued)									
Duplicate (B9K0110-DUP2) Sour	ce ID: 9AC	0087-03							
Arsenic					NR	20	11/05/2019	EDM	U
Cadmium					NR	20	11/05/2019	EDM	U
Calcium					1.48	20	11/05/2019	EDM	
Lead					1.34	20	11/05/2019	EDM	
Magnesium					2.39	20	11/05/2019	EDM	
Phosphorus as P					4.87	20	11/05/2019	EDM	
Matrix Spike (B9K0110-MS1) So	urce ID: 9A	C0087-02							
Arsenic			105	70-130			11/05/2019	EDM	
Cadmium			95.8	70-130			11/05/2019	EDM	
Calcium			101	70-130			11/05/2019	EDM	
Lead			100	70-130			11/05/2019	EDM	
Magnesium			104	70-130			11/05/2019	EDM	
Phosphorus as P			104	70-130			11/05/2019	EDM	
Matrix Spike (B9K0110-MS2) Sol	urce ID: 9A	C0087-03							
Arsenic			108	70-130			11/05/2019	EDM	
Cadmium			98.1	70-130			11/05/2019	EDM	
Calcium			103	70-130			11/05/2019	EDM	
Lead			103	70-130			11/05/2019	EDM	
Magnesium			106	70-130			11/05/2019	EDM	
Phosphorus as P			106	70-130			11/05/2019	EDM	
Matrix Spike Dup (B9K0110-MSD1)	Source	ID: 9AC008	7-02						
Arsenic			105	70-130	0.119	20	11/05/2019	EDM	
Cadmium			96.0	70-130	0.180	20	11/05/2019	EDM	
Calcium			102	70-130	0.368	20	11/05/2019	EDM	
Lead			101	70-130	0.470	20	11/05/2019	EDM	
Magnesium			104	70-130	0.0337	20	11/05/2019	EDM	
Phosphorus as P			105	70-130	0.299	20	11/05/2019	EDM	
Matrix Spike Dup (B9K0110-MSD2)	Source	ID: 9AC008	7-03						
Arsenic			107	70-130	1.31	20	11/05/2019	EDM	
Cadmium			97.2	70-130	0.941	20	11/05/2019	EDM	
Calcium			102	70-130	0.639	20	11/05/2019	EDM	
Lead			102	70-130	0.743	20	11/05/2019	EDM	
Magnesium			104	70-130	1.61	20	11/05/2019	EDM	
Phosphorus as P			105	70-130	1.26	20	11/05/2019	EDM	

Notes and Definitions

ltem	Definition
D	Data reported from a dilution
U	Analyte included in the analysis, but not detected

Method Reference Acronyms

Colilert	Colilert, IDEXX Laboratories, Inc.
EPA	Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
GS	USGS Techniques of Water-Resources Investigations
НН	Hach Spectrophotometer Procedures Manual
SM	Standard Methods for the Examination of Water and Wastewater
SW	Test methods for Evaluating Solid Waste, SW-846

Janet Finegan Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety

Quality Control Report (Continued)

	Method		%	Recovery		RPD	Date	Analyst	
Analyte Name	Blank	Units	Recovery	Limits	RPD	Limit	Analyzed	Initials	Qualifier
Dissolved Metals									
Batch: B9K0613									
Blank (B9K0613-BLK1)									
Cadmium	<0.7	ug/L					11/06/2019	AMO	U
Copper	<11.5	ug/L					11/06/2019	AMO	U
Lead	<5	ug/L					11/06/2019	AMO	U
Zinc	<7.5	ug/L					11/06/2019	AMO	U
LCS (B9K0613-BS1)									
Cadmium			100	85-115			11/06/2019	AMO	
Copper			98.1	85-115			11/06/2019	AMO	
Lead			100	85-115			11/06/2019	AMO	
Zinc			101	85-115			11/06/2019	AMO	
Duplicate (B9K0613-DUP1) S	ource ID: 9AC	0088-01							
Cadmium					NR	10	11/06/2019	AMO	U
Copper					NR	10	11/06/2019	AMO	U
Lead					NR	10	11/06/2019	AMO	U
Zinc					1.12	10	11/06/2019	AMO	
Matrix Spike (B9K0613-MS1)	Source ID: 9A	C0088-01							
Cadmium			103	70-130			11/06/2019	AMO	
Copper			105	70-130			11/06/2019	AMO	
Lead			103	70-130			11/06/2019	AMO	
Zinc			101	70-130			11/06/2019	AMO	
Matrix Spike Dup (B9K0613-MS	D1) Source	ID: 9AC00							
Cadmium			101	70-130	1.61	10	11/06/2019	AMO	
Copper			105	70-130	0.178	10	11/06/2019	AMO	
Lead			101	70-130	1.39	10	11/06/2019	AMO	
Zinc			99.8	70-130	0.534	10	11/06/2019	AMO	

Ada County Highway District	y Highv	vay Dis	strict																
Attn: Monica Lowe	owe.						Matrix	Type											
3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6255 Fax (208) 387–6391 Purchase Order: Project: Sampler(s):	Street daho 837 –6255 er: er:	714-6415			il ighte eonard	sji						2 - EPA 365.1	7.005 A93 - 6	2.05.Zn - EPA 200.7	X Colilert	1. 1.1		0 NH ³ - D	IS 4
Lab#	Begin Date	End Date	Begin Time	End	Sample Identification	l Sampler Initia	Water	Grab Composite	COD - H st 80 BOD ^e - 2W 25	TSS - SM 2540	TKN - Perstor	TP - EPA 200	Total As. Cd. F	Diss. Cd Cu.	E. Coli - IDEX	Turbidity - EP Hardness - Si	NO3+NO3 - E	097 MS - 8HN	Total Containe
Acos8-01	10/19	61/01	1080	0839	191019-09-MC	TL	×	X	XX	X	X	XXX	X	X			X	X	-
Relinquished by (sign)	shed by	(sign)		Date & Time Transferred	ne ed			_	Com	Comments/Special Instructions:	/Spe	cial	nstru	lictio	US				
Tauara	ifu	Uta	10/19/19		Kell V. Duy	10-14-14 10-14-14		9	Q VC	6	0								
			-						<u>}</u>	X O								T	

coc_wql-p2-

10/19

P nnel:	MLTU		Date/Time	e On-Site: 10-	18-19 1	145
Date	Time	Level (in)	Flow (cfs)	Velocity (fps)	Total (cf)	Battery (V)
	1145	0.041	0	0.035	v	
	Downloaded to:	P-6				
Trigger Condition: 0 · 1 Flow Pulse Interval: 58 cf			(Velocit	y>0.1)		

On-Site Image: Replace battery if v<11.9 Image: Perform Decon. Cycle dong on 10/14 Image	Flowlink (Refer to Flowlink Instructions, if needed) Oriect or Remote; Date/time Color Retrieve data and review recent flow history Change Wireless Power Control to Storm Event Change Data Storage Rates to 1 minute for Level, Velocity, and Flow Enable Sampler: On Trigger, and set velocity equation Set Latch Set Sampler Pacing to Flow Paced, and set trigger volume
--	---

Comments:

Date/Time Off-Site: 0-18 215

onnel:	ThJI	f	Date/Time	e On-Site:	0/21	1055
Date	Time	Level (in)	Flow (cfs)	Velocity (fps)	Total (cf)	Battery (V)
0/21	1101	-0.002	Non O	0	17701.1	12.334

Date/Time Off-Site: 10/21

 Date/Time On-Site:
 10 - 19
 21
 21
 21
 Composite Sample Collection

STATION: Personnel:

Chais

1. 112

A Halt Sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	191019-09	-WC	
Approx Sample Volume (mL):	10500 ml		
Clarity (ex. Clear, Cloudy, Silty):	Cloudy, Solot	w/	
Color (ex. Clear, Gray, Tan, Brown, Black):	Bray tan	100	(Tim at 1200)
QA/QC Sample ID:		-103	(Time: 1200)

		Subsamp	le Information		
Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result
# 1	10/19/19 3.01	S	13	8:24	S
2	8:06	5	14	8:25	S
3	8.09	S	15	8:27	S
4	8:11	S	16	8:28	S
5	8:13	S	17	8:30	S
6	8.14	S	18	8:32	5
7	8:16	S	19	8:34	S
8	8:17	S	20	8:37	S
9	8:19	S	21	* 8:39	S
10	8:20	S	22		
11	15:8	S	23		
12	8:23	S	24		

Comments:

If Sampling is Complete:

- Power off Samplers
- Disable Flow Meter pacing
- □ Resume Flow Meter program
- □ Verify Flow Meter is running
- □ Add ice to sample transport cooler □ Complete COC form; arrange transport to lab
- □ Current Velocity Cutoff (fps):

If Continuing Sampling (sample bottle change-out):

2

- □ Keep Flow Meter running
- □ Install new 15L bottle; add ice
- □ Restart program from beginning;

Date/Time Restarted: _____

□ Verify running

			Liquid Height	Approxim:	ate Sample Volu	me Convers	sion Chart	al.	
Liquid	Sample	Liquid	Sample	Liquid Height	Sample	Liquid Height	Sample Volume	Liquid Height	Sample Volume
Height	Volume	Height 3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
0.5"	400 mL 800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.0" 1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.0	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

STATION: Chrisfield Personnel: America

Composite Sample Collection

Bottle 2 of 2 Date/Time On-Site: <u>10/19</u>

_] Halt Sampler program			
Put lid on sample bottle; label sample bottle			
Sample ID:	191019-09	-WC	
Approx Sample Volume (mL):	800mL -> See	comment	
Clarity (ex. Clear, Cloudy, Silty):			
Color (ex. Clear, Gray, Tan, Brown, Black):			
QA/QC Sample ID:		-103	(Time: 1200)

Subsample Information							
Trigger #	Date/Time Sampler Message/ Subsample Result		Trigger. #.	Date/Time	Sampler Message/ Subsample Result		
1	10-19-19 902	success	13	1208	SUCCESS		
2	922	success	14	1210			
3	1011	No move liquid	15	12/1			
4	1047	Success	16	12/3			
5	1121	No more liquid	17	1216			
6	1150	success	18	1218			
7	1154	1	19	1221			
8	1157		20	1224			
9	1200		21	1230			
10	1202		22	1237			
11	1204		23	1249			
12	1200	×	24	1311	A.		

Comments:

and majority of the sample went into the sampler base instead of the bottle. Not submitting this.

If Sampling is Complete:	If Continuing Sampling (sample bottle change-out):
X Power off Samplers	□ Keep Flow Meter running
Disable Flow Meter pacing	□ Install new 15L bottle; add ice
Resume Flow Meter program	Restart program from beginning;
Verify Flow Meter is running	Date/Time Restarted:
Add ice to sample transport cooler	□ Verify running
Complete COC form; arrange transport to lab	,
Current Velocity Cutoff (fps):	

A Start Re		6 . The second	Liquid Height	vs. Approxim	ate Sample Volu	me Conve	rsion Chart	19 mg 40	Suffering and Su
Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid	Sample .	Liquid	Sample
0.5"	400 mL	3.0"	4 3500 mL	5.5"	7250 mL	Height	2 Volume 11000 mL	Height	Volume 14750 mL
1.0"	800 mL 🕡	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5""	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL 🛓	11.5%	16250 mL
2.0"	2000 mL 2750 mL	4.5"	5750 mL 6500 mL	7.0"	9500 mL	9.5"	13250 mL	" After 12"	1" = 1500 mL
1.V	2100 1112	J.V	1 0000 mL	1.0	10250 mL	10.0"	14000 mL	Lab min	8.000 mL

Grab Sample Data Form: Phase II

STATION: CLASSELL		
Personnel: <u>TA</u> ZD	Date/Time On-Site: _	8:04
	Grab Sample Times	

	Sample ID.	TSS	TKN	ТР	NOx	NO _x Filtered	E.Coli	OP	OP Filtered
Site Sample	191019- (19-WG	08 13	8.15	2:16	8:17	8:28	8:19	8119	8:26
Preserved? *		N/A		N/A	N/A	M	N/A	N/A	N/A
	Labeled?	×.	M	X	×.	X	X	X	N

		Q	A/QC Sar	nple Tim	nes				
	Sample ID	TSS	TKN	ТР	NOx	NO _x Filtered	E.Coli	OP	OP · Filtered
Field Duplicate	-101								
Preserved? *		N/A		N/A	N/A		N/A	N/A	N/A
Labeled?									
Field Blank	-001								
Preserved? *		N/A		N/A	N/A		N/A	N/A	N/A

*NOTE: Use 1 drop of H₂SO₄ per 100 mL of sample volume

	-
рН (S.U.)	Cond (uS/cm)
7.01	0.0
	201

 Sampler Current Status

 First Subsample Date/Time

 Last Subsample Date/Time

 # of Subsamples taken

Comments:

Date/Time Off-Site: 10/19/19 8 52 am

Didn't work?

Set Up/ Shut Down Form - Phase II

STATION: Edge Wood

UP

rsonnel: _A	ML		Date/Time On-Site: 10-18-19 1240						
Date	Time	Level (in)	Flow (cfs)	Velocity (fps)	Total (cf)	Battery (V)			
10/18	1300	2.890	0.319	1.051	2931080	12.233			
	Downloaded to: gger Condition:	R6	12 ft						
	Pulse Interval:	157 C	5 1.2 F	/ 5					

<u>On-Site</u>	Flowlink (Refer to Flowlink Instructions, if needed)
Replace battery if v<11.9	Direct or Remote; Date/time 10/18 1245
🖾 Perform Decon. Cycle	X Retrieve data and review recent flow history
Place 15L sample bottle in cooler, with ice	🖾 Change Wireless Power Control to Storm Event
Remove jar lid and put in clean re-sealable plastic bag	Change Data Storage Rates to 1 minute for Level,
Set Sampler program parameters (refer Table 103)	Velocity, and Flow
Verify all cable and tubing connections	Enable Sampler: On Trigger, and set velocity equation
Verify Sampler Program is running	🖾 Set Latch
Verify latches are secure	Set Sampler Pacing to Flow Paced, and set trigger volume

Comments:

Date/Time Off-Site:

nel: <u> </u>	1 TA		Date/Time On-Site: 10/21 1000					
Date Time		Level (in)	Flow (cfs)	Velocity (fps)	Total (cf)	Battery (V)		
0/21	would	not she	w real	time re	adinas			
Do	wnloaded to:	Rb						

<u>On-Site</u>	Flowlink (Refer to Flowlink Instructions, if needed)				
🕱 Replace battery if v<11.9	A Direct or Remote; Date/time 1008				
😿 Remove battery from Sampler	Retrieve data				
•	🔀 Change Wireless Power Control to Dry Weather				
	Change Data Storage Rates to 15 minutes for Level,				
	Velocity, and Flow				
	🛱 Enable Sampler: Never				

Date/Time Off-Site: 10/21

test Total Flow VS Total Flow 2

Composite Sample Collect	ion
	Bottle

STATION: EDGEWOOD Personnel: TL T

Date/Time On-Site:

0 of 0 10.02

 □ Halt Sampler program

 □ Put lid on sample bottle; label sample bottle

 Sample ID:
 -WC

 Approx Sample Volume (mL):

 Clarity (ex. Clear, Cloudy, Silty):

 Color (ex. Clear, Gray, Tan, Brown, Black):

 QA/QC Sample ID:
 -103

		Subsampl	e Information		
Trigger #	Date/Time	Sampler Message/ Subsample Result	Trigger #	Date/Time	Sampler Message/ Subsample Result
1	10-18-19 13:03	program started	13		
2	10-18-19 13:03	frogram Disabled	14		
3	10-19-19 05:54	program inabled	15		
4	10-19-19 09:45	Manual Pause	16		
5	10-19-19 09:56	Manuel resume	17		
6			18		
7			19		
8			20		
9			21		
10			22		
11			23		
12			24		

If Sampling is Complete:	If Continuing Sampling (sample bottle change-out):
Power off Samplers	Keep Flow Meter running
Disable Flow Meter pacing	Install new 15L bottle; add ice
Resume Flow Meter program	Restart program from beginning;
Verify Flow Meter is running	Date/Time Restarted:
Add ice to sample transport cooler	Verify running
Complete COC form; arrange transport to lab	
Current Velocity Cutoff (fps):	

			Liquid Height	s. Approxim	ate Sample Volu	ume Convers	sion Chart		
Liquid Height	Sample Volume	Liquid Height	Sample	Liquid Height	Sample Volume	Liquid Height	Sample Volume	Liquid Height	Sample Volume
0.5"	400 mL	3.0"	3500 mL	5.5"	7250 mL	8.0"	11000 mL	10.5"	14750 mL
1.0"	800 mL	3.5"	4250 mL	6.0"	8000 mL	8.5"	11750 mL	11.0"	15500 mL
1.5"	1400 mL	4.0"	5000 mL	6.5"	8750 mL	9.0"	12500 mL	11.5"	16250 mL
2.0"	2000 mL	4.5"	5750 mL	7.0"	9500 mL	9.5"	13250 mL	After 12"	1" = 1500 mL
2.5"	2750 mL	5.0"	6500 mL	7.5"	10250 mL	10.0"	14000 mL	Lab min	8,000 mL

Grab Sample Data Form: Phase II

	Sonnel: JA, ZD	— e/Time O	n-Site:	0/19/10	1 9	:240	am		
			Grab Sam	ple Time	s				_
	Sample ID	TSS	TKN	TP	NOx	NO _x Filtered	E.Coli	OP	OP Filtered
Site Sample	191019-08 -wg	9:29	9:35	9:36	9:38	9:42	9:37	9:38	9:41
Preserved? * N//		N/A	凶	N/A	N/A	区	N/A	N/A	N/A
Labeled?			DX.	Ø	M	Ŕ	Ø	×.	, BL

		Q	A/QC Sar	nple Tim	ies				
	Sample ID	TSS	TKN	ТР	NOx	NO _x Filtered	E.Coli	OP	OP Filtered
Field Duplicate	-101	164							
Preserved? *		N/A		N/A	N/A		N/A	N/A	N/A
Labeled?									
Field -001 Blank									
Preserved? *		N/A		N/A	N/A		N/A	N/A	N/A
Labeled?									

*NOTE: Use 1 drop of H₂SO₄ per 100 mL of sample volume

Field Parameters						
Meter number	Date	Time	Temp (C)	D.O. (mg/L)	pH (S.U.)	Cond (uS/cm)
MPOG	10/19/19	9:27	8.9	10.42	7.26	0.0

Sampler Cu	rrent Status
First Subsample Date/Time	
Last Subsample Date/Time	
# of Subsamples taken	

Date/Time Off-Site: 10/19/19 9:54 am