# NPDES Phase I Annual Stormwater Monitoring Report for Water Year 2019

Prepared for Ada County Highway District January 6, 2020

# NPDES Phase I Annual Stormwater Monitoring Report for Water Year 2019

Prepared for Ada County Highway District January 6, 2020



950 West Bannock Street, Suite 350 Boise, ID 83702 Phone: 208.389.7700 Fax: 208.389.7750

# **Table of Contents**

| List            | of Figu | ures                                                        |                                                        | V   |  |  |
|-----------------|---------|-------------------------------------------------------------|--------------------------------------------------------|-----|--|--|
| List            | of Tab  | les                                                         |                                                        | V   |  |  |
| Exe             | cutive  | Summar                                                      | у                                                      | 1   |  |  |
| 1. Introduction |         |                                                             |                                                        |     |  |  |
| 2.              | Samp    | ling Stat                                                   | ions and Components                                    | 2-1 |  |  |
|                 | 2.1     | Monitor                                                     | ed Subwatersheds                                       | 2-1 |  |  |
|                 | 2.2     | Monitor                                                     | ing Equipment                                          | 2-1 |  |  |
|                 |         | 2.2.1                                                       | Flowmeters and Automatic Samplers                      | 2-1 |  |  |
|                 |         | 2.2.2                                                       | Handheld Field Parameter Instruments                   | 2-2 |  |  |
|                 |         | 2.2.3                                                       | Rain Gauges                                            | 2-2 |  |  |
|                 | 2.3     | Samplin                                                     | g Criteria                                             | 2-2 |  |  |
|                 | 2.4     | Monitor                                                     | ed Components                                          | 2-2 |  |  |
|                 | 2.5     | Laborat                                                     | ory Analysis                                           | 2-3 |  |  |
| 3.              | Storm   | water M                                                     | onitoring Events                                       | 3-1 |  |  |
|                 | 3.1     | October                                                     | 9, 2018, Storm Event                                   | 3-1 |  |  |
|                 |         | Sample                                                      | Collection                                             | 3-2 |  |  |
|                 | 3.2     | Novemb                                                      | per 27, 2018, Storm Event                              | 3-2 |  |  |
|                 |         | Sample                                                      | Collection                                             | 3-2 |  |  |
|                 | 3.3     | Februar                                                     | y 2, 2019, Storm Event                                 | 3-3 |  |  |
|                 |         | Sample                                                      | Collection                                             | 3-3 |  |  |
|                 | 3.4     | April 14                                                    | , 2019, Storm Event                                    | 3-3 |  |  |
|                 |         | Sample                                                      | Collection                                             | 3-4 |  |  |
|                 | 3.5     | May 16                                                      | , 2019, Storm Event                                    | 3-4 |  |  |
|                 |         | Sample                                                      | Collection                                             | 3-4 |  |  |
|                 | 3.6     | Septem                                                      | ber 6, 2019, Storm Event                               | 3-4 |  |  |
|                 |         | Sample                                                      | Collection                                             | 3-5 |  |  |
|                 | 3.7     | .7 Runoff Coefficients                                      |                                                        | 3-5 |  |  |
|                 | 3.8     | Velocity                                                    | Cutoffs                                                | 3-5 |  |  |
| 4.              | Water   | Nater Quality Results and Monitored Event Pollutant Loading |                                                        |     |  |  |
|                 | 4.1     | Wet We                                                      | ather Analytical Results                               |     |  |  |
|                 |         | 4.1.1                                                       | Dissolved Oxygen and Oxygen Demand                     | 4-1 |  |  |
|                 |         | 4.1.2                                                       | pH, Temperature, Conductivity, Hardness, and Turbidity | 4-1 |  |  |
|                 |         | 4.1.3                                                       | Bacteria                                               | 4-2 |  |  |
|                 |         | 4.1.4                                                       | Solids                                                 | 4-2 |  |  |
|                 |         | 4.1.5                                                       | Nutrients                                              | 4-2 |  |  |
|                 |         | 4.1.6                                                       | Metals                                                 | 4-2 |  |  |

Brown AND Caldwell

|              | 4.2                               | Monito                    | red Event Pollutant Loading                         | 4-2   |  |  |
|--------------|-----------------------------------|---------------------------|-----------------------------------------------------|-------|--|--|
| 5.           | Flow                              | 5-1                       |                                                     |       |  |  |
|              | 5.1                               | Rain Ga                   | auge Data                                           | 5-1   |  |  |
|              | 5.2                               | Flowme                    | eter Data                                           | 5-1   |  |  |
| 6.           | Quality Assurance/Quality Control |                           |                                                     | 6-1   |  |  |
|              | 6.1                               | Data Qu                   | uality Discussion                                   | 6-1   |  |  |
|              | 6.2                               | Octobe                    | r 9, 2018, Storm Event                              | 6-1   |  |  |
|              | 6.3                               | Novem                     | ber 27, 2018, Storm Event                           | 6-2   |  |  |
|              | 6.4                               | Februa                    | ry 2, 2019, Storm Event                             | 6-2   |  |  |
|              | 6.5                               | April 14                  | , 2019, Storm Event                                 | 6-3   |  |  |
|              | 6.6                               | May 16, 2019, Storm Event |                                                     |       |  |  |
|              | 6.7                               | Equipm                    | ent Maintenance                                     | 6-3   |  |  |
| 7.           | Data                              | Manage                    | ment                                                | 7-1   |  |  |
| 8.           | Revie                             | ew of Mo                  | nitoring Data Collected under the 2013 NPDES Permit | 8-1   |  |  |
|              | 8.1                               | Data In                   | cluded in Review                                    | 8-1   |  |  |
|              | 8.2                               | Method                    | ls                                                  | 8-2   |  |  |
|              | 8.3                               | Results                   |                                                     |       |  |  |
|              |                                   | 8.3.1                     | Data Evaluation                                     | 8-2   |  |  |
|              |                                   | 8.3.2                     | Correlations Between Variables                      | 8-3   |  |  |
|              | 8.4                               | Statistic                 | cal Conclusions                                     | 8-4   |  |  |
| 9.           | Amer                              | icana Su                  | bwatershed Monitoring Summary                       | 9-1   |  |  |
| 10.          | Sumr                              | mary of V                 | VY 2019 and Next Steps                              |       |  |  |
| 11.          | Refer                             | rences                    |                                                     |       |  |  |
| Tab          | es                                |                           |                                                     | TAB-1 |  |  |
| FiguresFIG-1 |                                   |                           |                                                     |       |  |  |
| Арр          | endix                             | A: Storm                  | Event Hydrographs                                   | A-1   |  |  |
| Арр          | endix                             | B: Labor                  | atory Analytical Reports                            | B-1   |  |  |
|              |                                   |                           | cana Subwatershed Monitoring Summary                |       |  |  |



# List of Figures

- Figure 1. Vicinity map: Phase I outfall sampling
- Figure 2. Lucky monitoring station and drainage area
- Figure 3. Whitewater monitoring station and drainage area
- Figure 4. Main monitoring station and drainage area
- Figure 5. Americana monitoring station and drainage area
- Figure 6. WY 2019 rain gauge monthly totals
- Figure 7. Comparison of primary parameters between stations 2013-2019
- Figure 8. Box plots showing comparison of orthophosphate between seasons, 2013-2019
- Figure 9. Box plots showing comparison of temperature between seasons, 2013-2019
- Figure 10. Box plots showing comparison of TSS between seasons, 2013-2019

## List of Tables

- Table 1. Monitoring Station Information
- Table 2. Analytical Methods for Stormwater Constituents in Wet Weather Samples
- Table 3. Monitored Storms and Samples Collected
- Table 4. Monitored and Targeted Storms and Samples Collected
- Table 5. Monitored Storm Flow Summary
- Table 6. Field Parameters Summary–Wet Samples
- Table 7. Analytical Results Summary–Wet Samples
- Table 8. Event Loading for Monitored Drainages
- Table 9. Event Loading per Acre
- Table 10. QC Samples Collected
- Table 11. Storm Event QC Sample Summary
- Table 12. Equipment QC Sample Summary
- Table 13. Field Parameter Results for Individual Sites
- Table 14. Laboratory Sample Analyte Results for Americana
- Table 15. Laboratory Sample Analyte Results for Lucky
- Table 16. Laboratory Sample Analyte Results for Main
- Table 17. Laboratory Sample Analyte Results for Stilson
- Table 18. Laboratory Sample Analyte Results for Whitewater

Brown AND Caldwell

# **Executive Summary**

The National Pollutant Discharge Elimination System (NPDES) Phase I Permit No. IDS-027561 (NPDES Permit) was issued by the United States Environmental Protection Agency to Ada County Highway District (ACHD), Boise State University, City of Boise, City of Garden City, Drainage District #3, and the Idaho Transportation Department District #3, referred to as the "Permittees." The current NPDES Permit was effective on February 1, 2013. Water year (WY) 2019 is the sixth year of stormwater outfall monitoring under this permit.

The NPDES Permit requires the collection of stormwater runoff samples to monitor the quality of stormwater runoff within the permitted area. ACHD currently has four outfall monitoring sites and during WY 2019, began subcatchment monitoring in the Americana subwatershed. At each outfall monitoring location ACHD collects grab stormwater runoff samples manually and uses automated equipment to collect flow-proportional stormwater runoff samples. The automated equipment is programmed for the expected amount of runoff based on National Weather Service forecasts and runoff coefficients calculated from historical flow data and subwatershed characteristics such as percent impervious ground cover and stormwater controls.

Americana subwatershed monitoring conducted in WY 2019 consisted of flow monitoring at seven locations, in addition to the Americana outfall monitoring station, to develop a better understanding of wet and dry weather flows in the subwatershed and help to meet the monitoring objectives outlined in the Americana subwatershed monitoring plan (ACHD, 2019). This information will also be used to help select subcatchment water quality monitoring location(s) for use during WY 2020.

Methods used for stormwater outfall monitoring are detailed in Section 2. The NPDES Permit requires that stormwater runoff samples be collected from each monitoring station during three separate storm events each year and analyzed according to the constituent list shown in Table 2. All successful WY 2019 samples were collected during five storm events as detailed in Table 3. Monitored and targeted storms are presented in Table 4, and event flow and precipitation summaries are presented in Table 5. Monitored storms details are provided in Section 3.

Stormwater runoff samples were collected during each event and submitted to the City of Boise Water Quality Laboratory of Boise, Idaho, for laboratory analysis of selected components. Laboratory and field analytical results are presented in Tables 6 and 7. Event pollutant loading estimates are presented in Tables 8 and 9. Analytical data results are summarized in Section 4.

During WY 2019, six storm events were targeted, and at least three successful grab samples were collected for all permit-required constituents at all monitoring sites. Three successful composite samples were collected for all permit-required constituents at all sites except Lucky. Dissolved metals were only analyzed for two successful sampling events during WY 2019 at Lucky.

During WY 2019, precipitation data were recorded at station-specific rain gauges throughout the year. Flow data were recorded continuously at the Whitewater and Americana locations and during targeted events at the other monitoring stations. Flow and rain data are discussed in Section 5 and presented in Table 5 for the monitored events.

Quality assurance/quality control (QA/QC) measures were used to validate monitoring data according to the *Quality Assurance Program Plan* and the *Storm Water Outfall Monitoring Plan*. Both documents are appendices of the *ACHD Phase I Stormwater Management Plan*. Data included in this report has been validated according to the performance criteria outlined in these documents.



Section 7 provides an overview of data management activities under this NPDES Permit. QA/QC measures conducted during WY 2019 are discussed in Section 6. Quality control sample results are reported in Tables 10 through 12.

Section 8 includes a statistical analysis of the analytical data collected to date under the current permit, and the results are presented in Appendix B and Figures 7 through 10.

Section 9 provides an overview of Americana subwatershed monitoring during WY 2019. The complete Americana subwatershed monitoring summary is attached as Appendix C

Section 10 includes a permit requirement summary and planned future program improvements.

Section 11 is a list of references used in compiling information for this report.



# Section 1 Introduction

The United States Environmental Protection Agency (EPA) regulates municipal stormwater discharges under the Clean Water Act. The Phase I Stormwater Rules require Municipal Separate Storm Sewer Systems (MS4s) serving incorporated places or counties with a 1990 population of over 100,000 to have a discharge permit under the National Pollutant Discharge Elimination System (NPDES). EPA Region 10 issued the second cycle Phase I NPDES MS4 Permit No. IDS-027561 (NPDES Permit) to Ada County Highway District (ACHD), Boise City, Ada County Drainage District No. 3, Idaho Transportation Department District 3, Boise State University, and Garden City (permittees), effective February 1, 2013, and expiring January 30, 2018. Water year (WY) 2019 is the sixth year of stormwater monitoring activities under the NPDES Permit and the second year under administrative extension.

The Stilson monitoring site was uninstalled in WY 2018 due to an intersection upgrade that resulted in reconfiguring the MS4 and an inaccessible monitoring location. This change left ACHD with four outfall monitoring sites for WY 2019. ACHD communicated these circumstances to EPA Region 10 and outlined a plan to conduct additional monitoring in the Americana subwatershed instead of replacing the Stilson monitoring site with another outfall monitoring site. The EPA communicated an understanding of ACHD's need to adapt the monitoring plan in a letter dated June 14, 2018. WY 2019 was the first year of additional monitoring in the Americana subwatershed.

This annual report describes stormwater monitoring conducted during WY 2019, extending from October 1, 2018, through September 30, 2019. This report includes a summary of the monitoring methods used, storm descriptions, rain gauge data, hydrologic data, stormwater quality data, quality assurance and quality control (QA/QC) results, data management, statistical analysis, and an overall program summary. Boise and Garden City are located in the lower Boise River watershed (United States Geological Survey Hydrologic Unit Code 17050114) in southwest Idaho. Boise is the state capital and the largest urban area in Idaho. According to the United States Census Bureau, Boise and Garden City had a combined population of 216,643 in 2010 (United States Census Bureau, 2015). The Phase I area is served by MS4s operated by several different entities.

The average elevation of the area is approximately 2,710 feet (ft). The Boise Front rises to elevations of approximately 6,000 ft within a few miles to the northeast of the permit area, and the Owyhee mountains about 35 miles southwest of the permit area reach over 7,500 ft. The orographic influences of each of these ranges impact the precipitation patterns through the area. This situation contributes to less effective and variable forecasting of storm events. Reported weather data and forecast information comes from the local National Weather Service (NWS) station (WBAN #24131), located since 1948 at the Boise airport (NWS, 2009).

The climate is semi-arid; winters are cool and wet, and summers are warm and dry. The 30-year average precipitation is 11.73 inches, with 16.67 inches observed at the Boise airport during WY 2019 (NWS, 2019). WY 2019 was a wet year, with most precipitation in the early spring months. An annual summer drought is typical with precipitation events consisting mostly of convective storm events with short duration and high intensity.

Flow in the Boise River between Lucky Peak Dam (River Mile 64) and the mouth is controlled primarily through reservoir regulation, irrigation withdrawals, irrigation return flows, and shallow



groundwater seepage (Thomas and Dion, 1974). About half of the annual runoff (1 million acre feet) from the watershed above Boise is stored behind three upstream dams (Lucky Peak, Arrowrock, and Anderson Ranch). These upstream reservoirs supply about 350,000 acres in the lower Boise River basin with irrigation water and provide flood control for the lower Boise watershed. Flood control releases from Lucky Peak can occur during the winter and spring and can result in high stream flows. Typically, minimum flows in the reach of the river adjacent to Boise and Garden City occur during the months of October through April.

The 2.32-mile section of the Lower Boise River (LBR) between Lucky Peak and the diversion dam has been altered substantially. The Idaho Department of Environmental Quality (Idaho DEQ) has designated this segment as impaired or threatened by low flow alteration but does not require a total maximum daily load (TMDL) allocation.

The EPA approved a sediment and bacteria TMDL in January 2000 for the LBR from Veterans Memorial Parkway to the mouth (Idaho DEQ, 1998). An addendum to this TMDL was published in June 2008. The bacteria loading in the LBR TMDL was originally based on the Idaho criteria for fecal coliform. However, TMDL compliance is now based on *E. coli* due to changes to the State of Idaho water quality criteria during 2000. In 2011, a phosphorus TMDL was developed for Lake Lowell in the LBR watershed.

The final Snake River-Hells Canyon (SR-HC) TMDL document was approved by the EPA in July 2004, which addresses bacteria, nutrients, nuisance algae and dissolved oxygen (DO), pesticides, pH, sediment, temperature, and total dissolved gas. Mercury has also been identified as a concern. However, developing a TMDL for mercury has been postponed (Idaho DEQ, 2006b). The final SR-HC TMDL document includes a seasonal (May through September) phosphorus TMDL and a LBR phosphorus load allocation of 242 kilograms (534 pounds) per day. In 2009, the EPA added the LBR to Idaho's 2008 Section 303(d) list for total phosphorus, sediment, and bacteria. There is currently a Boise River TMDL for sediment and bacteria. The Boise River phosphorous TMDL addendum was approved by EPA Region 10 in December 2015. A sediment and bacteria TMDL addendum was approved by EPA Region 10 in September 2015 for tributaries of the Boise River including Fivemile Creek, Tenmile Creek, Ninemile Creek, and Indian Creek. Stormwater has wasteload allocations in each of the 2015 TMDL addendums.



# **Section 2**

# Sampling Stations and Components

Stormwater monitoring methodology for this program has been developed in compliance with the NPDES Permit. The sampling locations and methods are summarized below, and additional details are provided in the *Quality Assurance Program Plan* (QAPP) (ACHD, 2014a) and the *Storm Water Outfall Monitoring Plan* (SWOMP) (ACHD, 2014b).

The objective of stormwater outfall monitoring is to collect a minimum of three representative stormwater monitoring events each year from four different monitoring locations (Figure 1), as stipulated in the NPDES Permit. Both grab and flow-weighted composite samples are collected during storm events to meet this objective.

# 2.1 Monitored Subwatersheds

The stormwater monitoring network consists of four monitored subwatersheds (Lucky, Whitewater, Main, and Americana). Monitoring stations are located near the subwatershed outfalls with dedicated monitoring and sampling equipment installed at each location. The Main and Americana systems discharge directly to the Boise River. The Lucky and Whitewater drainages both discharge to tributaries of the Boise River.

Monitoring station locations, subwatershed areas, land use, and groundcover characteristics are described in Table 1. Drainage area maps for sites are presented in Figures 2 through 5.

# 2.2 Monitoring Equipment

This section provides details on the monitoring equipment used to characterize stormwater flows in the individual monitoring subwatersheds. This equipment includes flowmeters, automatic samplers, handheld field parameter instruments, and rain gauges. Monitoring methods reflect the sample collection recommendations for each analytical method for each constituent.

#### 2.2.1 Flowmeters and Automatic Samplers

Monitoring stations are equipped with Hach flow and sampling equipment: Hach 950 area velocity (AV) flowmeters and 900 MAX portable liquid samplers are installed at Whitewater and Main. Americana also had this equipment configuration at the beginning of WY 2019, but the sampler was replaced with a Hach AS 950 portable liquid sampler in August 2019. Lucky started WY 2019 with a Hach AS 950 portable sampler and Hach 950 flowmeter, but the Hach 950 flowmeter was replaced later in the year with a Hach AV9000S AV analyzer module. Each autosampler is equipped with, and programmed to fill, one 15-liter low-density polyethylene carboy for flow-weighted composite sample collection. The submerged AV sensors and sample intakes are mounted on the inverts of existing stormwater pipes. Specific monitoring equipment orientation is detailed in the SWOMP.

The monitoring station flowmeters trigger the associated autosamplers to collect flow-proportional composite stormwater runoff samples using a "trigger volume." The trigger volume is based on the expected total precipitation as described in Section 3.



#### 2.2.2 Handheld Field Parameter Instruments

Handheld multiparameter instruments are used to collect instantaneous data during grab sample collection. Field parameters were collected using an In-Situ smarTROLL multiparameter handheld device. This multiparameter instrument allows the instant collection of water quality parameters from a mobile device. An iPhone 5 was used to connect to the instrument on site and display live data.

#### 2.2.3 Rain Gauges

ACHD currently maintains four rain gauge sites representative of the monitored drainage areas (locations shown on Figure 1). The rain gauges provide continuous precipitation data throughout the water year. The program uses Global Water and Hach tipping-bucket style rain gauges that measure rainfall depths in 0.01-inch increments. The Cynthia Mann, Front Street, and East rain gauges are equipped with HOBO data loggers. A Hach rain gauge is installed at Whitewater and is connected to the continuously monitoring flowmeter installed at that site. At sites equipped with HOBO data loggers, a primary and a backup data logger are used to record tip measurements. The NWS maintains and reports measured rain events from a rain gauge located at the Boise airport. This data is used to supplement the data collected at the rain gauge sites maintained by ACHD, as needed.

# 2.3 Sampling Criteria

The flowmeters and autosamplers are manually programmed, based on weather predictions issued by the NWS. Target criteria for monitoring storm events are listed below.

- The probability of measurable precipitation should be at least 60 percent.
- The predicted precipitation should be greater than 0.10 inch in a 12-hour period.
- The event should be separated by a permit-required minimum of 48 hours and/or programidentified minimum of 72 hours of dry weather from the previous measurable storm event (rainfall greater than 0.10 inch).
- Sampling events are ideally separated by at least 30 days.

# 2.4 Monitored Components

Stormwater runoff samples were analyzed according to the analytical requirements listed in the NPDES Permit. These constituents and associated analytical methods are presented in Table 2. The NPDES Permit requires the following:

Sample collection, preservation, and analysis must be conducted according to sufficiently sensitive methods/test procedures approved under 40 Code of Federal Regulations (CFR) Part 136, unless otherwise approved by EPA. Where an approved 40 CFR Part 136 method does not exist, and other test procedures have not been specified, any available method may be used after approval from EPA.

As such, the methods identified in Table 2 are the preferred options. Sample, laboratory, or instrument conditions may require substituting an alternate method.

Field parameter measurements provide pH, temperature, conductivity, and DO data. Additional water quality data is provided by laboratory analyses of both grab and composite samples. Table 2 also identifies the components to be collected by grab sampling and as flow-weighted composite samples.



Phase I Annual Report WY2019

# 2.5 Laboratory Analysis

During WY 2019, all laboratory analyses for both grab and composite samples were performed by the City of Boise Water Quality Laboratory (WQL). Laboratory analytical reports are included in Appendix B with copies of chain-of-custody forms for each sample.



# Section 3 Stormwater Monitoring Events

The NPDES Permit requires that stormwater runoff samples be collected from each monitoring station during three separate storm events each year and analyzed according to the methods listed in Table 2. Six individual storm events were targeted during WY 2019. Successful stormwater runoff samples were collected from the first five events:

- October 9, 2018
- November 27, 2018
- February 2, 2019
- April 14, 2019
- May 16, 2019
- September 6, 2019

Additional storms are typically targeted due to low composite sample volume (insufficient volume for completion of all requested analyses), or unmet QA/QC criteria. In this way, more than three storm events are generally targeted to collect complete analytical parameters. During WY 2019, the six storms listed above were targeted to attempt to get a full set of three stormwater runoff samples from each site. Weather forecasting is often complex and inconsistent. Many storms that are targeted do not meet program criteria at one or more monitoring stations. In this case, sample results from storm events that do not meet acceptance criteria do not count for program requirements and create a void in sample requirements for that monitoring station. Toward the end of WY 2019, only monitoring stations that were lacking accepted samples were targeted. Further discussion of QA/QC measures as well as sampling and equipment comments is included in Section 6.

Information about the storms monitored during WY 2019, including types of samples collected and composite sample information, is summarized in Tables 3 and 4. Velocity cutoffs as well as flow and precipitation volumes during monitored storms are summarized in Table 5, and hydrographs are included as Appendix A. Stormwater runoff water quality data for field parameters and analytical samples are summarized in Tables 6 and 7, respectively.

# 3.1 October 9, 2018, Storm Event

The following narrative summary includes a discussion of the forecast on which monitoring decisions were based as well as setup and sampling activities for the October 9, 2018, storm event.

#### Monday, October 8, 2018

- On Monday morning, the NWS issued a forecast for rain showers in the Boise area from 0600 Tuesday into the afternoon and evening. Precipitation for the event was expected to total 0.10– 0.30 inch.
- Setup was accomplished Monday afternoon. An expected precipitation depth of 0.11 inch was used to set trigger volumes.



#### Tuesday, October 9, 2018

- Precipitation started around 0815 on Tuesday morning, continuing throughout the morning and early afternoon. This large wave ended around 1300.
- Smaller amounts of rain continued into the evening.
- Precipitation totals ranged between 0.88 and 0.97 inch at local rain gauges.

#### **Sample Collection**

Main, Americana, and Whitewater monitoring stations were programmed to collect flow proportional composite samples during the storm. Site-specific velocity cutoff values were calculated and programmed into the flowmeters. Wet grab samples were collected at all monitoring sites within the first 2 hours of flow. All grab samples were submitted to the WQL at 1045 on October 9.

Composite samples were collected at Whitewater, Main, and Americana monitoring stations. Volumes of composite samples submitted were sufficient for all parameters. Analytical results for Whitewater are qualified for representativeness. The composite sample represents only 54 percent of the total storm flow and does not include the first hour of flow. More information can be found in Section 6. All composite samples were submitted to the WQL at 1057 on October 10.

### 3.2 November 27, 2018, Storm Event

The following narrative summary includes a discussion of the forecast on which monitoring decisions were based as well as setup and sampling activities for the November 27, 2018, storm event.

#### Monday, November 26, 2018

- On Monday morning, the NWS issued a forecast for rain showers in the Boise area from late morning Tuesday into the afternoon and evening. Chance of precipitation was 100 percent for Tuesday evening; a total precipitation depth of 0.20 inch was predicted.
- Setup was accomplished Monday afternoon. An expected precipitation depth of 0.11 inch was used to set trigger volumes.

#### Tuesday, November 27, 2018

- Precipitation started around 1700 on Tuesday evening, and continued until around 2200.
- Precipitation totals ranged between 0.14 and 0.17 inch at local rain gauges

#### **Sample Collection**

Lucky, Main, Americana, and Whitewater monitoring stations were programmed to collect flow proportional composite samples during the storm. Site-specific velocity cutoff values were calculated and programmed into the flowmeters. Wet grab samples were collected at all monitoring sites within the first 2 hours of flow. Grab samples were submitted to the WQL at 2102 on November 27.

Composite samples were collected at Lucky, Main, and Americana monitoring stations. Volumes of composite samples submitted were sufficient for all parameters. All composite samples were submitted to the WQL at 1327 on November 28. The Lucky monitoring station experienced an equipment error; therefore, the composite sample did not meet sampling criteria. More information can be found in Section 6.

# 3.3 February 2, 2019, Storm Event

The following narrative summary includes a discussion of the forecast on which monitoring decisions were based as well as setup and sampling activities for the February 2, 2019, storm event.

#### Friday, February 1, 2019

- On Friday morning, the NWS issued a forecast for rain showers in the Boise area from around midnight throughout the day on Saturday. Rain was expected to continue into late Saturday night and early Sunday.
- Setup was accomplished Friday afternoon. An expected precipitation depth of 0.11 inch was used to set trigger volumes at all monitoring sites.

#### Saturday, February 2, 2019

- Precipitation started around 2000 on Saturday evening, and precipitation continued until 1200 on February 3.
- Precipitation totals ranged between 0.49 and 0.51 inch at local rain gauges.

#### **Sample Collection**

All four monitoring stations were programmed to collect flow proportional composite samples during the storm. Site-specific velocity cutoff values were calculated and programmed into the flowmeters. Wet grab samples were collected at all monitoring sites within the first 2 hours of flow. The grab samples were submitted to the WQL at 2112 on February 2. *E. coli* samples were analyzed outside of holding time. Reported values are qualified and considered estimates. More information can be found in Section 6.

Composite samples were collected at all four monitoring stations. Volumes of composite samples submitted were sufficient for all parameters. Composite samples were submitted to the WQL at 1000 on February 3. Analytical results for Lucky and Whitewater are qualified for representativeness, with only 64 percent and 67 percent of total runoff volume sampled, respectively. More information can be found in Section 6.

# 3.4 April 14, 2019, Storm Event

The following narrative summary includes a discussion of the forecast on which monitoring decisions were based as well as setup and sampling activities for the April 14, 2019, storm event.

#### Friday, April 12, 2019

- On Friday morning, the NWS issued a forecast for rain showers in the Boise area from Saturday evening until Sunday morning.
- Setup of Lucky and Whitewater was accomplished Friday afternoon. An expected precipitation depth of 0.11 inch was used to set trigger volumes.

#### Saturday, April 13, 2019

- Precipitation started around 2245 on Saturday evening and continued throughout the night and early morning of April 14.
- Precipitation totals ranged between 0.43 and 0.55 inch at local rain gauges.



#### Sample Collection

Lucky and Whitewater monitoring stations were programmed to collect flow proportional composite samples during the storm. Site-specific velocity cutoff values were calculated and programmed into the flowmeters. Wet grab samples were collected at all monitoring sites within the first 2 hours of flow. All grab samples were submitted to the WQL at 0127 on April 14.

Composite samples were collected at both targeted monitoring stations. Volumes of composite samples submitted were sufficient for all parameters. Composite samples were submitted to the WQL at 1135 on April 14.

# 3.5 May 16, 2019, Storm Event

The following narrative summary includes a discussion of the forecast on which monitoring decisions were based as well as setup and sampling activities for the May 16, 2019, storm event.

#### Wednesday, May 15, 2019

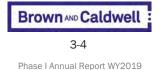
- On Thursday morning, the NWS issued a forecast for rain showers in the Boise area from midday Thursday to continue through Friday afternoon. The first 12 hours were expected to receive 0.29 inch.
- Setup of Lucky and Whitewater was accomplished Wednesday afternoon. An expected precipitation depth of 0.19 inch was used to set trigger volumes.

#### Thursday, May 16, 2019

- Precipitation started around 1630 on Thursday and was finished by 2000 that evening
- Precipitation totaled 0.22 inch at the Whitewater rain gauge. The Cynthia Mann rain gauge was clogged during this event, so Whitewater is referenced for Lucky.

#### **Sample Collection**

Lucky and Whitewater were programmed to collect flow proportional composite samples during the storm. Site-specific velocity cutoff values were calculated and programmed into the flowmeters.


Composite samples were collected at Lucky and Whitewater monitoring stations. Composite sample volume at Whitewater was sufficient for all parameters. However, the volume of the composite sample collected at Lucky was not sufficient to complete all analyses; dissolved parameters were not analyzed for this storm event at the Lucky monitoring station. Composite samples were submitted to the WQL at 1110 on May 17.

# 3.6 September 6, 2019, Storm Event

The following narrative summary includes a discussion of the forecast on which monitoring decisions were based as well as setup and sampling activities for the September 6, 2019, storm event.

#### Thursday, September 5, 2019

- On Thursday morning, the NWS issued a forecast for rain showers in the Boise area from Thursday evening through Friday morning. Chance of precipitation was 80 percent for Thursday evening; a total precipitation depth of 0.25 inch was predicted in localized areas.
- Setup of Lucky and Whitewater was accomplished Thursday afternoon. An expected precipitation depth of 0.19 inch was used to set trigger volumes.



#### Friday, September 6, 2019

- Continuous precipitation started around 1030 on Friday and was finished by 1230 that day.
- Precipitation totaled 0.22 inch at the Cynthia Mann rain gauge and 0.18 inch at the Whitewater rain gauge.

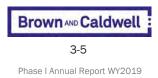
#### **Sample Collection**

Lucky and Whitewater were programmed to collect flow proportional composite samples during the storm. Site-specific velocity cutoff values were calculated and programmed into the flowmeters.

Composite samples were collected at Lucky and Whitewater monitoring stations. Composite sample volume at Whitewater was not sufficient for water quality analysis. Lucky experienced a power failure during the event, which prevented composite sampling. No samples were submitted to the WQL.

# 3.7 Runoff Coefficients

In order to collect a flow-weighted composite sample throughout each storm, estimates were calculated for the runoff volume expected at each station. The total estimated runoff calculation is a function of the rainfall amount expected (default value of 0.11 inch used during WY 2019) and the site-specific runoff coefficient. The site-specific runoff coefficients are derived from the percentage of impervious ground cover in the subwatershed and empirical values from observed storm data.


The expected runoff volume was then divided by the planned number of sample aliquots, and the resulting value was used as the trigger volume for programming the flowmeter. The trigger volume is the amount of flow that will be measured before the automatic sampler is triggered to collect a subsample. Therefore, the number of samples collected over the course of a storm is a result of the runoff volume expected for the total storm as forecasted at the time of station setup.

Refining runoff coefficients is an ongoing effort that is important to more accurately predict individual storm event runoff volumes and produce trigger volumes that are more likely to consistently result in composite samples of adequate volume that are representative of the whole storm. Historical data suggests that variability in the size, duration, and intensity of a storm, along with variability within the drainage area including soil moisture, temperature, snow cover, and a multitude of other smaller variables, all contribute to the actual volume of runoff discharging at each monitoring station.

Because of this variability, a revised set of runoff coefficients was developed near the end of WY 2018 based on site-specific flow and rain measurements recorded since 2012, effective impervious area values, and the unique characteristics of each subwatershed. These new coefficients more accurately represent the subwatersheds and are based on actual runoff volumes and characteristics of each subwatershed. The new runoff coefficients were used during WY 2019 to increase composite sample collection success and improve runoff volume estimates when measured flow data is not available.

# 3.8 Velocity Cutoffs

To reduce the possibility of collecting sample aliquots from base flows at the monitoring stations, the flowmeter at each station is programmed with a velocity cutoff value, as needed, during setup. The SWOMP identifies the approach to calculating event-specific velocity cutoffs. All calculated velocity cutoffs used during WY 2019 are included in Table 5.



# **Section 4**

# Water Quality Results and Monitored Event Pollutant Loading

Stormwater quality results and storm event pollutant loading calculations are presented in this section and the referenced tables and figures. The ultimate receiving water for all stormwater discharges monitored in this program is the LBR, either directly or indirectly (see Table 1). Designated uses (as defined in the Idaho Administrative Procedures Act 58.01.02.140.12 and 58.01.02.100.03.c) for the LBR include cold water aquatic life, salmonid spawning, domestic and agricultural water supply, and primary and secondary contact recreation.

# 4.1 Wet Weather Analytical Results

Comprehensive analytical results for monitored storm events during WY 2019 are presented in Tables 6 and 7. Components detected in stormwater runoff samples collected during this water year are discussed below. The data presented in the tables and text are reported with the same significant figures reported by the WQL.

The following individual constituent assessments offer WY 2019 minimum and maximum measured values. Qualified data are included in the range of measured/reported values. Each constituent detected during WY 2019 is described below using a calculated minimum and maximum concentration to determine range during WY 2019. Dissolved cadmium, total cadmium, and dissolved lead are the only constituents not detected in any WY 2019 wet weather samples.

#### 4.1.1 Dissolved Oxygen and Oxygen Demand

DO is recorded in the field using a handheld DO meter, and results are presented in Table 6. Oxygen demand concentrations are measured in composite samples and are presented in Table 7. All measurements are recorded in accordance with QAPP and SWOMP procedures. The ranges of values are presented below.

- D0 ranged from 0.24 to 10.59 milligrams per liter (mg/L).
- Biological oxygen demand—5-day (BOD5) concentrations ranged from 10.5 to >185 mg/L.
- Chemical oxygen demand (COD) concentrations ranged from 66.0 to 543 mg/L.

#### 4.1.2 pH, Temperature, Conductivity, Hardness, and Turbidity

This section includes the definition of the range of values sampled during wet weather monitoring. Temperature, pH, and conductivity results are presented in Table 6. The onsite measurement values were recorded in the field according to QAPP and SWOMP guidance. Hardness and turbidity values are measured at the WQL from composite samples. Results are presented in Table 7. The ranges of values are presented below.

- pH values ranged from 6.33 to 9.67 standard units.
- Temperature values ranged from 6.42 to 14.67 degrees Celsius.
- Conductivity values ranged from 22.6 to 314.6 micro Siemens per centimeter.
- Hardness values ranged from 13.6 to 85.3 mg/L as calcium carbonate.



• Turbidity values ranged from 12.7 to 59.9 nephelometric turbidity units.

#### 4.1.3 Bacteria

Bacteria samples collected for this program are grab samples. Samples were collected in accordance with QAPP and SWOMP guidance. *E. coli* concentration values ranged from 79.8 to 15,530 (most probable number per 100 milliliters).

#### 4.1.4 Solids

Total suspended solids (TSS) and total dissolved solids (TDS) are measured from the composite samples collected at each site. All samples were collected in accordance with QAPP and SWOMP procedures. The concentration value ranges are presented below.

- TSS concentrations ranged from 37.5 to 253 mg/L.
- TDS concentrations ranged from 30.3 to 282 mg/L.

#### 4.1.5 Nutrients

Nutrients include total phosphorus (TP); dissolved orthophosphate, as P (DOP); ammonia as N; nitrate + nitrite as N; and total Kjeldahl nitrogen (TKN). All samples were collected in accordance with QAPP and SWOMP procedures. The ranges of values are presented below.

- TP ranged from 0.303 to 2.19 mg/L.
- DOP concentrations ranged from 0.065 to 0.863 mg/L as P.
- Ammonia concentrations ranged from 0.145 to 2.67 mg/L as N.
- Nitrate + nitrite concentrations ranged from 0.153 to 0.747 mg/L as N.
- TKN concentrations ranged from 1.73 to 10.8 mg/L.

#### 4.1.6 Metals

Total and dissolved metals are analyzed from composite samples. All samples were collected in accordance with QAPP and SWOMP procedures. The following metals were analyzed: total arsenic, dissolved and total cadmium, dissolved copper, dissolved and total lead, total mercury, and dissolved zinc. The concentration value ranges are presented below.

- Total arsenic values ranged from below the method detection limit (mdl) (5.72 micrograms per liter [µg/L]) to 7.60 µg/L.
- Dissolved cadmium concentrations were all below the mdl of < 1.00  $\mu$ g/L.
- Total cadmium concentrations were all below the mdl of < 1.00  $\mu$ g/L.
- Dissolved copper concentrations were mostly below the mdl of < 10.0  $\mu$ g/L, with other results ranging from 11.0 to 19.5  $\mu$ g/L.
- Dissolved lead concentrations were all below the mdl of 6.94  $\mu g/L.$
- Total lead concentrations ranged from less than the mdl (6.94  $\mu g/L)$  to 26.0  $\mu g/L.$
- Reported total mercury concentrations ranged from 0.00849 to 0.0353  $\mu$ g/L.
- Concentrations for dissolved zinc ranged from 12.6 to 74.3  $\mu g/L.$

# 4.2 Monitored Event Pollutant Loading

Laboratory analytical results and stormwater discharge volumes measured at the flowmeter were used to calculate pollutant loading estimates for constituents of concern (TSS, TP, ammonia, nitrate



+ nitrite, and TKN) for each monitored storm. Table 8 presents the estimated pollutant loading for each monitored storm by constituent. Results are presented in total pounds for each monitored drainage area. Table 9 is a summary of event loading estimates in pounds per acre for comparison between monitored drainage areas.

Pollutant loading estimates for each event were calculated in pounds using reported concentrations for all constituents of concern except *E. coli*. *E. coli* loading was not calculated because it is reported as a most probable number which precludes calculation of a mass load. Reported concentrations were combined with runoff volumes measured during the storm event at each monitoring station. Formulas used, including conversion factors, are described in the SWOMP.

The following is a summary of the ranges of loading per acre as calculated for the storm events monitored during WY 2019.

- TSS loading estimates ranged from 0.25 to 3.794 pounds per acre.
- TP loading estimates ranged from 0.004 to 0.0350 pounds per acre.
- Ammonia loading estimates ranged from 0.0005 to 0.111 pounds per acre.
- Nitrate + nitrite loading estimates ranged from 0.002 to 0.04 pounds per acre.
- TKN loading estimates ranged from 0.024 to 0.297 pounds per acre.



# Section 5 Flow and Precipitation Data

Flow and precipitation data were collected for each monitoring station during WY 2019. Precipitation data was collected on a continuous basis, as in previous years. Changes to continuous flow measurement are discussed in Section 5.2. The following sections provide an overview of the data collected from rain gauges and flowmeters during WY 2019.

# 5.1 Rain Gauge Data

Precipitation data from ACHD rain gauges were used to validate all targeted storms during WY 2019. Each monitoring station is associated with a rain gauge. Table 1 identifies the corresponding rain gauge location for each monitoring station. Rain gauge locations are shown in Figure 1.

The tipping-bucket rain gauges function by recording the date and time that 0.01 inch of precipitation is collected at the rain gauge. Cumulative precipitation at each rain gauge over the entire water year was calculated by multiplying the total number of these records by 0.01 inch. As discussed in Section 1, orographic effects and variations in rain shower conditions and weather patterns are expected to cause differences in both storm duration and precipitation depth from one drainage area to another. Recorded monthly totals for WY 2019 for the Phase I rain gauges are shown in Figure 6.

# 5.2 Flowmeter Data

Flow data for targeted events is shown on hydrographs in Appendix A. Evaluating storm flows at the Americana monitoring station confirmed that the grate secured to the end of the Americana outfall impacts level and velocity values at the monitoring station. During larger events, or when debris clogs the outfall grate, water cannot discharge fast enough to maintain the same in-pipe velocities as exist farther up the storm drain. Decreases in stormwater velocity at the flowmeter sensor are paired with an increase in level. This effect does not inhibit flow measurement except when velocities are reduced below the programmed velocity cutoff, at which point calculated flow drops to zero. ACHD is exploring opportunities to increase cleaning frequency of the outfall grate, particularly prior to targeted storm events. ACHD may also identify a grate that is equally effective but less obtrusive to stormwater discharge rates.

The flow sensor at the Whitewater monitoring station routinely records pulses of flow assumed to be attributable to irrigation, canal and ditch dewatering, and other activities within the monitored drainage area. The sensor has been fouled multiple times by debris, which is typically cleared by storm flows.



# Section 6 Quality Assurance/Quality Control

QA/QC measures for the monitoring program utilize a combination of quality assurance measures for the planned and systematic approach to monitoring, as well as quality control measures to verify and validate program data and results. These measures are outlined and used in the SWOMP and QAPP.

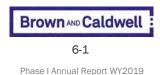
Quality control sampling during WY 2019 consisted of a combination of field QC samples and laboratory QC samples. Field QC sample types are described in the QAPP. Field QC sampling intervals followed a predetermined schedule included in the SWOMP. Laboratory QC sample results are outlined in each analytical report included in Appendix B. A summary of QC samples collected during the five successful storm events is presented in Table 10, and all storm event QC sample results are included in Table 11. Analytical results from rinsate blank and equipment blank QC samples are included in Table 12.

A data validation review checklist was completed following each storm event during WY 2019. These checklists were used to compare monitoring methods and all monitoring data collected against performance criteria established to meet the data quality objectives described in the QAPP. A summary of the results of storm event QC reviews is included below along with a discussion of sampling and equipment issues that may have impacted sample collection and/or data quality.

# 6.1 Data Quality Discussion

The data validation review process was used to evaluate the analytical and field parameter results. Field parameter results that have been qualified are identified in Table 6. Lab analytical results that were qualified are identified in Table 7. Details for qualification are in the lab analytical results included as Appendix B and are discussed below. Composite samples are considered to be representative of stormwater runoff if aliquots were collected for greater than 75% of total runoff volume from the storm or a total of six hours of the storm, including the first hour of the storm. More information on representativeness and other data quality objectives is included in the Quality Assurance Program Plan.

# 6.2 October 9, 2018, Storm Event


A grab field duplicate and grab field blank were collected at Whitewater and submitted alongside the parent samples. The composite sample at Americana was submitted for laboratory composite duplicate analysis. Results of QC samples were within the acceptable range to meet data quality objectives.

#### **Data Qualifications**

- The composite sample collected at Whitewater monitoring station represented 54 percent of flow sampled over 8 hours of the storm event, but missing the first hour of flow. This sample is accepted with qualification for representativeness.
- All acceptance and performance criteria for non-analytical data were met for this storm event.

#### **Sampling and Equipment Notes**

• A dead battery at Americana resulted in missing flow data from 1251 to 1545.



- During setup, the flow module at Lucky was not collecting data or recognizing flow/level readings. This issue was not resolvable at the time of setup, and therefore a composite sample was not targeted at Lucky for this event. After this rain event, the AV9000 area velocity analyzer module was removed and replaced with a Hach 950 flow meter. Later, during WY 2019, a Hach AS 950 portable liquid sampler equipped with an AV9000S AV analyzer module was installed at Lucky.
- Although Lucky was not able to collect flow data, a grab sample was taken within two hours of the start of precipitation, and therefore is considered successful. A hydrograph is not available for this event.
- During rain gauge data download, it was found that the Cynthia Mann rain gauge was clogged and did not record accurate rainfall measurements during the event. Therefore, the Whitewater rain gauge is referenced for the Lucky monitoring station for this event.

## 6.3 November 27, 2018, Storm Event

A field blank and field duplicate were collected from the Lucky monitoring station during the November 27, 2018, storm event. All acceptance and performance criteria were met for this storm event with the exceptions listed below.

#### **Data Qualifications**

- The relative percent difference for Lucky field duplicate QC results could not be calculated due to an *E. coli* value above the quantification threshold. Both the parent and the field duplicate were above the threshold of 2,419.6. These results are not qualified.
- The composite sample collected at Lucky monitoring station represented 34 percent of flow sampled over 6 hours of the storm event; this sample was rejected.
- All other acceptance and performance criteria for non-analytical data were met for this storm event.

#### Sampling and Equipment Notes


- Once flow started at Lucky, it was discovered that the velocity sensor was recording negative values. The setting was switched from "upstream" to "downstream" to account for this error. However, by the time the sensor was corrected, the total discharge volume had a large negative value, which caused a delay in sampling until the negative value was overcome and the trigger volume was reached. Subsamples only accounted for 34 percent of flow, which does not meet sampling criteria. This sample was rejected.
- During the storm event, the Whitewater sampler was disabled and therefore did not collect any subsamples.

# 6.4 February 2, 2019, Storm Event

A field blank and field duplicate were collected from the Whitewater monitoring station. Results of both QC samples were within the acceptable range to meet data quality objectives. *E. coli* samples were analyzed outside of holding time for all monitoring sites and are therefore qualified. All other acceptance and performance criteria for non-analytical data were met for this storm event.

#### **Data Qualifications**

• All *E. coli* samples were analyzed outside of holding time and reported values are considered estimates.



- The composite sample collected at Lucky monitoring station represented 64 percent of flow sampled over 4.5 hours of the storm event and is therefore qualified.
- The composite sample collected at the Whitewater monitoring station represented 67 percent of flow sampled over 4.4 hours and is therefore qualified.
- All other acceptance and performance criteria for non-analytical data were met for this storm event.

#### **Sampling and Equipment Notes**

• Precipitation depth received in the monitored area was more than three times greater than expected based on the quantifiable precipitation forecast issued by the NWS. Higher than expected precipitation depth and inaccurate timing for the forecast made it extremely difficult to keep up with composite sample bottle changeouts across all four targeted sites for the duration of the event. When high precipitation depths are forecasted, an expected precipitation depth of 0.22 inch is used to calculate site-specific trigger volumes to increase the time between subsamples collected by the automatic samplers.

## 6.5 April 14, 2019, Storm Event

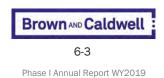
A field blank and field duplicate were collected from the Americana monitoring station. Results of both QC samples were within the acceptable range to meet data quality objectives. No analytical results were qualified for this storm event. All acceptance and performance criteria for non-analytical data were met for this storm event.

#### **Sampling and Equipment Notes**

Main flow data is only available starting at 2308 on April 13. Precipitation was first recorded in the area at 2242 on April 13, while the grab samples at Main were collected at 0009 on April 14. It can be assumed that flow started after precipitation; therefore, grab samples were collected within 2 hours of the start of flow. Runoff is interpolated at the Main monitoring station to calculate total runoff volume.

### 6.6 May 16, 2019, Storm Event

There were no QC samples collected during the May 16, 2019, storm event. All acceptance and performance criteria were met for this storm event. All other acceptance and performance criteria for non-analytical data were met for this storm event.


#### **Sampling and Equipment Notes**

• The Cynthia Mann rain gauge was clogged during this storm event. Therefore, the Whitewater rain gauge is referenced for this report. The composite sample at Lucky did not collect enough stormwater volume to complete all analyses, so dissolved parameter data is not available. Since total storm flow is low for this event at Lucky, it is possible that Lucky received less rain than the Whitewater rain gauge

### 6.7 Equipment Maintenance

During routine monitoring station maintenance on September 19, 2018, an equipment blank was collected at the Main monitoring station. There were no detections reported for this sample.

A rinsate blank sample was collected from Main on August 21, 2019, during routine maintenance. There were no detections reported for this sample.



# Section 7 Data Management

During WY 2019, ACHD used DataSight software version 3.3 for data management. All monitoring data collected during WY 2019, including water quality data and flow and rain data, are stored in the database and organized according to the established procedures documented in the ACHD Database Guidance Document (Brown and Caldwell, 2014).



# **Section 8**

# Review of Monitoring Data Collected under the 2013 NPDES Permit

WY 2019 represents the sixth year of stormwater outfall monitoring and analytical data collection under the 2013 NPDES Permit. This dataset equates to about 18 data points (sample results) for most analytes. An indepth statistical analysis was conducted on the stormwater monitoring analytical dataset in WY 2019 to better account for non-detect values and explore for potential trends and correlations between variables. This section provides specific information about the approach used for statistical analysis and the statistics run on the monitoring dataset. Results and implications of the analysis are also included and described in associated tables.

## 8.1 Data Included in Review

Analysis included data from November 2013 to May 2019 for four monitoring locations: Americana, Lucky, Main, and Whitewater. Data from November 2013 to January 2018 was included for the Stilson monitoring station. The following list of analytes were evaluated.

#### **Field Parameter Analytes**

- pH
- temperature
- D0
- conductivity

#### **Laboratory Sample Analytes**

- turbidity
- E. coli
- biochemical oxygen demand-5-day
- COD
- TSS
- TDS
- hardness
- nutrients (TP DOP, ammonia, TKN, nitrate + nitrite)
- total metals (arsenic, cadmium, lead, mercury)
- dissolved metals (cadmium, copper, lead)

All laboratory sample analyte results, except *E. coli*, represent an event mean concentration (EMC) derived from flow weighted composite sample collection. Discrete grab samples were collected for laboratory analysis for *E. coli* and were coincident with field parameter measurements.



The dataset included 20 laboratory water quality parameters and 4 field parameters. A data evaluation was performed to determine the amount of non-detects present in the dataset for all combinations of station and parameter. A data subset that contains a high percentage of non-detects can affect descriptive statistics, trend analysis, and comparisons between stations or seasons.

For those parameters with more than 50 percent detections, descriptive statistics and goodness of fit tests were calculated using the EPA's ProUCL statistical software package, which has appropriate methods for calculating means and percentiles of data that include values recorded as being below the method detection limit. These descriptive statistics were calculated by station and included the minimum, maximum, mean, and various percentiles. For those parameters with a smaller percentage of detection, only minimum and maximum were reported.

# 8.3 Results

Results for field parameter and laboratory sample analytes are discussed in the subsections below. Information presented in tables and figures is included as attachments at the end of the report text.

#### 8.3.1 Data Evaluation

All stations and laboratory parameters were evaluated for non-detects before summary statistics were calculated. Fourteen parameters (out of 20) (Table 8-1) had 90 percent or more detections at all stations, which gives the greatest confidence in descriptive statistics and statistical tests. Total lead and dissolved copper had between 10 percent and 91 percent detections, depending on the station, meaning statistics based on those datasets would be more questionable than the previous list of parameters. The four remaining parameters (total arsenic, dissolved cadmium, total cadmium, dissolved lead) had too few detections at most stations to perform statistics.

| Table 8-1. Percent of Detections by Station and Parameter |           |       |      |         |            |
|-----------------------------------------------------------|-----------|-------|------|---------|------------|
| Parameter                                                 | Americana | Lucky | Main | Stilson | Whitewater |
| Ammonia                                                   | 100%      | 100%  | 100% | 100%    | 90%        |
| Arsenic, total                                            | 40%       | 24%   | 5%   | 18%     | 19%        |
| BOD5                                                      | 100%      | 100%  | 100% | 100%    | 100%       |
| Cadmium, dissolved                                        | 0%        | 0%    | 0%   | 6%      | 0%         |
| Cadmium, total                                            | 4%        | 0%    | 14%  | 24%     | 5%         |
| COD                                                       | 100%      | 100%  | 100% | 100%    | 100%       |
| Copper, dissolved                                         | 48%       | 42%   | 37%  | 50%     | 42%        |
| DOP                                                       | 100%      | 100%  | 100% | 100%    | 100%       |
| E. coli                                                   | 100%      | 100%  | 100% | 100%    | 95%        |
| Hardness as CaCO <sub>3</sub>                             | 100%      | 100%  | 100% | 100%    | 100%       |
| Lead, dissolved                                           | 0%        | 0%    | 0%   | 6%      | 0%         |
| Lead, total                                               | 88%       | 10%   | 91%  | 88%     | 67%        |
| Mercury, total                                            | 96%       | 90%   | 95%  | 100%    | 95%        |



| Table 8-1. Percent of Detections by Station and Parameter |           |       |      |         |            |
|-----------------------------------------------------------|-----------|-------|------|---------|------------|
| Parameter                                                 | Americana | Lucky | Main | Stilson | Whitewater |
| Nitrate + nitrite (N)                                     | 100%      | 100%  | 100% | 100%    | 100%       |
| Total dissolved solids                                    | 100%      | 100%  | 100% | 100%    | 100%       |
| Total Kjeldahl nitrogen                                   | 100%      | 100%  | 100% | 100%    | 100%       |
| ТР                                                        | 100%      | 100%  | 100% | 100%    | 100%       |
| TSS                                                       | 100%      | 100%  | 100% | 100%    | 100%       |
| Turbidity                                                 | 100%      | 100%  | 100% | 100%    | 100%       |
| Zinc, dissolved                                           | 100%      | 100%  | 100% | 100%    | 95%        |

Descriptive statistics were calculated for all parameters with more than 50 percent detections (Appendix B, Table A-1). Most parameters with more than 50 percent detections were not consistently normally distributed, and some were not log-normally distributed either; therefore, non-parametric statistics were used in the analyses.

Parameters were compared with applicable water quality standards or other targets (Table 1). Temperatures observed in the samples are seldom above the cold-water biota criteria of 22 degrees Celsius (°C) (only during the July 22, 2015, sample); the daily average criteria were not able to be evaluated. Temperatures were observed above the 13 °C temperature criteria for salmonid spawning more often (24–25 percent of the time), usually between April and October; the range of temperatures observed above 13 °C was 13.1–21.9 °C, although the majority of those temperatures were closer to 13–14 °C. TSS was above 50 mg/L for 35 percent of the observations at Lucky and 71–83 percent of the observations at the other four stations; TSS was above 80 mg/L for 12 percent of the observations at Lucky and 48–63 percent of the observations at the other four stations. All TP observations were above the in-stream target of 0.07 mg/L (which does not apply to stormwater). The *E. coli* concentrations were above the standard of 406 most probable number per 100 milliliters in 20–25 percent of the samples at Lucky and Whitewater, 50–56 percent of the samples at Main and Stilson, and 70 percent of the samples at Americana.

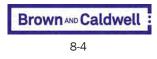
#### 8.3.2 Correlations Between Variables

Spearman correlation analysis was used to look for potential relationships within each station dataset between primary variables of concern and between primary and secondary variables of concern. Correlations were defined to be statistically significant if p < 0.05. The following paragraphs and tables summarize the statistically significant correlations.

All stations exhibited positive correlations between TP and DOP and between TSS and turbidity (Table 8-2), as expected from the properties of these two pairs of parameters. Other correlations between primary parameters were different by station. DOP and TP showed some negative correlations with turbidity at Whitewater (and Stilson for DOP), and orthophosphate also showed a negative correlation with TSS at Whitewater. DOP and TP showed some positive correlations with *E. coli* (Stilson and Main), DOP also had positive correlations with temperature at Lucky and Stilson, and TP was positively correlated with TSS at Lucky.



| Table 8-2. Summarized Results of Spearman Correlation between Primary Variables of Concern, Listing<br>Stations (by initial) with Statistically Significant Results<br>(Labeled + or – for Positive or Negative correlations), 2013–2019 |                               |                  |                  |                               |             |                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|------------------|-------------------------------|-------------|--------------------------|--|
|                                                                                                                                                                                                                                          | DOP                           | TP               | TSS              | Turbidity                     | E. coli     | Temp                     |  |
| DOP                                                                                                                                                                                                                                      |                               | All stations (+) | Whitewater (-)   | Stilson (-)<br>Whitewater (-) | Stilson (+) | Lucky (+)<br>Stilson (-) |  |
| TP                                                                                                                                                                                                                                       | All stations (+)              |                  | Lucky (+)        | Whitewater (-)                | Main (+)    |                          |  |
| TSS                                                                                                                                                                                                                                      | Whitewater (-)                | Lucky (+)        |                  | All stations (+)              | Main (+)    | Whitewater (-)           |  |
| Turbidity                                                                                                                                                                                                                                | Stilson (-)<br>Whitewater (-) | Whitewater (-)   | All stations (+) |                               |             |                          |  |
| E. coli                                                                                                                                                                                                                                  | Stilson (+)                   | Main (+)         | Main (+)         |                               |             | Main (+)                 |  |
| Temp                                                                                                                                                                                                                                     | Lucky (+)<br>Stilson (+)      |                  | Whitewater (-)   |                               | Main (+)    |                          |  |


In addition to those correlations in primary parameters of concern, some of the secondary parameters were significantly correlated with primary parameters at some stations At all stations, BOD5 was positively correlated with DOP and TP, while COD was positively correlated with TP and TSS. At certain stations, BOD5 was positively correlated with OP (Americana and Lucky), turbidity (all stations except Whitewater), and *E. coli* (Main). DO was negatively correlated with temperature (all stations), as is expected considering the inherent relationship between them. DO was also negatively correlated with TSS (Whitewater). At some stations, pH showed negative correlations with OP (Main), *E. coli* (Main), and temperature (Lucky, Main, Stilson).

A Kruskal-Wallis test (non-parametric ANOVA) was performed to compare results for primary parameters of concern by station, from 2013 to present. According to the analyses, stations had significant differences for DOP, TP, TSS, and turbidity; *E. coli* and temperature did not show significant differences between stations. The box plots in Figure 7 include designation of the statistically different groups (post-hoc multiple comparisons test of medians, p < 0.05).

The Kruskal-Wallis test was also used to compare results for each station and primary parameter of concern for differences between years and between seasons. There were no statistically significant differences between years at any station for the six primary parameters. When parameters were compared by season (S4: Sep–Nov, S1: Dec–Feb, S2: Mar–May), there were differences for some stations and parameters; season 3 (Jun–Aug) did not have enough data to be compared to the other seasons, so it was omitted from the analysis. At all stations, OP in fall (S4) was higher than in winter (S1), with only Whitewater showing the same pattern for TP (Figure 8); temperature showed the same pattern as OP, with the lowest temperatures in the winter (Figure 9). TSS and turbidity did not show consistent differences between seasons at p < 0.05 but did at all stations except Lucky at the p < 0.10 level; the pattern of winter (S1) having higher TSS (Figure 10) and turbidity than fall (S4) is present but not as strong as the opposite pattern previously mentioned for OP. *E. coli* showed no statistically significant differences between seasons.

# **8.4 Statistical Conclusions**

Most of the parameters sampled had enough detected observations to calculate descriptive statistics; metals were more likely to have non-detects in their datasets. Beyond descriptive statistics, additional

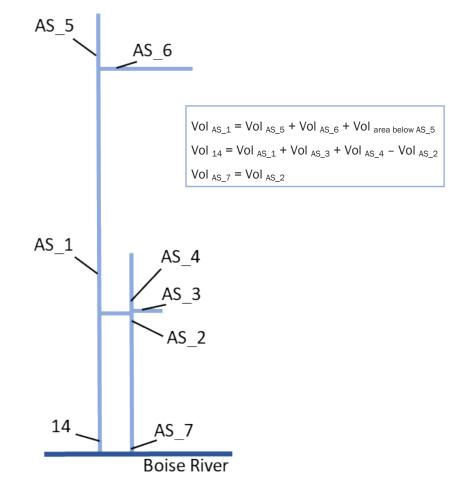


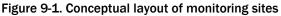
statistical analysis focused on parameters of primary concern (DOP, TP, TSS, turbidity, *E. coli*, and temperature) and how they related to secondary parameters (DO, COD, BOD5, pH, precipitation, and runoff).

DOP and TP, as well as TSS and turbidity, were closely correlated at each station. The phosphorus-related parameters (DOP and TP) were sometimes negatively correlated with turbidity-related parameters (TSS and turbidity), DO, pH, runoff volume, and precipitation volume, depending on the station. The phosphorus-related parameters were sometimes positively correlated with *E. coli*, temperature, BOD5, and COD, depending on the station. Turbidity-related parameters were also positively correlated with *E. coli* and COD, depending on the station. Temperature was higher with lower DO and pH, as was *E. coli* at some stations.

Stations had different concentrations of some parameters, with Main having generally lower and Americana and Whitewater generally higher DOP and TP. TSS and turbidity were generally lower at Lucky and higher at Stilson. *E. coli* and temperature had no differences between stations. Some stations had seasonal differences between parameters, with DOP having higher concentrations in the fall than in the winter, and temperature having lower observations in the winter. TSS and turbidity had slightly higher concentrations in winter than in fall, but the relationship was weaker.

Although there are differences between stations and between seasons, there were no trends observed in the concentrations of primary parameters over time. Based on the results of this analysis, phosphorus is seen at higher concentrations in the fall and at Americana and Whitewater, and turbid waters (turbidity or TSS) are seen more often in the winter and at Stilson.





## **Section 9**

# Americana Subwatershed Monitoring Summary

At the beginning of WY 2019 ACHD began conducting systematic flow monitoring at major nodes within the Americana subwatershed storm drain system to supplement the stormwater outfall monitoring program and provide insight into Americana subwatershed. A full summary WY 2019 monitoring activities is included in this report as Appendix C. Below is a brief description of monitoring results and analysis conducted in WY 2019, as well as conclusions and potential activities for WY 2020.

Wet weather and dry weather flows were monitored continuously at eight monitoring sites within the Americana subwatershed, including the Americana outfall monitoring station (Site 14) and the secondary outfall (AS\_7) that discharges next to the Americana outfall. These monitoring sites are represented below in Figure 9-1.







Continuous flow monitoring data collected during WY 2019 were used to analyze 19 representative wet weather events and 10 representative dry weather events. The analysis of measured flows together with modeled flows, calculation of flow total correlations between sites, and development of a water balance for the Americana subwatershed led to several conclusions about flows in the subwatershed and provide additional direction for monitoring activities in WY 2020. These conclusions help ACHD better understand how to use the Americana subwatershed model as a predictive tool to inform management decisions by assessing limitations in light of actual observations to describe how they impact model results. Additionally, monitoring results from year one have narrowed down the areas within the subwatershed that contribute most significantly to dry weather flows and have helped to identify and document the timing and nature of dry weather flows.

Potential activities in WY 2020 include water quality monitoring at a subcatchment monitoring location within the Americana subwatershed and continued flow monitoring. Flow monitoring is planned to continue at some of the WY 2019 locations, and some new locations may be brought online as well to acquire additional data in support of program objectives.



# Section 10

# Summary of WY 2019 and Next Steps

During WY 2019, six storm events were targeted, and at least three successful grab samples were collected for all permit-required constituents at all monitoring sites. Three successful composite samples were collected for all permit-required constituents at all sites except Lucky. Dissolved metals were only analyzed for two successful sampling events during WY 2019 at Lucky.

In WY 2018, BC evaluated the ability of current runoff coefficients to accurately predict runoff volumes for rain events of varying depths and intensities. Updated runoff coefficients were developed for each monitoring station and were used in WY 2019's storm events. The goal of these new coefficients is to estimate more accurate runoff volumes for trigger volume calculation and reduce the number of low-volume composite samples as well as multiple-bottle composite samples.



# Section 11 References

Ada County Highway District (ACHD), Project Monitoring and Evaluation Plan, 2013.

- ACHD, Quality Assurance Program Plan for NPDES Storm Water Permit Monitoring Boise and Garden City, Idaho, 2014a.
- ACHD, Storm Water Outfall Monitoring Plan, 2014b.
- ACHD, Americana Subwatershed Monitoring Plan-revised, 2019.
- Brown and Caldwell, ACHD Database Guidance Document, 2014.
- Idaho Department of Environmental Quality (Idaho DEQ), Lower Boise River TMDL Subbasin Assessment, Total Maximum Daily Loads, Boise, Idaho: Idaho Department of Environmental Quality. September 29, 1998.
- Idaho DEQ, Personal communication from Mr. Bryan Horsburgh by telephone on November 6, 2003.

Idaho DEQ, Personal communication from Ms. Julia Achabal by telephone on October 26 and 27, 2006a.

- Idaho DEQ, Surface Water: Snake River Hells Canyon Subbasin Assessment and Total Maximum Daily Loads. <u>http://www.deq.state.id.us/water/data\_reports/surface\_water/tmdls/snake\_river\_hells\_canyon/snake\_river\_hells\_canyon/snake\_river\_hells\_canyon.cfm</u> accessed October 24, 2006b.
- Idaho DEQ, Lower Boise River Implementation Plan Total Phosphorus, Boise, Idaho: Idaho Department of Environmental Quality, July 2008.
- National Weather Service (NWS), "Local Climate of the Treasure Valley and Boise," October 30, 2009, <a href="http://www.wrh.noaa.gov/boi/climate\_summary.php"></a> Accessed January 24, 2014.
- NWS, Boise, Idaho, Total Monthly Precipitation for each Year of Record, Boise Air Terminal Data October 1940 through September 2019.
  <a href="http://www.wrh.noaa.gov/boi/climo/precip%20monthly%20and%20annual%20table%20boise%20airport.txt">http://www.wrh.noaa.gov/boi/climo/precip%20monthly%20and%20annual%20table%20boise%20airport.txt</a> Accessed November 26, 2019.
- National Weather Service Boise Forecast Office, 2018, Monthly Weather Summary. Retrieved November 21, 2019, from NWS website: http://w2.weather.gov/climate/index.php?wfo=boi
- Thomas, C. A. and N. P. Dion, Characteristics of Streamflow and Ground-Water Conditions in the Boise River Valley, Idaho: U.S. Geological Survey Water Resources Investigations Report 38–74, Reston, VA: United States Geological Survey, 1974.
- United States Environmental Protection Agency, Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, March 1983, Cincinnati, Ohio: U.S. Environmental Protection Agency Environmental Monitoring and Support Laboratory, 1983.
- United States Census Bureau, State and County QuickFacts for Boise City, Idaho and Garden City, Idaho, 2015 <a href="http://quickfacts.census.gov/qfd/states/16/1608830.html">http://quickfacts.census.gov/qfd/states/16/1608830.html</a>.



# **Tables**

- Table 1. Monitoring Station Information
- Table 2. Analytical Methods for Stormwater Constituents
- Table 3. Monitored Storms and Samples Collected
- Table 4. Monitored and Targeted Storms and Samples Collected
- Table 5. Monitored Storm Flow Summary
- Table 6. Field Parameters Summary
- Table 7. Analytical Results Summary
- Table 8. Event Loading for Monitored Drainages
- Table 9. Event Loading per Acre
- Table 10. QC Samples Collected
- Table 11. Storm Event QC Sample Summary
- Table 12. Equipment QC Sample Summary
- Table 13. Field Parameter Results for Individual Sites
- Table 14. Laboratory Sample Analyte Results for Americana
- Table 15. Laboratory Sample Analyte Results for Lucky
- Table 16. Laboratory Sample Analyte Results for Main
- Table 17. Laboratory Sample Analyte Results for Stilson
- Table 18. Laboratory Sample Analyte Results for Whitewater



| Table 1. Monitoring Station Information      |                                |                                                      |                       |                                |  |  |  |
|----------------------------------------------|--------------------------------|------------------------------------------------------|-----------------------|--------------------------------|--|--|--|
| Station Information                          | Lucky<br>(Site ID:3)           | Whitewater<br>(Site ID:11)                           | Main<br>(Site ID: 12) | Americana<br>(Site ID:14)      |  |  |  |
| Subwatershed Area (acre)                     | 105                            | 498                                                  | 79                    | 875                            |  |  |  |
|                                              | Right-of-Way (22%)             | Right-of-Way (36%)                                   | Right-of-Way (43%)    | Right-of-Way (30%)             |  |  |  |
|                                              | Residential Med (78%)          | Commercial (4%)                                      | Commercial (37%)      | Commercial (13%)               |  |  |  |
| Land Use Percentage                          |                                | Residential Med (50%)                                | Residential Med (14%) | Residential (Hi/Med/Low) (39%) |  |  |  |
|                                              |                                | Residential High (7%)                                | Residential High (5%) | Parks and Open Space (14%)     |  |  |  |
|                                              |                                | Public and Schools (3%)                              | Public (1%)           | Public and Schools (4%)        |  |  |  |
| Percent Impervious Ground Cover <sup>1</sup> | 40%                            | 43%                                                  | 55%                   | 39%                            |  |  |  |
| Receiving Water                              | Eagle Drain                    | Crane Creek to Farmers Union Canal<br>to Boise River | Boise River           | Boise River                    |  |  |  |
| Outfall Distance from Station (ft)           | 350                            | 2,100                                                | 500                   | 108                            |  |  |  |
| Rain Gauge Location                          | Cynthia Mann Elementary School | Whitewater<br>(at monitoring station)                | Front                 | Front and East                 |  |  |  |
| Rain Gauge Distance from Station (ft)        | 750                            | 0                                                    | 2,900                 | 1,800 and 9,600                |  |  |  |

Notes:

 $^{1}\,\mbox{Impervious}$  cover includes roads and streets, rooftops, and parking lots.

| Table 2. Analytical Methods for St      | ormwater Constituents in Wet Weather S | amples                    |
|-----------------------------------------|----------------------------------------|---------------------------|
| Constituent                             | Analytical Method                      | Sample<br>Collection Type |
| Ammonia (NH3)                           | SM 4500 NH3-D                          | С                         |
| Total Kjeldahl Nitrogen (TKN)           | Perstorp PAI-DK01                      | С                         |
| Nitrite + Nitrate (NO2+NO3)             | EPA 353.2                              | С                         |
| 5-Day Biological Oxygen Demand (BOD5)   | SM 5210 B                              | С                         |
| Chemical Oxygen Demand (COD)            | Hach 8000                              | С                         |
| Total Dissolved Solids (TDS)            | SM 2540 C                              | С                         |
| Turbidity                               | EPA 180.1                              | С                         |
| Arsenic - Total                         | EPA 200.7                              | С                         |
| Cadmium - Total and Dissolved           | EPA 200.7                              | С                         |
| Copper – Dissolved                      | EPA 200.7                              | С                         |
| Lead - Total and Dissolved              | EPA 200.7                              | С                         |
| Mercury - Total                         | EPA 245.2                              | С                         |
| Zinc - Dissolved                        | EPA 200.7                              | С                         |
| Hardness (as Calcium Carbonate [CaCO3]) | SM 2340 B                              | С                         |
| Total Phosphorus                        | EPA 200.7                              | С                         |
| Dissolved Orthophosphate                | EPA 365.1                              | С                         |
| Total Suspended Solids (TSS)            | SM 2540 D                              | С                         |
| E. coli                                 | IDEXX Colilert                         | G                         |
| Conductivity                            | EPA 120.1                              | G,f                       |
| DO                                      | SM 4500 G                              | G,f                       |
| Temperature                             | EPA 170.1                              | G,f                       |
| рН                                      | EPA 150.1                              | G,f                       |
| Flow/Discharge Volume                   | Non-Specific                           | f                         |

C = Constituent analysis conducted using a composite sample.

G = Constituent analysis conducted using a grab sample.

f = Constituent analysis conducted in the field.

| Table 3. Monitored Storms and Samples Collected |             |          |            |      |           |  |  |  |  |  |  |  |
|-------------------------------------------------|-------------|----------|------------|------|-----------|--|--|--|--|--|--|--|
| Date                                            | Sample Type | Lucky    | Whitewater | Main | Americana |  |  |  |  |  |  |  |
| October 9, 2018                                 | Wet         | G        | G, QC, C   | G, C | G, C, QC  |  |  |  |  |  |  |  |
| November 27, 2018                               | Wet         | G, QC, C | G          | G, C | G, C      |  |  |  |  |  |  |  |
| February 2, 2019                                | Wet         | G, C     | G, QC, C   | G, C | G, C      |  |  |  |  |  |  |  |
| April 14, 2019                                  | Wet         | G, C     | G, C       | G    | G, QC     |  |  |  |  |  |  |  |
| May 16, 2019                                    | Wet         | С        | C          | -    | -         |  |  |  |  |  |  |  |
| September 6, 2019                               | Wet         | -        | -          | -    | -         |  |  |  |  |  |  |  |

G = grab sample.

C = composite sample.

QC = quality control sample.

- = No sample.

|                   | Table 4. Monitored and Targeted S          | torms and Samp | les Collected |          |           |
|-------------------|--------------------------------------------|----------------|---------------|----------|-----------|
| Event Date        | Sampling Information                       | Lucky          | Whitewater    | Main     | Americana |
|                   | Grab samples collected and submitted?      | YES            | YES           | YES      | YES       |
|                   | Composite samples collected and submitted? | NO             | YES           | YES      | YES       |
| October 9, 2018   | Composite sample duration (hrs.)           | -              | 8.5           | 4        | 20+       |
|                   | Number of composite bottles filled         | -              | 4             | 5        | 4         |
|                   | Composite sample volume (Approx.; mL)      | -              | > 34,500      | > 56,000 | > 34,500  |
|                   | Grab samples collected and submitted?      | YES            | YES           | YES      | YES       |
|                   | Composite samples collected and submitted? | YES            | NO            | YES      | YES       |
| November 27, 2018 | Composite sample duration (hrs.)           | 5.5            | -             | 6.5      | 11        |
|                   | Number of composite bottles filled         | 1              | -             | 1        | 1         |
|                   | Composite sample volume (Approx.; mL)      | 7,250          | -             | 9,500    | 13,500    |
|                   | Grab samples collected and submitted?      | YES            | YES           | YES      | YES       |
|                   | Composite samples collected and submitted? | YES            | YES           | YES      | YES       |
| February 2, 2019  | Composite sample duration (hrs.)           | 4.5            | 4.4           | 1.9      | 6.2       |
|                   | Number of composite bottles filled         | 3              | 3             | 2        | 3         |
|                   | Composite sample volume (Approx.; mL)      | 35,750         | 45,000        | 25,500   | 41,000    |
|                   | Grab samples collected and submitted?      | YES            | YES           | YES      | YES       |
|                   | Composite samples collected and submitted? | YES            | YES           | NO       | NO        |
| April 14, 2019    | Composite sample duration (hrs.)           | 10             | 6.5           | -        | -         |
|                   | Number of composite bottles filled         | 3              | 3             | -        | -         |
|                   | Composite sample volume (Approx.; mL)      | 30,000         | 46,500        | -        | -         |
|                   | Grab samples collected and submitted?      | NO             | NO            | NO       | NO        |
|                   | Composite samples collected and submitted? | YES            | YES           | NO       | NO        |
| May 16, 2019      | Composite sample duration (hrs.)           | 3              | 4             | -        | -         |
|                   | Number of composite bottles filled         | 1              | 1             | -        | -         |
|                   | Composite sample volume (Approx.; mL)      | 5,000          | 5,750         | -        | -         |

- = Composite sample collection not attempted during this event.

|                      | Table 5. Monito                                | red Storm Flow S  | ummary     |        |            |
|----------------------|------------------------------------------------|-------------------|------------|--------|------------|
| Event Date           | Sampling Information                           | Lucky             | Whitewater | Main   | Americana  |
|                      | Trigger volume (ft <sup>3</sup> )              | -                 | 1357       | 456    | 2960       |
|                      | Velocity cutoff (fps)                          | -                 | 1.01       | 0.02   | 0.98       |
| 0-t-h0 0010          | Volume of discharge sampled (ft <sup>3</sup> ) | -                 | 116,144    | 62,795 | 246,094    |
| October 9, 2018      | Runoff volume (ft <sup>3</sup> )               | -                 | 214,602    | 83,132 | 278,709    |
|                      | Percent of storm flow sampled                  | -                 | 54%        | 76%    | 88%        |
|                      | Storm precipitation (in)                       | 0.95 <sup>1</sup> | 0.95       | 0.88   | 0.88/0.97  |
|                      | Trigger volume (ft <sup>3</sup> )              | 387               | -          | 456    | 2960       |
|                      | Velocity cutoff (fps)                          | 0.02              | -          | 0.02   | 0.98       |
| November 27, 2018    | Volume of discharge sampled (ft <sup>3</sup> ) | 2,039             | -          | 7,754  | 62,181     |
| 110101111111121,2018 | Runoff volume (ft <sup>3</sup> )               | 5,939             | 14,919     | 7,815  | 62,312     |
|                      | Percent of storm flow sampled                  | 34%               | -          | 99%    | 100%       |
|                      | Storm precipitation (in)                       | 0.14              | 0.17       | 0.14   | 0.14/0.16  |
|                      | Trigger volume (ft <sup>3</sup> )              | 387               | 1,357      | 456    | 2,960      |
|                      | Velocity cutoff (fps)                          | 0.02              | 0.02       | 0.02   | 1.74       |
| February 2, 2019     | Volume of discharge sampled (ft <sup>3</sup> ) | 26,423            | 88,326     | 19,427 | 193,721    |
| Febluary 2, 2019     | Runoff volume (ft <sup>3</sup> )               | 40,983            | 132,429    | 21,021 | 214,402    |
|                      | Percent of storm flow sampled                  | 64%               | 67%        | 92%    | 90%        |
|                      | Storm precipitation (in)                       | 0.49              | 0.51       | 0.50   | 0.50/0.49  |
|                      | Trigger volume (ft <sup>3</sup> )              | 387               | 1,357      | -      | -          |
|                      | Velocity cutoff (fps)                          | 0.02              | 0.02       | -      | -          |
| April 14, 2019       | Volume of discharge sampled (ft <sup>3</sup> ) | 22,952            | 104,417    | -      | -          |
| April 14, 2019       | Runoff volume (ft <sup>3</sup> )               | 32,161            | 154,910    | 39,524 | _ 2        |
|                      | Percent of storm flow sampled                  | 70%               | 67%        | -      | -          |
|                      | Storm precipitation (in)                       | 0.49              | 0.51       | 0.43   | 0.43/0.55  |
|                      | Trigger volume (ft <sup>3</sup> )              | 669               | 2,344      | -      | -          |
|                      | Velocity cutoff (fps)                          | 0.08              | 1.00       | -      | -          |
| May 16, 2019         | Volume of discharge sampled (ft <sup>3</sup> ) | 6,026             | 22,562     | -      | -          |
| way 10, 2019         | Runoff volume (ft <sup>3</sup> )               | 6,431             | 26,644     | -      | -          |
|                      | Percent of storm flow sampled                  | 94%               | 93%        | -      | -          |
|                      | Storm precipitation (in)                       | 0.22              | 0.22       | -      | -          |
|                      | Referenced Rain Gauge                          | Cynthia Mann      | Whitewater | Front  | Front/East |

- = Station not targeted during this event.

 $^{1}\mbox{The}$  Whitewater rain gauge is referenced for the Lucky station during this event.

<sup>2</sup> Americana flow data is not available for this event.

|                   |                    |                  | Field Pa | rameters     |             |
|-------------------|--------------------|------------------|----------|--------------|-------------|
| Event Date        | Monitoring Station | Dissolved Oxygen | рН       | Conductivity | Temperature |
|                   |                    | mg/L             | S.U.     | uS/cm        | С           |
|                   | Lucky              | 9.14             | 7.14     | 38.3         | 11.99       |
| Ostakan0, 0010    | Whitewater         | 6.46             | 6.33     | 104.9        | 14.67       |
| October 9, 2018   | Main               | 9.82             | 7.45     | 32.1         | 12.21       |
|                   | Americana          | 9.18             | 6.89     | 70.3         | 12.71       |
|                   | Lucky              | 0.24             | 7.03     | 314.6        | 12.91       |
|                   | Whitewater         | 10.12            | 8.11     | 227.9        | 11.30       |
| November 27, 2018 | Main               | 10.41            | 7.58     | 89.6         | 7.97        |
|                   | Americana          | 9.38             | 7.64     | 251.5        | 11.1        |
|                   | Lucky              | 10.28            | 9.67     | 22.6         | 7.36        |
| Fabra 0.0010      | Whitewater         | 10.57            | 8.54     | 58.8         | 6.42        |
| February 2, 2019  | Main               | 10.59            | 8.55     | 55.5         | 7.12        |
|                   | Americana          | 10.44            | 8.04     | 122.5        | 7.92        |
|                   | Lucky              | 6.73             | 8.13     | 70.5         | 13.12       |
| April 14, 2019    | Whitewater         | 6.58             | 7.62     | 150.7        | 12.32       |
|                   | Main               | 8.44             | 9.40     | 70.9         | 13.76       |
|                   | Americana          | 9.04             | 8.72     | 124.8        | 13.26       |

- = no sample.

|                   |                    |                               |                       |                    |                   |                              |                    |                    | 1                 | Table 7. Analytical             | Results Summary                         |                     |                                  |                    |                           |                               |                           |                              |                            |                     |                           |                            |
|-------------------|--------------------|-------------------------------|-----------------------|--------------------|-------------------|------------------------------|--------------------|--------------------|-------------------|---------------------------------|-----------------------------------------|---------------------|----------------------------------|--------------------|---------------------------|-------------------------------|---------------------------|------------------------------|----------------------------|---------------------|---------------------------|----------------------------|
| Event Date        | Monitoring Station | Sample ID                     | E. coli<br>MPN/100 mL | BOD₅<br>mg/L       | COD<br>mg/L       | Hardness as<br>CaCO3<br>mg/L | Turbidity          | TSS<br>mg/L        | TDS<br>mg/L       | Total<br>Phosphorus (P)<br>mg/L | Dissolved<br>Orthophosphate (P)<br>mg/L | Ammonia (N)<br>mg/L | Nitrate +<br>Nitrite (N)<br>mg/L | TKN<br>mg/L        | Arsenic,<br>total<br>ug/L | Cadmium,<br>dissolved<br>ug/L | Cadmium,<br>total<br>ug/L | Copper,<br>dissolved<br>ug/L | Lead,<br>dissolved<br>ug/L | Lead, total         | Mercury,<br>total<br>ug/L | Zinc,<br>dissolved<br>ug/L |
|                   | Lucky              | 181009-03-WG                  | 3090.0                |                    | <u>_</u>          |                              | _                  |                    | 1116/ L           |                                 |                                         |                     |                                  |                    | ug/ L                     | ug/ L                         | ug/ L                     | ug/ L                        | ug/ L                      | ug/ L               | u <sub>6</sub> / L        |                            |
|                   | Whitewater         | 181009-11-WG/WC <sup>1</sup>  | 11450                 | 86.5               | 276               | 22.4                         | 43.6               | 129.0              | 101               | 0.747                           | 0.303                                   | < 0.0350            | 0.242                            | 3.21               | <5.72                     | < 1.00                        | < 1.00                    | < 10.0                       | < 6.94                     | 8.23                | 0.0169                    | 32.4                       |
| October 9, 2018   | Main               | 181009-12-WG/WC               | 770.1                 | 17.2               | 128               | 16.0                         | 44.3               | 95.8               | 52.0              | 0.314                           | 0.120                                   | 0.414               | 0.236                            | 1.88               | < 5.72                    | < 1.00                        | < 1.00                    | < 10.0                       | < 6.94                     | 17.8                | 0.0175                    | 47.4                       |
|                   | Americana          | 181009-12-WG/WC               | 15530                 | 53.8               | 216               | 39.2                         | 45.7               | 81.1               | 101               | 0.500                           | 0.120                                   | 0.145               | 0.375                            | 2.50               | 5.81                      | < 1.00                        | < 1.00                    | < 10.0                       | < 6.94                     | 11.5                | 0.0146                    | 53.2                       |
|                   | Lucky              | 181127-03-WG                  | >2419.6               | 45.4 <sup>2R</sup> | 174 <sup>2R</sup> | 27.6 <sup>2R</sup>           | 32.9 <sup>2R</sup> | 66.5 <sup>2R</sup> | 101 <sup>2R</sup> | 0.810 <sup>2R</sup>             | 0.341 <sup>2R</sup>                     | 0.232 <sup>2R</sup> | 0.255 <sup>2R</sup>              | 2.59 <sup>2R</sup> | <5.72 <sup>2R</sup>       | <1.00 <sup>2R</sup>           | <1.00 <sup>2R</sup>       | <10.0 <sup>2R</sup>          | <6.94 <sup>2R</sup>        | <6.94 <sup>2R</sup> | 0.00819 <sup>2R</sup>     | 118 <sup>2R</sup>          |
|                   | Whitewater         | 181127-11-WG                  | >2419.6               | -                  | -                 |                              | -                  | -                  | -                 | -                               | -                                       | -                   | -                                | -                  | -                         | -                             | -                         | -                            | -                          | -                   | -                         | -                          |
| November 27, 2018 | Main               | 181127-12-WG/WC               | 79.8                  | 23.7               | 150               | 26.7                         | 59.9               | 83.1               | 73.5              | 0.338                           | 0.137                                   | 1.09                | 0.390                            | 2.91               | <5.72                     | <1.00                         | <1.00                     | 11.0                         | <6.94                      | 12.8                | 0.0136                    | 60.4                       |
|                   | Americana          | 181127-14-WG/WC               | 148.3                 | 36.9               | 149               | 85.3                         | 49.6               | 56.3               | 202               | 0.578                           | 0.299                                   | 0.407               | 0.675                            | 1.73               | 7.60                      | <1.00                         | <1.00                     | <10.0                        | <6.94                      | 8.29                | 0.00849                   | 35.3                       |
|                   | Lucky              | 190202-03-WG/WC <sup>3J</sup> | 461.1 <sup>4J</sup>   | 12.0               | 149               | 17.2                         | 25.7               | 147                | 35.7              | 0.345                           | 0.0716                                  | 0.355               | 0.170                            | 2.88               | <5.72                     | <1.00                         | <1.00                     | <10.0                        | <6.94                      | <6.94               | 0.0126                    | 18.6                       |
|                   | Whitewater         | 190202-11-WG/WC <sup>3J</sup> | 1553.1 <sup>4J</sup>  | 16.2               | 173               | 39.6                         | 19.3               | 203                | 82.5              | 0.554                           | 0.165                                   | 0.371               | 0.232                            | 3.17               | <5.72                     | <1.00                         | <1.00                     | <10.0                        | <6.94                      | 18.0                | 0.0263                    | 25.8                       |
| February 2, 2019  | Main               | 190202-12-WG/WC               | 235.9 <sup>4J</sup>   | 10.5               | 179               | 34.9                         | 24.3               | 253                | 72.0              | 0.352                           | 0.0650                                  | 0.471               | 0.153                            | 2.50               | <5.72                     | <1.00                         | <1.00                     | <10.0                        | <6.94                      | 26.0                | 0.0353                    | 24.9                       |
|                   | Americana          | 190202-14-WG/WC               | 609.0 <sup>4J</sup>   | 10.7               | 132               | 52.3                         | 14.9               | 170                | 134               | 0.354                           | 0.114                                   | 0.362               | 0.447                            | 2.49               | 6.48                      | <1.00                         | <1.00                     | <10.0                        | <6.94                      | 14.0                | 0.0218                    | 18.8                       |
|                   | Lucky              | 190414-03-WG/WC               | 156.5                 | 11.8               | 66.0              | 13.6                         | 12.7               | 37.5               | 30.3              | 0.303                           | 0.132                                   | 0.483               | 0.157                            | 2.00               | <5.72                     | <1.00                         | <1.00                     | <10.0                        | <6.94                      | <6.94               | 0.00851                   | 20.2                       |
| A                 | Whitewater         | 190414-11-WG/WC               | 179.3                 | 10.7               | 125               | 23.9                         | 46.1               | 128                | 50                | 0.420                           | 0.143                                   | 0.642               | 0.177                            | 2.64               | <5.72                     | <1.00                         | <1.00                     | <10.0                        | <6.94                      | 9.6                 | 0.0160                    | 12.6                       |
| April 14, 2019    | Main               | 190414-12-WG                  | 186.0                 | -                  | -                 | -                            | -                  | -                  | -                 | -                               | -                                       | -                   | -                                | -                  | -                         | -                             | -                         | -                            | -                          | -                   | -                         | -                          |
|                   | Americana          | 190414-14-WG                  | 325.5                 | -                  | -                 | -                            | -                  | -                  | -                 | -                               | -                                       | -                   | -                                | -                  | -                         | -                             | -                         | -                            | -                          | -                   | -                         | -                          |
|                   | Lucky              | 190516-03-WC <sup>5</sup>     | -                     | >185               | 543               | 45.6                         | 20.3               | 111                | 282               | 2.19                            | _5                                      | 2.67                | _5                               | 10.8               | 5.80                      | _ 5                           | <1.00                     | - <sup>5</sup>               | _ 5                        | <6.94               | 0.0152                    | - 5                        |
| May 16, 2019      | Whitewater         | 190516-11-WC                  | -                     | 158                | 368               | 61.8                         | 18.9               | 110                | 238               | 1.49                            | 0.863                                   | 1.64                | 0.747                            | 7.22               | 6.72                      | <1.00                         | <1.00                     | 19.5                         | <6.94                      | 10.1                | 0.0196                    | 74.3                       |
| way 10, 2019      | Main               | -                             | -                     | -                  | -                 | -                            | -                  | -                  | -                 | -                               | -                                       | -                   | -                                | -                  | -                         | -                             | -                         | -                            | -                          | -                   | -                         | -                          |
|                   | Americana          | -                             | -                     | -                  | -                 | -                            | -                  | -                  | -                 | -                               | -                                       | -                   | -                                | -                  | -                         | -                             | -                         | -                            | -                          | -                   | -                         | -                          |

- = no sample.

WG = wet grab sample.

WC = wet composite sample.

<sup>1</sup>Analytical results are qualified for representativeness. The composite sample only represents only 54% of the total storm

flow and does not include the first hour of flow.

 $^{2\text{R}}$  Analytical results are rejected for representativeness. The composite sample only represents only 34% of the total storm

flow and does not include the rising limb or peak of the hydrograph.

<sup>3J</sup> Analytical results are qualified for representativeness. Lucky and Whitewater composite samples only represent 64% and

67%, respectively.

 $^{\rm 4J}$  E. coli samples were analyzed outside of holding time. Reported values are considered estimates.

 $^{5}\ensuremath{\mathsf{Samples}}$  were not analyzed for dissolved parameters due to low sample volume.

|                   | Table 8. Event Loadi | ng for Monitore | d Drainages (p      | ounds)            |                      |       |
|-------------------|----------------------|-----------------|---------------------|-------------------|----------------------|-------|
| Event Date        | Monitoring Station   | TSS             | Total<br>Phosphorus | Ammonia           | Nitrate +<br>Nitrite | TKN   |
|                   | Lucky                | -               | -                   | -                 | -                    | -     |
| Ostabar 0, 2019   | Whitewater           | 1,727.5         | 10.00               | 0.23 <sup>U</sup> | 3.24                 | 42.99 |
| October 9, 2018   | Main                 | 497.0           | 1.63                | 2.15              | 1.26                 | 9.75  |
|                   | Americana            | 1,410.4         | 8.70                | 2.52              | 6.52                 | 43.47 |
|                   | Lucky                | -               | -                   | -                 | -                    | -     |
| Nevember 07, 0019 | Whitewater           | -               | -                   | -                 | -                    | -     |
| November 27, 2018 | Main                 | 40.5            | 4.526               | 14.596            | 5.223                | 38.96 |
|                   | Americana            | 218.9           | 7.740               | 5.450             | 9.039                | 23.16 |
|                   | Lucky                | 376             | 0.88                | 0.91              | 0.43                 | 7.37  |
| Fahren 0, 0040    | Whitewater           | 1,678           | 4.58                | 3.07              | 1.92                 | 26.20 |
| February 2, 2019  | Main                 | 332             | 0.46                | 0.62              | 0.20                 | 3.28  |
|                   | Americana            | 2,274           | 4.74                | 4.84              | 5.98                 | 33.32 |
|                   | Lucky                | 75.3            | 0.61                | 0.97              | 0.31                 | 4.00  |
|                   | Whitewater           | 1,238           | 4.06                | 6.21              | 1.71                 | 25.52 |
| April 14, 2019    | Main                 | -               | -                   | -                 | -                    | -     |
|                   | Americana            | -               | -                   | -                 | -                    | -     |
|                   | Lucky                | 45              | 0.88                | 1.07              | -                    | 4.33  |
| May 10,0010       | Whitewater           | 183             | 2.48                | 2.73              | 1.24                 | 12.01 |
| May 16, 2019      | Main                 | -               | -                   | -                 | -                    | -     |
|                   | Americana            | -               | -                   | -                 | -                    | -     |

- = No sample or not calculated due to sample quality.

<sup>U</sup> Concentrations are at or below the method detection limit (MDL). A value of half the MDL were used in calculations.

|                   | Ta                 | ble 9. Event Lo | ading (pounds/a     | acre)               |                      |       |
|-------------------|--------------------|-----------------|---------------------|---------------------|----------------------|-------|
| Event Date        | Monitoring Station | TSS             | Total<br>Phosphorus | Ammonia             | Nitrate +<br>Nitrite | TKN   |
|                   | Lucky              | -               | -                   | -                   | -                    | -     |
| 0-t-h-m0,0010     | Whitewater         | 3.469           | 0.02                | 0.0005 <sup>0</sup> | 0.007                | 0.086 |
| October 9, 2018   | Main               | 3.794           | 0.012               | 0.016               | 0.01                 | 0.074 |
|                   | Americana          | 1.612           | 0.01                | 0.003               | 0.007                | 0.05  |
|                   | Lucky              | -               | -                   | -                   | -                    | -     |
|                   | Whitewater         | -               | -                   | -                   | -                    | -     |
| November 27, 2018 | Main               | 0.309           | 0.035               | 0.111               | 0.04                 | 0.297 |
| -                 | Americana          | 0.25            | 0.009               | 0.006               | 0.01                 | 0.026 |
|                   | Lucky              | 3.581           | 0.008               | 0.009               | 0.004                | 0.070 |
|                   | Whitewater         | 3.369           | 0.009               | 0.006               | 0.004                | 0.053 |
| February 2, 2019  | Main               | 2.534           | 0.004               | 0.005               | 0.002                | 0.025 |
|                   | Americana          | 2.599           | 0.005               | 0.006               | 0.007                | 0.038 |
|                   | Lucky              | 0.717           | 0.006               | 0.009               | 0.003                | 0.038 |
|                   | Whitewater         | 2.486           | 0.008               | 0.012               | 0.003                | 0.051 |
| April 14, 2019    | Main               | -               | -                   | -                   | -                    | -     |
|                   | Americana          | -               | -                   | -                   | -                    | -     |
|                   | Lucky              | 0.429           | 0.008               | 0.01                | -                    | 0.041 |
| May 16, 2019      | Whitewater         | 0.367           | 0.005               | 0.005               | 0.002                | 0.024 |
|                   | Main               | -               | -                   | -                   | -                    | -     |
|                   | Americana          | -               | _                   | _                   | -                    | -     |

 $\hdots$  – = No sample or not calculated due to sample quality.

<sup>U</sup> Concentrations are at or below the method detection limit (MDL). A value of half the MDL were used in calculations.

| Table 10. QC Samples Collected |             |              |              |              |  |  |  |  |  |  |  |
|--------------------------------|-------------|--------------|--------------|--------------|--|--|--|--|--|--|--|
| Date                           | Lucky       | Whitewater   | Main         | Americana    |  |  |  |  |  |  |  |
| Date                           | (Site ID:3) | (Site ID:11) | (Site ID:12) | (Site ID:14) |  |  |  |  |  |  |  |
| October 9, 2018                | -           | FD,FB        | -            | LSD          |  |  |  |  |  |  |  |
| November 27, 2018              | FD,FB       | -            | -            | -            |  |  |  |  |  |  |  |
| February 2, 2019               | -           | FD,FB        | -            | -            |  |  |  |  |  |  |  |
| April 14, 2019                 | -           | -            | -            | FD,FB        |  |  |  |  |  |  |  |
| May 16, 2019                   | -           | -            | -            |              |  |  |  |  |  |  |  |

- = no sample.

FD = field duplicate.

FB = field blank.

LSD = lab split duplicate.

|                   | Table 11. Storm Event QC Sample Summary |               |                 |           |                      |            |                  |      |      |      |                         |                                 |                 |                          |      |                   |                       |                   |                      |                    |                |               |                    |
|-------------------|-----------------------------------------|---------------|-----------------|-----------|----------------------|------------|------------------|------|------|------|-------------------------|---------------------------------|-----------------|--------------------------|------|-------------------|-----------------------|-------------------|----------------------|--------------------|----------------|---------------|--------------------|
|                   |                                         |               |                 |           |                      |            |                  |      |      |      |                         | Analyt                          | ical Parameters |                          |      |                   |                       |                   |                      |                    |                |               |                    |
| Event Date        | Parent Sample                           | Sample ID     | QC Sample Type  | Turbidity | Hardness as<br>CaCO3 | E. coli    | BOD <sub>5</sub> | COD  | TSS  | TDS  | Total<br>Phosphorus (P) | Dissolved<br>Orthophosphate (P) | Ammonia (N)     | Nitrate +<br>Nitrite (N) | TKN  | Arsenic,<br>total | Cadmium,<br>dissolved | Cadmium,<br>total | Copper,<br>dissolved | Lead,<br>dissolved | Lead,<br>total | Mercury, tota | Zinc,<br>dissolved |
|                   |                                         |               |                 | NTU       | mg/L                 | MPN/100 mL | mg/L             | mg/L | mg/L | mg/L | mg/L                    | mg/L                            | mg/L            | mg/L                     | mg/L | ug/L              | ug/L                  | ug/L              | ug/L                 | ug/L               | ug/L           | ug/L          | ug/L               |
|                   | 181009-11-WG                            | 181009-11-001 | Field Blank     | -         | -                    | <1.0       | -                | -    | -    | -    | -                       | -                               | -               | -                        | -    | -                 | -                     | -                 | -                    | -                  | -              | -             | -                  |
| October 9, 2018   | 181009-11-WG                            | 181009-11-101 | Field Duplicate | -         | -                    | 11120      | -                | -    | -    | -    | -                       | -                               | -               | -                        | -    | -                 | -                     | -                 | -                    | -                  | -              | -             | -                  |
|                   | 181009-14-WC                            | 181009-14-103 | Composite Split | 47.7      | 58.8                 | -          | 54.6             | 192  | 92.1 | 105  | 0.774                   | 0.195                           | 0.150           | 0.376                    | 2.24 | 7.60              | <1.00                 | <1.00             | <10.0                | <6.94              | 28.3           | 0.0138        | 50.0               |
| November 27, 2018 | 181127-03-WG                            | 181127-03-001 | Field Blank     | -         | -                    | < 1.0      | -                | -    | -    | -    | -                       | -                               | -               | -                        | -    | -                 | -                     | -                 | -                    | -                  | -              | -             | -                  |
| November 27, 2018 | 181127-03-WG                            | 181127-03-101 | Field Duplicate | -         | -                    | >2419.6    | -                | -    | -    | -    | -                       | -                               | -               | -                        | -    | -                 | -                     | -                 | -                    | -                  | -              | -             | -                  |
| February 2, 2019  | 190202-11-WG                            | 190202-11-001 | Field Blank     | -         | -                    | < 1.0      | -                | -    | -    | -    | -                       | -                               | -               | -                        | -    | -                 | -                     | -                 | -                    | -                  | -              | -             | -                  |
| rebluary 2, 2019  | 190202-11-WG                            | 190202-11-101 | Field Duplicate | -         | -                    | 1986.3     | -                | -    | -    | -    | -                       | -                               | -               | -                        | -    | -                 | -                     | -                 | -                    | -                  | -              | -             | -                  |
| April 14, 2019    | 190414-14-WG                            | 190414-14-001 | Field blank     | -         | -                    | <1.0       | -                | -    | -    | -    | -                       | -                               | -               | -                        | -    | -                 | -                     | -                 | -                    | -                  | -              | -             | -                  |
| April 14, 2019    | 190414-14-WG                            | 190414-14-101 | Field duplicate | -         | -                    | 328.2      | -                | -    | -    | -    | -                       | -                               | -               | -                        | -    | -                 | -                     | -                 | -                    | -                  | -              | -             | -                  |

Notes: - = no sample.

|                        | Table 12. Equipment QC Sample Summary |               |                 |           |             |       |       |        |       |                |                    |              |             |        |          |           |          |           |           |       |          |           |      |      |      |      |
|------------------------|---------------------------------------|---------------|-----------------|-----------|-------------|-------|-------|--------|-------|----------------|--------------------|--------------|-------------|--------|----------|-----------|----------|-----------|-----------|-------|----------|-----------|------|------|------|------|
|                        | Analytical Parameters                 |               |                 |           |             |       |       |        |       |                |                    |              |             |        |          |           |          |           |           |       |          |           |      |      |      |      |
| Comple Collection Date | Monitoring                            | Comple ID     | QC Sample Type  | Turbidity | Hardness as | BOD₅  | COD   | TSS    | TDS   | Total          | Dissolved          | Ammonio (NI) | Nitrate +   | TI/N   | Arsenic, | Cadmium,  | Cadmium, | Copper,   | Lead,     | Lead, | Mercury, | Zinc,     |      |      |      |      |
| Sample Collection Date | Station                               |               | QC Sample Type  | Turbidity | CaCO₃       | DUD5  | COD   | 100    |       | Phosphorus (P) | Orthophosphate (P) | Annnonia (N) | Nitrite (N) | IN     | total    | dissolved | total    | dissolved | dissolved | total | total    | dissolved |      |      |      |      |
|                        | Station                               |               |                 |           |             |       | 1     | NTU    | mg/L  | mg/L           | mg/L               | mg/L         | mg/L        | mg/L   | mg/L     | mg/L      | mg/L     | mg/L      | ug/L      | ug/L  | ug/L     | ug/L      | ug/L | ug/L | ug/L | ug/L |
| September 19, 2018     | Main                                  | 180919-12-003 | Equipment Blank | <0.3      | <1.00       | <2.00 | <7.00 | <0.900 | <20.0 | <0.006         | <0.002             | 0.036        | <0.0240     | <0.130 | <5.72    | <1.00     | <1.00    | <10.0     | <6.94     | <6.94 | <0.00471 | <10.0     |      |      |      |      |
| August 21, 2019        | Main                                  | 190821-12-004 | Rinsate Blank   | <0.3      | <0.125      | <2.00 | <7.00 | <0.900 | <20.0 | <0.006         | <0.002             | <0.0350      | <0.0250     | <0.130 | <5.50    | <0.500    | <0.500   | <8.50     | <4.50     | <4.50 | <0.00470 | <8.50     |      |      |      |      |

| Table 13. Field Parameter Results for Individual Sites WY 2014 to WY 2019 |                         |                   |                             |                   |         |         |        |        |        |          |      |  |  |
|---------------------------------------------------------------------------|-------------------------|-------------------|-----------------------------|-------------------|---------|---------|--------|--------|--------|----------|------|--|--|
| Site                                                                      | Variable                | Number<br>Detects | Number Non-<br>Detects (ND) | % Non-<br>Detects | Minimum | Maximum | Mean   | Median | SD     | Skewness | CV   |  |  |
|                                                                           | Dissolved Oxygen (mg/L) | 14                | 0                           | 0                 | 1.72    | 10.28   | 6.64   | 6.35   | 2.84   | -0.22    | 0.43 |  |  |
| Luckv                                                                     | Temperature (°C)        | 25                | 0                           | 0                 | 4.8     | 22.3    | 12.05  | 11.75  | 4.53   | 0.51     | 0.38 |  |  |
| LUCKY                                                                     | pH (S.U.)               | 14                | 0                           | 0                 | 6.46    | 8.95    | 7.77   | 7.69   | 0.73   | 0.03     | 0.09 |  |  |
|                                                                           | Conductivity (uS/cm)    | 14                | 0                           | 0                 | 51.2    | 356.5   | 140.49 | 103.2  | 101.99 | 1.18     | 0.73 |  |  |
|                                                                           | Dissolved Oxygen (mg/L) | 15                | 0                           | 0                 | 6.85    | 10.83   | 8.43   | 8.23   | 1.37   | 0.59     | 0.16 |  |  |
| Americano                                                                 | Temperature (°C)        | 15                | 0                           | 0                 | 6.7     | 19.8    | 12.57  | 12     | 3.6    | 0.57     | 0.29 |  |  |
| Americana                                                                 | pH (S.U.)               | 15                | 0                           | 0                 | 6.51    | 8.23    | 7.55   | 7.85   | 0.62   | -1.86    | 0.08 |  |  |
|                                                                           | Conductivity (uS/cm)    | 15                | 0                           | 0                 | 120     | 662     | 236.99 | 225.6  | 133.91 | 2.47     | 0.57 |  |  |
|                                                                           | Dissolved Oxygen (mg/L) | 15                | 0                           | 0                 | 5.56    | 11.06   | 8.38   | 8.36   | 1.68   | -0.28    | 0.2  |  |  |
| Main                                                                      | Temperature (°C)        | 15                | 0                           | 0                 | 5.6     | 23.9    | 11.34  | 9.7    | 5.1    | 1.09     | 0.45 |  |  |
| wan                                                                       | pH (S.U.)               | 15                | 0                           | 0                 | 4.99    | 8.85    | 7.59   | 8.09   | 1.09   | -1.1     | 0.14 |  |  |
|                                                                           | Conductivity (uS/cm)    | 16                | 0                           | 0                 | 2.2     | 542     | 156.56 | 128.9  | 135.47 | 1.79     | 0.87 |  |  |
|                                                                           | Dissolved Oxygen (mg/L) | 14                | 0                           | 0                 | 5.21    | 12.02   | 8.69   | 9.15   | 1.94   | -0.43    | 0.22 |  |  |
| Stilson                                                                   | Temperature (°C)        | 14                | 0                           | 0                 | 6.1     | 22.8    | 11.9   | 9.9    | 5.16   | -0.43    | 0.43 |  |  |
| Stilson                                                                   | pH (S.U.)               | 25                | 0                           | 0                 | 6.47    | 8.58    | 7.94   | 8.07   | 0.55   | -1.69    | 0.07 |  |  |
|                                                                           | Conductivity (uS/cm)    | 14                | 0                           | 0                 | 64.7    | 370.4   | 187.09 | 167.15 | 90.33  | 0.91     | 0.48 |  |  |
|                                                                           | Dissolved Oxygen (mg/L) | 14                | 0                           | 0                 | 3.91    | 9.37    | 6.55   | 6.69   | 1.78   | 0.13     | 0.27 |  |  |
| \\//b.it                                                                  | Temperature (°C)        | 14                | 0                           | 0                 | 6.7     | 21.7    | 12.44  | 11.6   | 4.11   | -0.43    | 0.33 |  |  |
| Whitewater                                                                | pH (S.U.)               | 13                | 0                           | 0                 | 5.22    | 8.41    | 7.61   | 7.86   | 0.86   | -2.12    | 0.11 |  |  |
|                                                                           | Conductivity (uS/cm)    | 13                | 0                           | 0                 | 132.5   | 342.9   | 230.57 | 206.8  | 74.32  | 0.35     | 0.32 |  |  |

|                                      | Table 14          | 4. Laboratory             | / Sample Ana      | lyte Results | for American | a WY 2014 to | WY 2019 |         |          |      |
|--------------------------------------|-------------------|---------------------------|-------------------|--------------|--------------|--------------|---------|---------|----------|------|
| Variable                             | Number<br>Detects | Number<br>Non-<br>Detects | % Non-<br>Detects | Minimum      | Maximum      | Mean         | Median  | SD      | Skewness | CV   |
| Turbidity (NTU)                      | 22                | 0                         | 0                 | 10.80        | 280.00       | 70.15        | 57.15   | 60.44   | 2.24     | 0.86 |
| Hardness as CaCO <sub>3</sub> (mg/L) | 22                | 0                         | 0                 | 30.00        | 155.00       | 65.84        | 56.25   | 33.92   | 1.52     | 0.52 |
| E. coli (MPN/100 mL)                 | 18                | 0                         | 0                 | 27.20        | 14390.00     | 2452.57      | 1332.55 | 3557.26 | 2.63     | 1.45 |
| BOD <sub>5</sub> (mg/L)              | 21                | 0                         | 0                 | 8.00         | 76.00        | 29.18        | 23.00   | 20.31   | 1.08     | 0.70 |
| COD (mg/L)                           | 22                | 0                         | 0                 | 60.50        | 574.00       | 183.05       | 145.00  | 125.05  | 1.88     | 0.68 |
| TSS (mg/L)                           | 21                | 0                         | 0                 | 15.20        | 390.00       | 123.93       | 95.70   | 112.36  | 1.78     | 0.91 |
| TDS (mg/L)                           | 21                | 0                         | 0                 | 67.00        | 279.00       | 158.05       | 138.00  | 63.28   | 0.59     | 0.40 |
| Total phosphorus (P) (mg/L)          | 22                | 0                         | 0                 | 0.24         | 1.43         | 0.56         | 0.45    | 0.30    | 1.28     | 0.53 |
| Dissolved orthophosphate (P) (mg/L)  | 18                | 0                         | 0                 | 0.09         | 0.86         | 0.31         | 0.22    | 0.22    | 1.19     | 0.70 |
| Ammonia (N) (mg/L)                   | 22                | 0                         | 0                 | 0.21         | 1.72         | 0.61         | 0.46    | 0.42    | 1.28     | 0.68 |
| Nitrate + nitrite (N) (mg/L)         | 18                | 0                         | 0                 | 0.26         | 0.71         | 0.50         | 0.52    | 0.14    | -0.05    | 0.28 |
| TKN (mg/L)                           | 22                | 0                         | 0                 | 1.04         | 9.35         | 2.90         | 2.11    | 2.34    | 1.97     | 0.81 |
| Arsenic, total (ug/L)                | 6                 | 15                        | 71                | 5.92         | 12.00        | 7.97         | 7.36    | 2.17    | 1.57     | 0.27 |
| Cadmium, dissolved (ug/L)            | 0                 | 18                        | 100               | <0.50        | <0.50        | NC           | NC      | NC      | NC       | NC   |
| Cadmium, total (ug/L)                | 1                 | 21                        | 95                | <0.50        | 2.24         | NC           | NC      | NC      | NC       | NC   |
| Copper, dissolved (ug/L)             | 9                 | 8                         | 47                | 3.70         | 15.70        | 9.58         | 9.00    | 4.74    | 0.28     | 0.49 |
| Lead, dissolved (ug/L)               | 0                 | 18                        | 100               | <4.00        | <4.00        | <4.00        | <4.00   | NC      | NC       | NC   |
| Lead, total (ug/L)                   | 17                | 3                         | 15                | <3.00        | 34.4         | 12.15        | 9.01    | 8.10    | 1.80     | 0.67 |
| Mercury, total (ug/L)                | 21                | 1                         | 5                 | 0.01         | 0.05         | 0.02         | 0.02    | 0.01    | 0.87     | 0.47 |
| Zinc, dissolved (ug/L)               | 18                | 0                         | 0                 | 16.20        | 116.00       | 41.93        | 36.35   | 25.88   | 1.43     | 0.62 |

| Table 15. Laboratory Sample Analyte Results for Lucky WY 2014 to WY 2019 |                   |                       |                   |         |          |         |        |         |          |      |  |
|--------------------------------------------------------------------------|-------------------|-----------------------|-------------------|---------|----------|---------|--------|---------|----------|------|--|
| Variable                                                                 | Number<br>Detects | Number<br>Non-Detects | % Non-<br>Detects | Minimum | Maximum  | Mean    | Median | SD      | Skewness | CV   |  |
| Turbidity (NTU)                                                          | 16                | 0                     | 0                 | 10.00   | 80.40    | 28.74   | 26.55  | 16.64   | 2.03     | 0.58 |  |
| Hardness as CaCO <sub>3</sub> (mg/L)                                     | 17                | 0                     | 0                 | 13.00   | 66.30    | 34.03   | 34.90  | 14.64   | 0.40     | 0.43 |  |
| E. coli (MPN/100 mL)                                                     | 16                | 0                     | 0                 | 14.80   | 12110.00 | 1427.33 | 140.00 | 3192.82 | 2.96     | 2.24 |  |
| BOD <sub>5</sub> (mg/L)                                                  | 17                | 0                     | 0                 | 5.40    | 68.30    | 27.01   | 15.20  | 20.95   | 0.96     | 0.78 |  |
| COD (mg/L)                                                               | 17                | 0                     | 0                 | 52.00   | 212.00   | 115.53  | 103.00 | 52.93   | 0.81     | 0.46 |  |
| TSS (mg/L)                                                               | 17                | 0                     | 0                 | 9.08    | 170.00   | 43.60   | 35.70  | 37.10   | 2.71     | 0.85 |  |
| TDS (mg/L)                                                               | 17                | 0                     | 0                 | 39.00   | 151.00   | 94.01   | 83.80  | 39.14   | 0.11     | 0.42 |  |
| Total phosphorus (P) (mg/L)                                              | 17                | 0                     | 0                 | 0.18    | 1.11     | 0.50    | 0.47   | 0.26    | 1.11     | 0.52 |  |
| Dissolved orthophosphate (P) (mg/L)                                      | 16                | 0                     | 0                 | 0.10    | 0.76     | 0.29    | 0.23   | 0.19    | 1.43     | 0.66 |  |
| Ammonia (N) (mg/L)                                                       | 16                | 0                     | 0                 | 0.09    | 1.25     | 0.60    | 0.60   | 0.35    | 0.13     | 0.58 |  |
| Nitrate + nitrite (N) (mg/L)                                             | 16                | 0                     | 0                 | 0.10    | 0.76     | 0.37    | 0.34   | 0.20    | 0.78     | 0.55 |  |
| TKN (mg/L)                                                               | 17                | 0                     | 0                 | 0.55    | 4.10     | 2.18    | 1.98   | 1.10    | 0.29     | 0.51 |  |
| Arsenic, total (ug/L)                                                    | 3                 | 16                    | 84                | <5.00   | 7.57     | 6.77    | 6.97   | 0.91    | -0.93    | NC   |  |
| Cadmium, dissolved (ug/L)                                                | 0                 | 18                    | 100               | NC      | NC       | NC      | NC     | NC      | NC       | NC   |  |
| Cadmium, total (ug/L)                                                    | 0                 | 20                    | 100               | NC      | NC       | NC      | NC     | NC      | NC       | NC   |  |
| Copper, dissolved (ug/L)                                                 | 6                 | 10                    | 63                | 3.3     | 14.8     | 8.38    | 6.60   | 4.83    | 0.68     | 0.58 |  |
| Lead, dissolved (ug/L)                                                   | 0                 | 18                    | 100               | NC      | NC       | NC      | NC     | NC      | NC       | NC   |  |
| Lead, total (ug/L)                                                       | 1                 | 19                    | 95                | 7.74    | 7.74     | 7.74    | 7.74   | NC      | NC       | NC   |  |
| Mercury, total (ug/L)                                                    | 14                | 3                     | 18                | 0.01    | 0.03     | 0.01    | 0.01   | 0.01    | 0.74     | 0.55 |  |
| Zinc, dissolved (ug/L)                                                   | 16                | 0                     | 0                 | 15.00   | 66.80    | 39.21   | 34.30  | 15.69   | 0.32     | 0.40 |  |

| Table 16. Laboratory Sample Analyte Results for Main WY 2014 to WY 2019 |                   |                       |                   |         |         |        |        |         |          |      |  |
|-------------------------------------------------------------------------|-------------------|-----------------------|-------------------|---------|---------|--------|--------|---------|----------|------|--|
| Variable                                                                | Number<br>Detects | Number<br>Non-Detects | % Non-<br>Detects | Minimum | Maximum | Mean   | Median | SD      | Skewness | CV   |  |
| Turbidity (NTU)                                                         | 18                | 0                     | 0                 | 14.80   | 344.00  | 79.28  | 61.00  | 75.76   | 2.85     | 0.96 |  |
| Hardness as CaCO <sub>3</sub> (mg/L)                                    | 18                | 0                     | 0                 | 16.90   | 79.60   | 30.21  | 23.45  | 16.90   | 1.94     | 0.56 |  |
| E. coli (MPN/100 mL)                                                    | 19                | 0                     | 0                 | 4.10    | 5200.00 | 827.53 | 410.60 | 1258.49 | 2.68     | 1.52 |  |
| BOD <sub>5</sub> (mg/L)                                                 | 18                | 0                     | 0                 | 6.30    | 36.30   | 17.41  | 14.15  | 9.38    | 0.74     | 0.54 |  |
| COD (mg/L)                                                              | 17                | 0                     | 0                 | 56.00   | 466.00  | 151.18 | 148.00 | 94.82   | 2.40     | 0.63 |  |
| TSS (mg/L)                                                              | 16                | 0                     | 0                 | 11.10   | 495.00  | 100.11 | 68.10  | 113.30  | 3.15     | 1.13 |  |
| TDS (mg/L)                                                              | 17                | 0                     | 0                 | 46.00   | 146.00  | 75.82  | 72.80  | 26.56   | 1.30     | 0.35 |  |
| Total phosphorus (P) (mg/L)                                             | 18                | 0                     | 0                 | 0.14    | 1.74    | 0.38   | 0.27   | 0.36    | 3.40     | 0.96 |  |
| Dissolved orthophosphate (P) (mg/L)                                     | 17                | 0                     | 0                 | 0.06    | 0.25    | 0.13   | 0.11   | 0.07    | 0.78     | 0.52 |  |
| Ammonia (N) (mg/L)                                                      | 18                | 0                     | 0                 | 0.30    | 1.24    | 0.77   | 0.68   | 0.31    | 0.22     | 0.40 |  |
| Nitrate + nitrite (N) (mg/L)                                            | 16                | 0                     | 0                 | 0.15    | 0.63    | 0.31   | 0.29   | 0.13    | 0.81     | 0.43 |  |
| TKN (mg/L)                                                              | 18                | 0                     | 0                 | 0.99    | 4.00    | 2.11   | 2.11   | 0.84    | 0.75     | 0.40 |  |
| Arsenic, total (ug/L)                                                   | 1                 | 18                    | 95                | 10.30   | 10.30   | 10.30  | 10.30  | NC      | NC       | NC   |  |
| Cadmium, dissolved (ug/L)                                               | 0                 | 16                    | 100               | NC      | NC      | NC     | NC     | NC      | NC       | NC   |  |
| Cadmium, total (ug/L)                                                   | 3                 | 16                    | 84                | 0.60    | 2.47    | 1.25   | 0.68   | 1.06    | 1.72     | 0.85 |  |
| Copper, dissolved (ug/L)                                                | 5                 | 10                    | 67                | 4.80    | 8.80    | 6.46   | 5.50   | 1.98    | 0.54     | 0.31 |  |
| Lead, dissolved (ug/L)                                                  | 0                 | 16                    | 100               | NC      | NC      | NC     | NC     | NC      | NC       | NC   |  |
| Lead, total (ug/L)                                                      | 14                | 2                     | 13                | 5.02    | 138.00  | 22.17  | 10.90  | 34.81   | 3.27     | 1.57 |  |
| Mercury, total (ug/L)                                                   | 18                | 1                     | 5                 | 0.01    | 0.06    | 0.02   | 0.02   | 0.01    | 1.98     | 0.65 |  |
| Zinc, dissolved (ug/L)                                                  | 16                | 0                     | 0                 | 22.30   | 109.00  | 39.54  | 32.35  | 22.32   | 2.25     | 0.56 |  |

| Table 17. Laboratory Sample Analyte Results for Stilson WY 2014 to WY 2019 |                   |                           |                   |         |          |         |        |          |          |      |  |
|----------------------------------------------------------------------------|-------------------|---------------------------|-------------------|---------|----------|---------|--------|----------|----------|------|--|
| Variable                                                                   | Number<br>Detects | Number<br>Non-<br>Detects | % Non-<br>Detects | Minimum | Maximum  | Mean    | Median | SD       | Skewness | CV   |  |
| Turbidity (NTU)                                                            | 17                | 0                         | 0                 | 27.60   | 698.00   | 132.98  | 55.50  | 169.22   | 2.67     | 1.27 |  |
| Hardness as CaCO <sub>3</sub> (mg/L)                                       | 17                | 0                         | 0                 | 28.40   | 160.00   | 58.91   | 44.20  | 37.81    | 1.99     | 0.64 |  |
| E. coli (MPN/ 100 mL)                                                      | 18                | 0                         | 0                 | 6.20    | 86640.00 | 6952.91 | 633.05 | 20465.65 | 3.89     | 2.94 |  |
| BOD <sub>5</sub> (mg/L)                                                    | 17                | 0                         | 0                 | 7.90    | 98.70    | 31.53   | 25.30  | 23.69    | 1.64     | 0.75 |  |
| COD (mg/L)                                                                 | 16                | 0                         | 0                 | 77.50   | 777.00   | 229.38  | 175.50 | 169.90   | 2.42     | 0.74 |  |
| TSS (mg/L)                                                                 | 17                | 0                         | 0                 | 15.00   | 901.00   | 168.36  | 100.00 | 205.73   | 3.11     | 1.22 |  |
| TDS (mg/L)                                                                 | 17                | 0                         | 0                 | 74.00   | 834.00   | 165.65  | 112.00 | 179.68   | 3.60     | 1.08 |  |
| Total phosphorus (P) (mg/L)                                                | 17                | 0                         | 0                 | 0.22    | 0.89     | 0.51    | 0.43   | 0.23     | 0.25     | 0.45 |  |
| Dissolved orthophosphate (P) (mg/L)                                        | 15                | 0                         | 0                 | 0.08    | 0.47     | 0.25    | 0.24   | 0.14     | 0.28     | 0.55 |  |
| Ammonia (N) (mg/L)                                                         | 16                | 0                         | 0                 | 0.27    | 1.80     | 0.84    | 0.72   | 0.44     | 1.11     | 0.53 |  |
| Nitrate + nitrite (N) (mg/L)                                               | 16                | 0                         | 0                 | 0.15    | 0.62     | 0.34    | 0.32   | 0.13     | 0.53     | 0.37 |  |
| TKN (mg/L)                                                                 | 16                | 0                         | 0                 | 1.10    | 5.10     | 2.85    | 2.51   | 1.33     | 0.53     | 0.47 |  |
| Arsenic, total (ug/L)                                                      | 1                 | 15                        | 94                | 15.50   | 15.50    | 15.50   | 15.50  | NC       | NC       | NC   |  |
| Cadmium, dissolved (ug/L)                                                  | 0                 | 16                        | 100               | NC      | NC       | NC      | NC     | NC       | NC       | NC   |  |
| Cadmium, total (ug/L)                                                      | 4                 | 13                        | 76                | 0.50    | 4.12     | 1.57    | 0.84   | 1.71     | 1.94     | 1.08 |  |
| Copper, dissolved (ug/L)                                                   | 6                 | 8                         | 57                | 4.80    | 13.40    | 8.37    | 8.15   | 3.28     | 0.52     | 0.39 |  |
| Lead, dissolved (ug/L)                                                     | 1                 | 15                        | 94                | < 4.00  | 4.38     | 4.38    | 4.38   | NC       | NC       | NC   |  |
| Lead, total (ug/L)                                                         | 13                | 2                         | 13                | 4.00    | 78.70    | 20.86   | 12.00  | 24.21    | 1.96     | 1.16 |  |
| Mercury, total (ug/L)                                                      | 17                | 0                         | 0                 | 0.01    | 0.12     | 0.02    | 0.02   | 0.03     | 3.66     | 1.12 |  |
| Zinc, dissolved (ug/L)                                                     | 16                | 0                         | 0                 | 15.30   | 189.00   | 45.88   | 34.35  | 41.39    | 3.06     | 0.90 |  |

 $\ensuremath{\mathsf{NC}}$  = not calculated due to low number of detections.

| Table 18. Laboratory Sample Analyte Results for Whitewater WY 2014 to WY 2019 |                   |                           |                   |         |         |        |        |         |          |      |
|-------------------------------------------------------------------------------|-------------------|---------------------------|-------------------|---------|---------|--------|--------|---------|----------|------|
| Variable                                                                      | Number<br>Detects | Number<br>Non-<br>Detects | % Non-<br>Detects | Minimum | Maximum | Mean   | Median | SD      | Skewness | CV   |
| Turbidity (NTU)                                                               | 17                | 0                         | 0                 | 16.00   | 204.00  | 67.26  | 44.60  | 51.48   | 1.32     | 0.77 |
| Hardness as CaCO <sub>3</sub> (mg/L)                                          | 17                | 0                         | 0                 | 27.00   | 231.00  | 69.88  | 54.00  | 49.95   | 2.45     | 0.71 |
| E. coli (MPN/100 mL)                                                          | 15                | 0                         | 0                 | 4.10    | 4640.00 | 431.72 | 135.40 | 1170.19 | 3.81     | 2.71 |
| BOD <sub>5</sub> (mg/L)                                                       | 17                | 0                         | 0                 | 7.90    | 143.00  | 42.73  | 27.40  | 40.23   | 1.48     | 0.94 |
| COD (mg/L)                                                                    | 16                | 0                         | 0                 | 86.50   | 414.00  | 176.38 | 156.50 | 83.17   | 1.58     | 0.47 |
| TSS (mg/L)                                                                    | 17                | 0                         | 0                 | 5.50    | 269.00  | 92.29  | 66.20  | 77.59   | 1.08     | 0.84 |
| TDS (mg/L)                                                                    | 17                | 0                         | 0                 | 84.00   | 402.00  | 175.29 | 150.00 | 77.48   | 1.72     | 0.44 |
| Total phosphorus (P) (mg/L)                                                   | 17                | 0                         | 0                 | 0.35    | 1.24    | 0.67   | 0.57   | 0.29    | 0.65     | 0.44 |
| Dissolved orthophosphate (P) (mg/L)                                           | 14                | 0                         | 0                 | 0.12    | 0.94    | 0.37   | 0.29   | 0.24    | 1.38     | 0.65 |
| Ammonia (N) (mg/L)                                                            | 16                | 1                         | 6                 | 0.05    | 1.48    | 0.52   | 0.38   | 0.42    | 0.87     | 0.81 |
| Nitrate + nitrite (N) (mg/L)                                                  | 15                | 0                         | 0                 | 0.10    | 1.41    | 0.49   | 0.41   | 0.33    | 1.88     | 0.68 |
| TKN (mg/L)                                                                    | 17                | 0                         | 0                 | 1.00    | 6.65    | 2.60   | 2.07   | 1.55    | 1.32     | 0.60 |
| Arsenic, total (ug/L)                                                         | 3                 | 14                        | 82                | 6.30    | 9.78    | 8.55   | 9.56   | 1.95    | -1.71    | 0.23 |
| Cadmium, dissolved (ug/L)                                                     | 0                 | 15                        | 100               | NC      | NC      | NC     | NC     | NC      | NC       | NC   |
| Cadmium, total (ug/L)                                                         | 1                 | 16                        | 94                | 1.25    | 1.25    | 1.25   | 1.25   | NC      | NC       | NC   |
| Copper, dissolved (ug/L)                                                      | 5                 | 8                         | 62                | 6.80    | 15.00   | 10.36  | 9.90   | 3.22    | 0.60     | 0.31 |
| Lead, dissolved (ug/L)                                                        | 0                 | 15                        | 100               | NC      | NC      | NC     | NC     | NC      | NC       | NC   |
| Lead, total (ug/L)                                                            | 10                | 7                         | 41                | 3.00    | 30.40   | 13.40  | 11.90  | 7.32    | 1.33     | 0.55 |
| Mercury, total (ug/L)                                                         | 16                | 1                         | 6                 | 0.01    | 0.05    | 0.02   | 0.02   | 0.01    | 1.48     | 0.57 |
| Zinc, dissolved (ug/L)                                                        | 14                | 1                         | 7                 | 10.20   | 62.80   | 30.92  | 28.75  | 15.86   | 0.95     | 0.51 |

### **Figures**

Figure 1. Vicinity map: Phase I outfall sampling
Figure 2. Lucky monitoring station and drainage area
Figure 3. Whitewater monitoring station and drainage area
Figure 4. Main monitoring station and drainage area
Figure 5. Americana monitoring station and drainage area
Figure 6. WY 2019 rain gauge monthly totals
Figure 7. Comparison of primary parameters between stations 2013–2019
Figure 8. Box plots showing comparison of temperature between seasons, 2013–2019
Figure 10. Box plots showing comparison of TSS between seasons, 2013–2019

Brown AND Caldwell

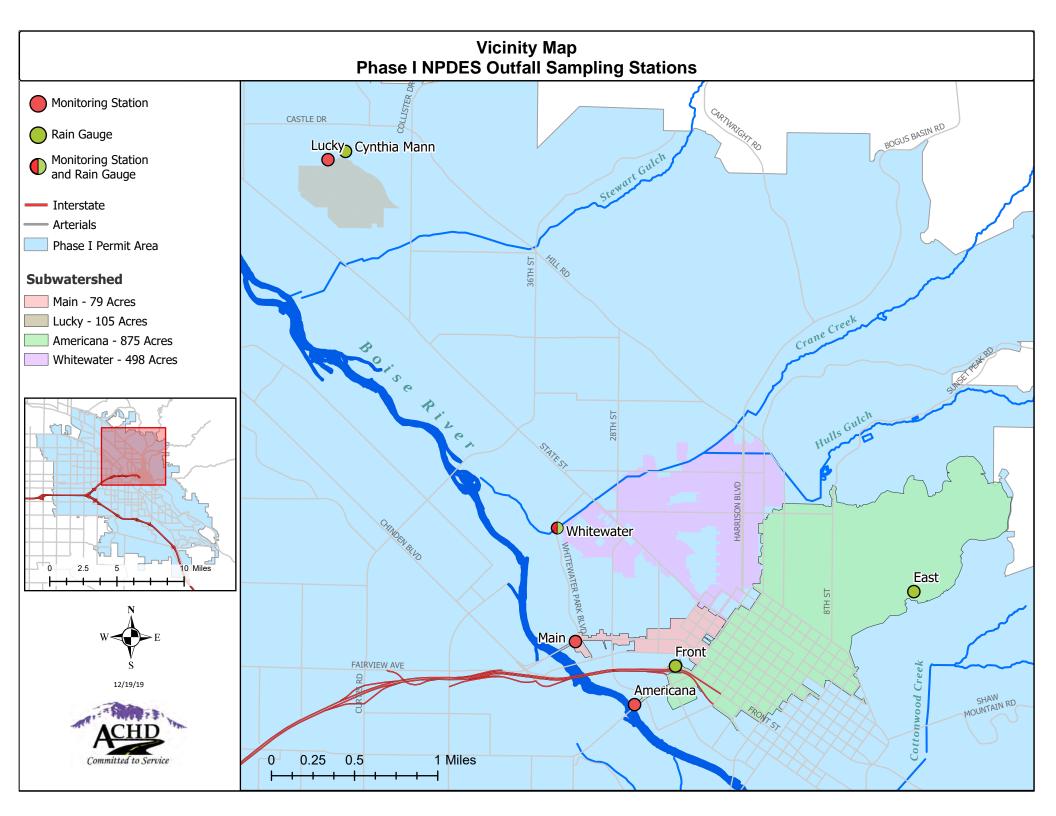
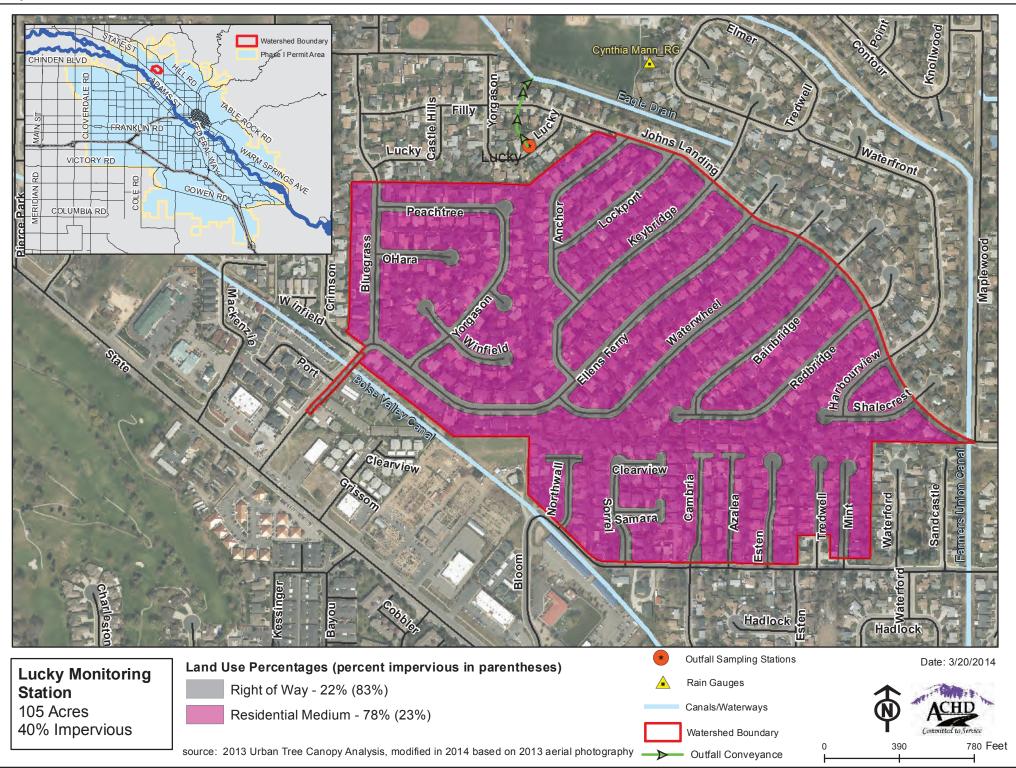
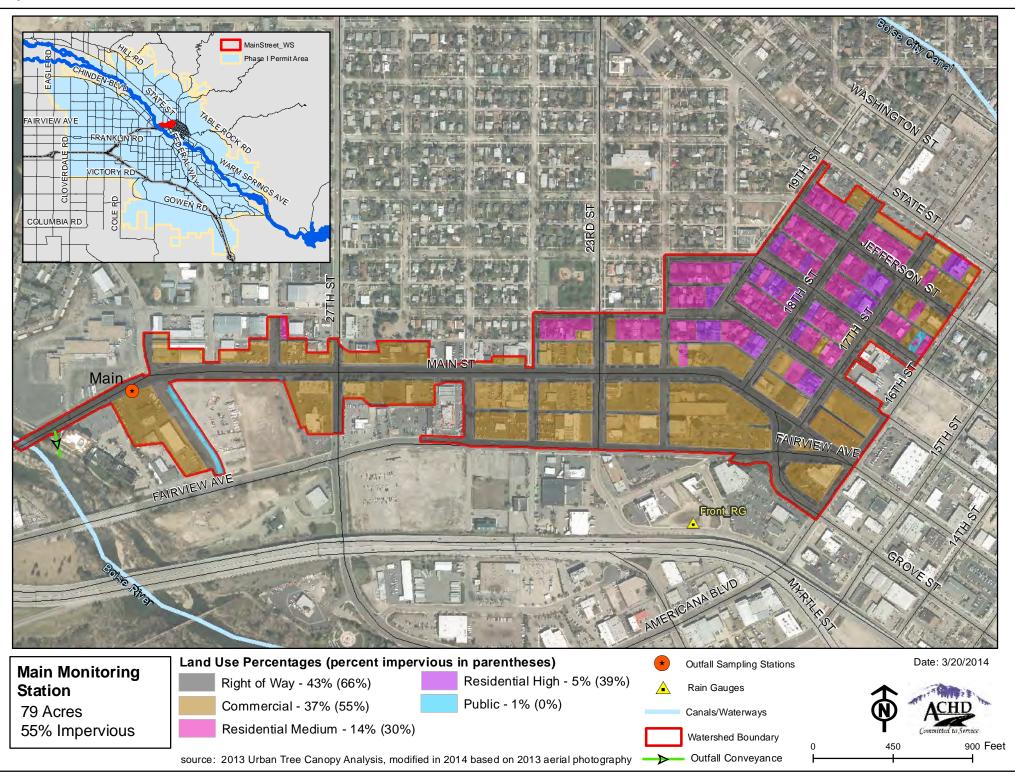
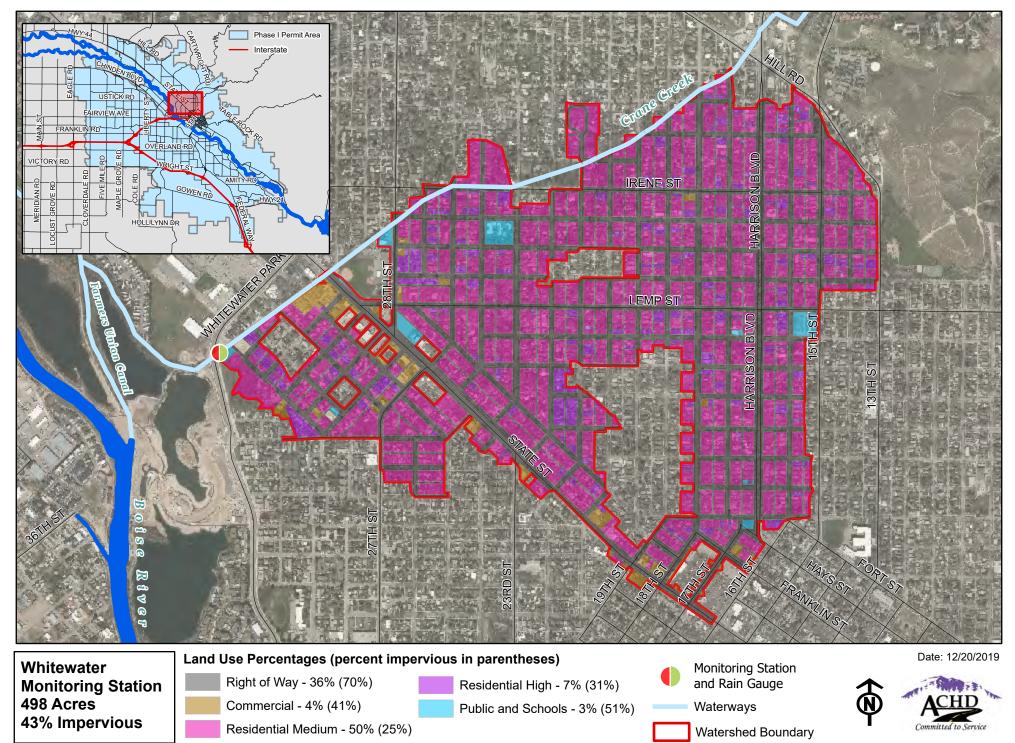
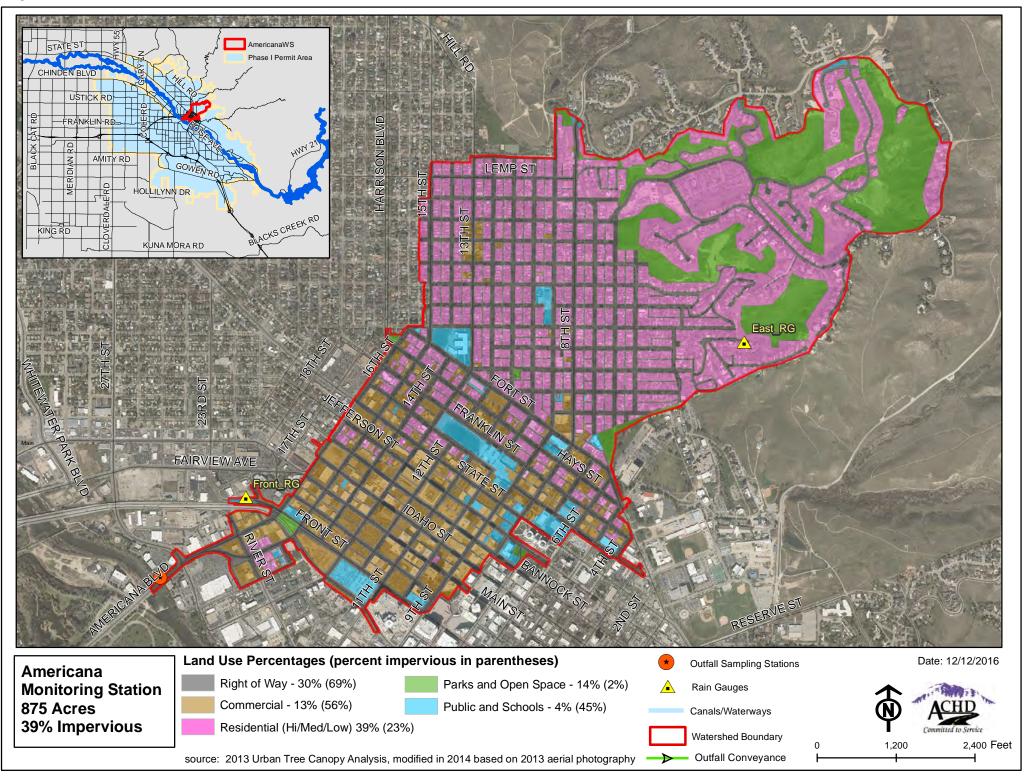
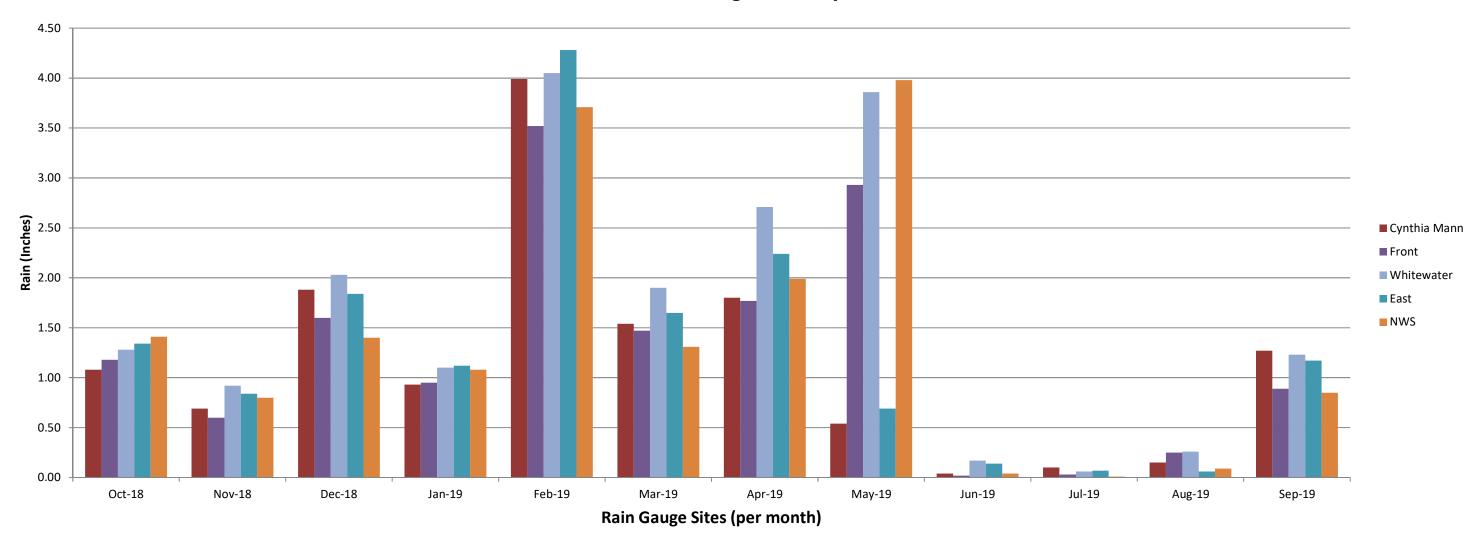






Figure 2



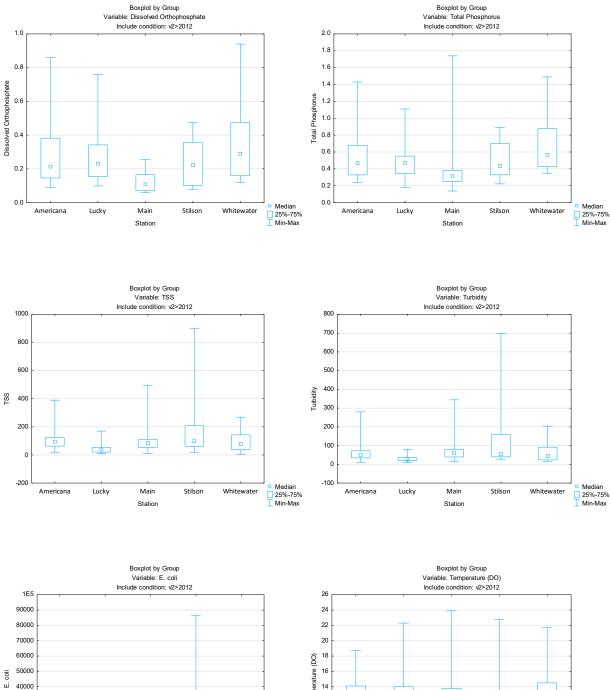


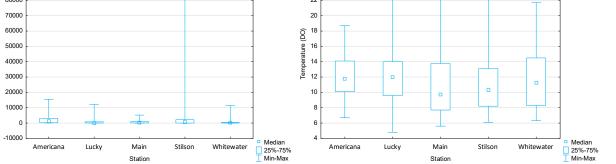




source: 2013 Urban Tree Canopy Analysis, modified in 2014 based on 2013 aerial photography

750 1,500 Feet

Figure 5

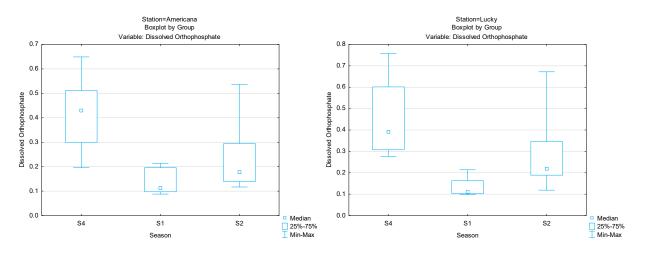


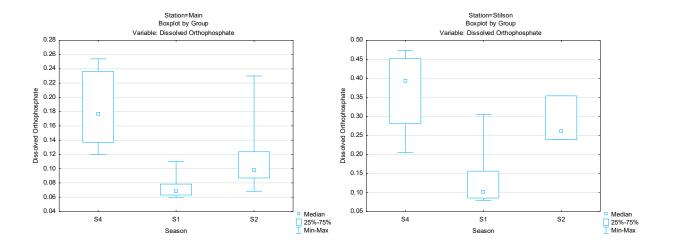



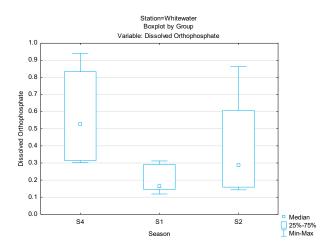



## WY 2019 Rain Gauge Monthly Totals

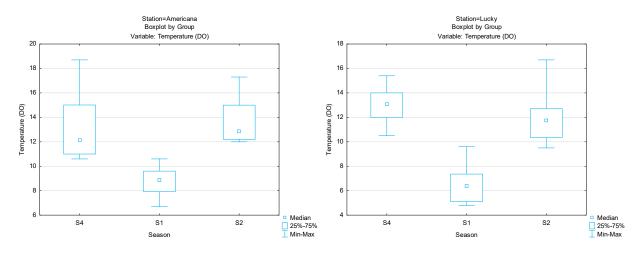
Figure 7

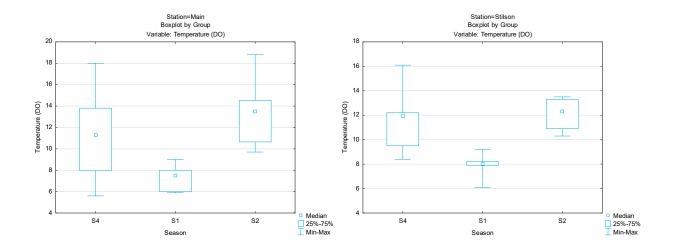


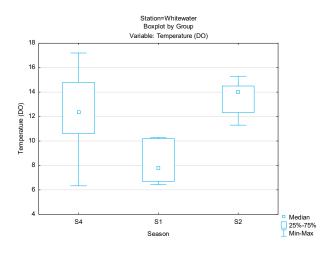





Station

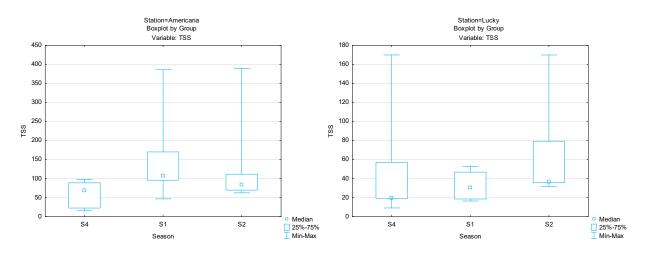
Station

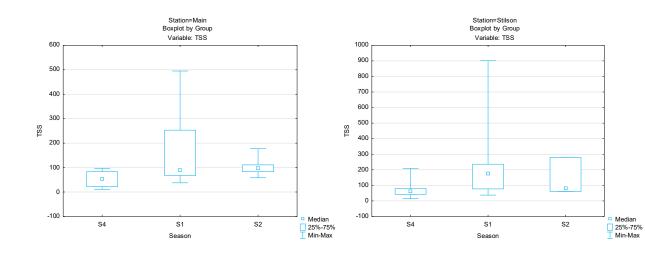


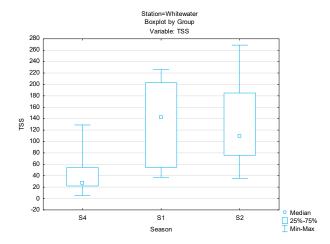





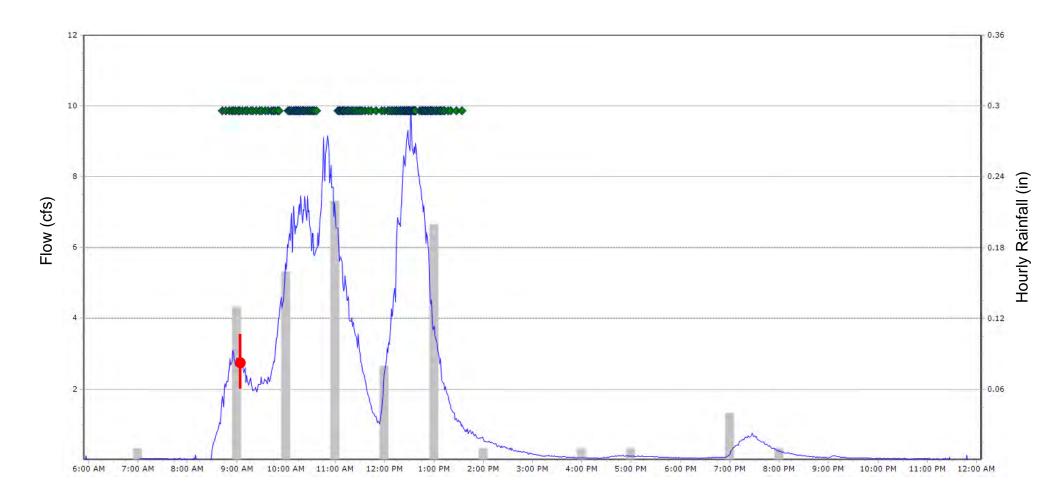



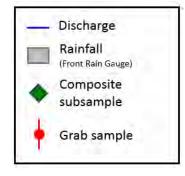





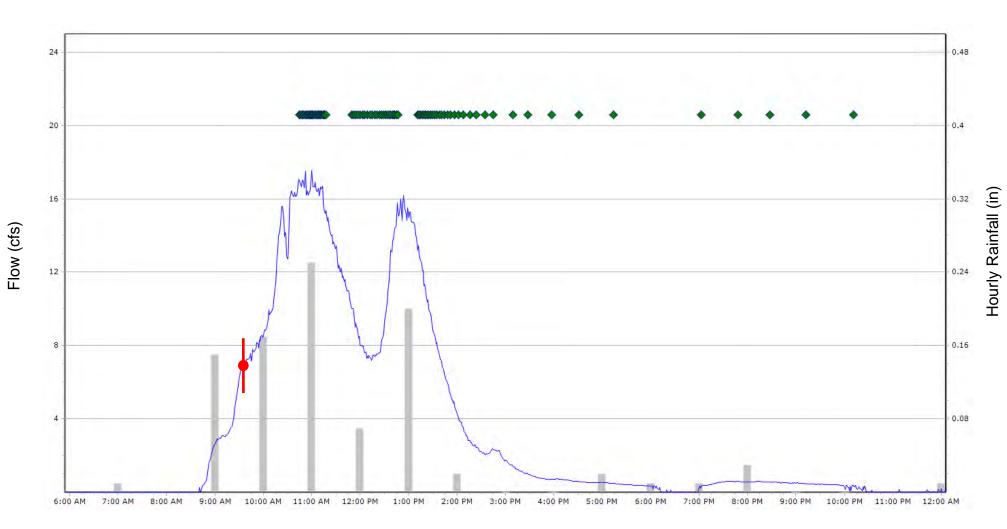


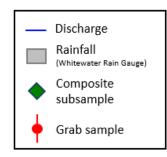


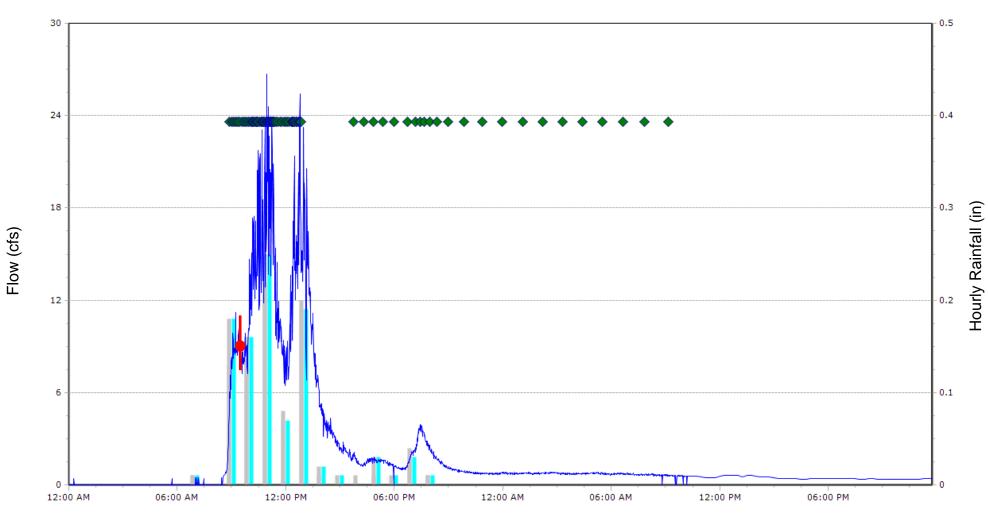



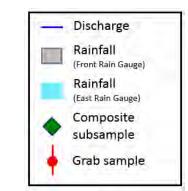

# Appendix A: Storm Event Hydrographs



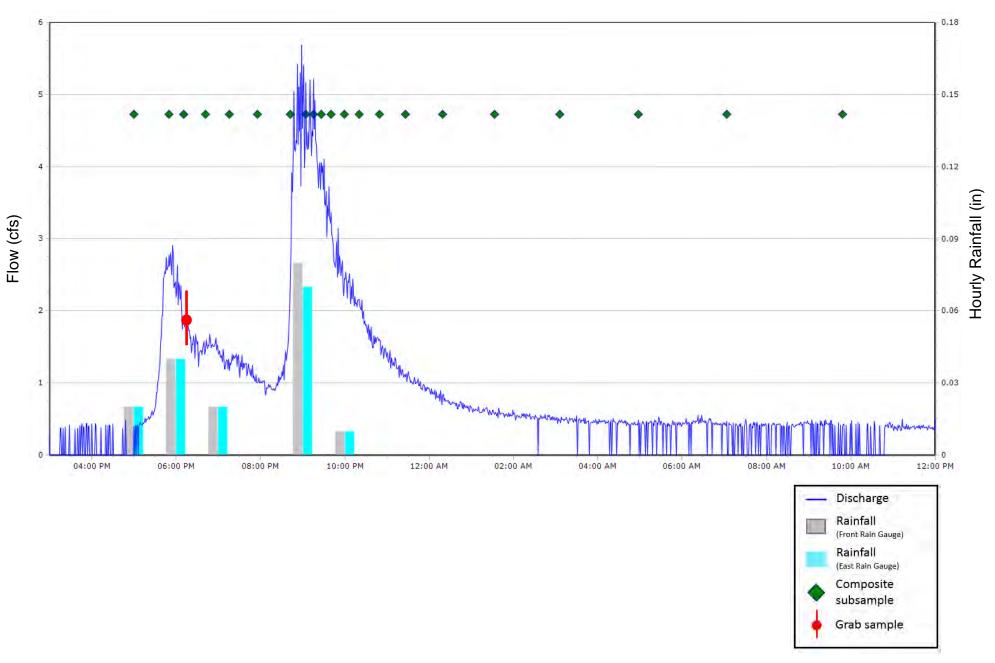


#### Main - 10/9/2018 Event

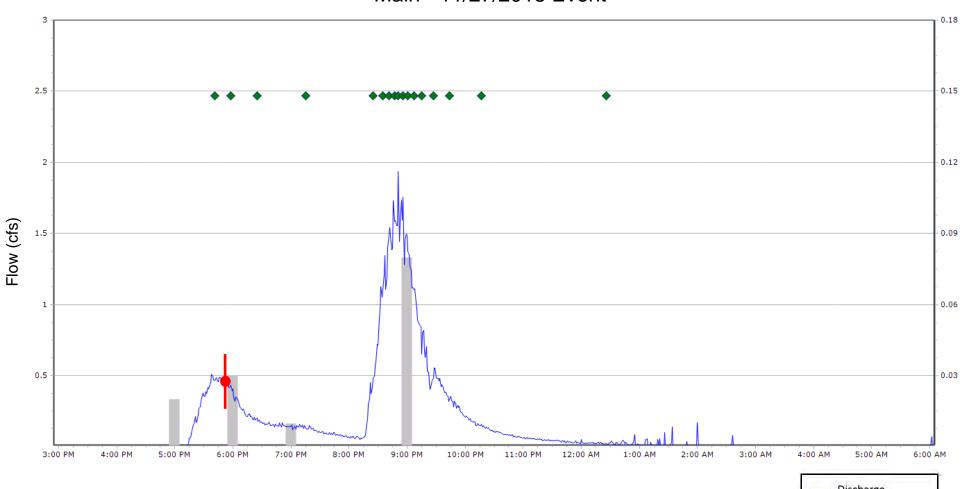






Whitewater - 10/9/2018 Event



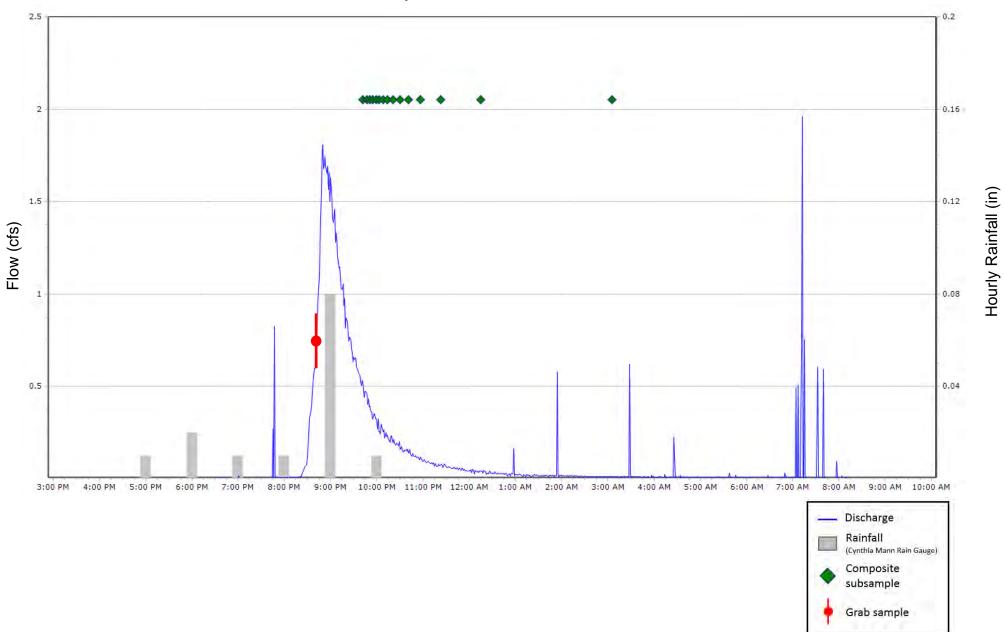




Americana - 10/9/2018 Event

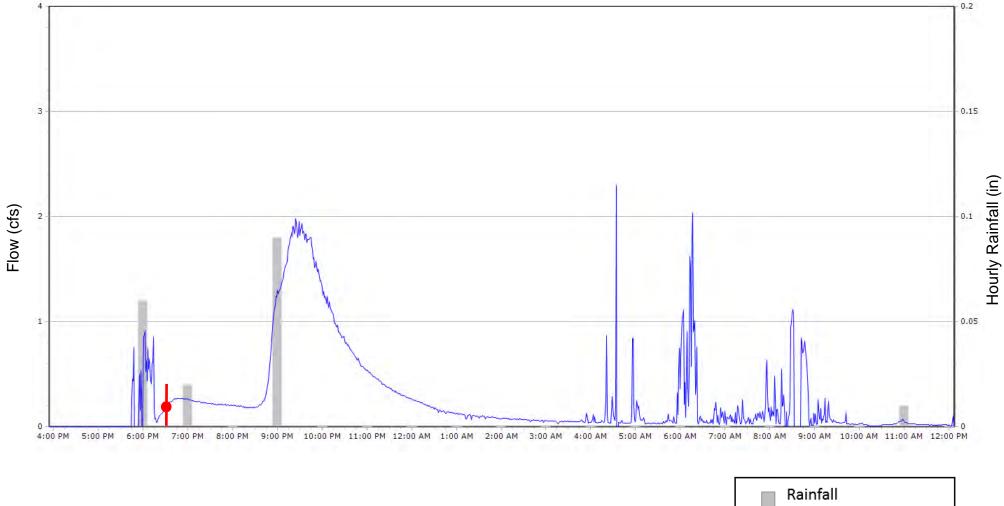




Americana - 11/27/2018 Event

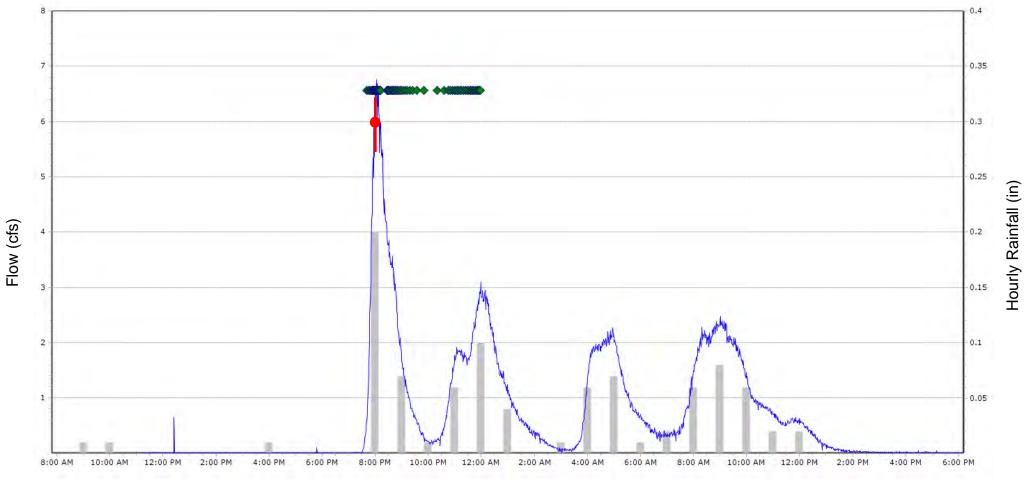


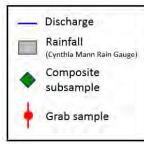




### Main - 11/27/2018 Event

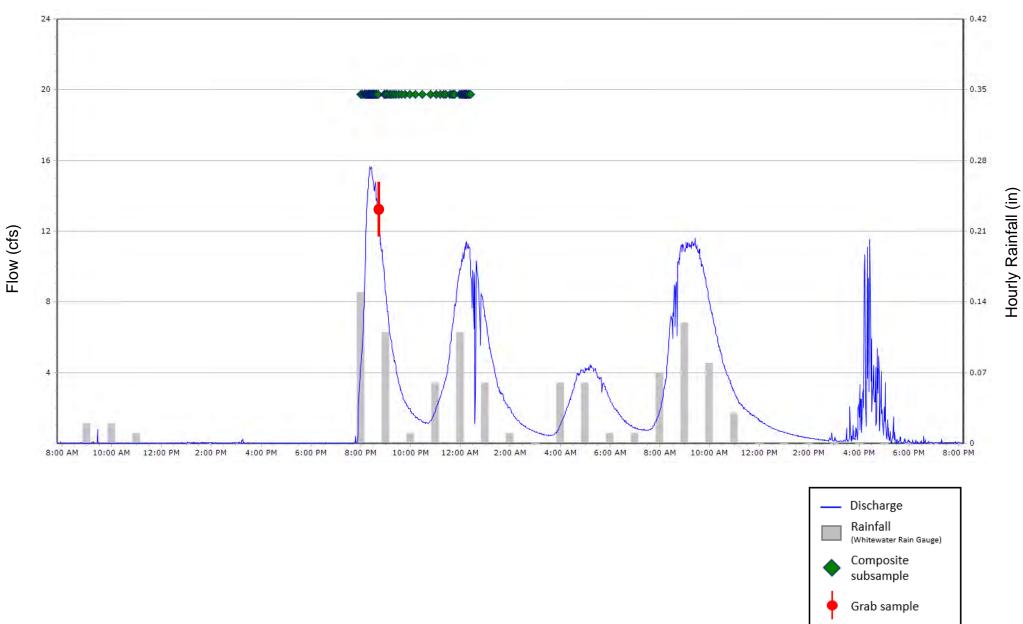
Hourly Rainfall (in)

 Discharge
 Rainfall (Front Rain Gauge)
 Composite subsample
 Grab sample Lucky - 11/27/2018 Event

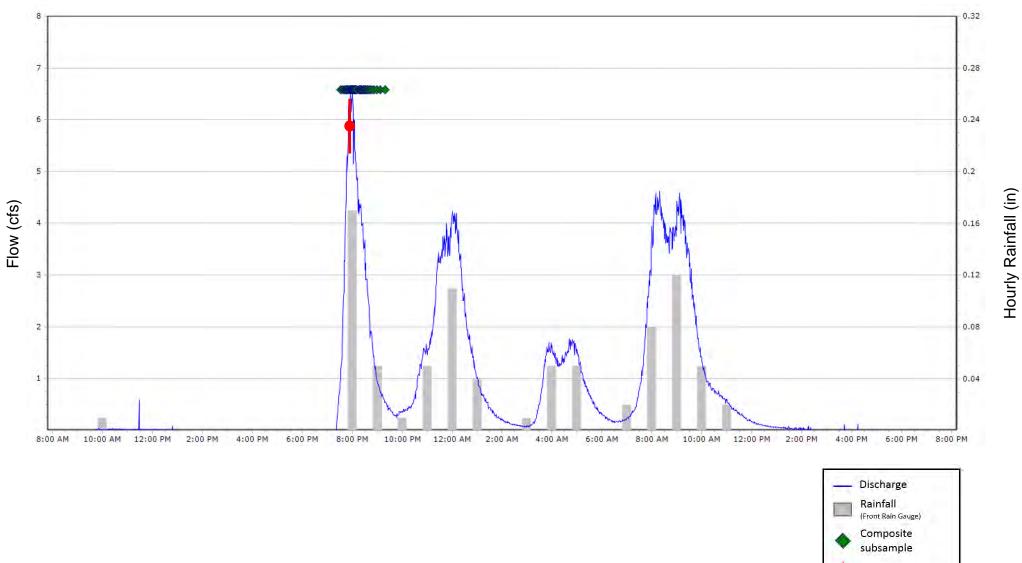




Whitewater - 11/27/2018 Event



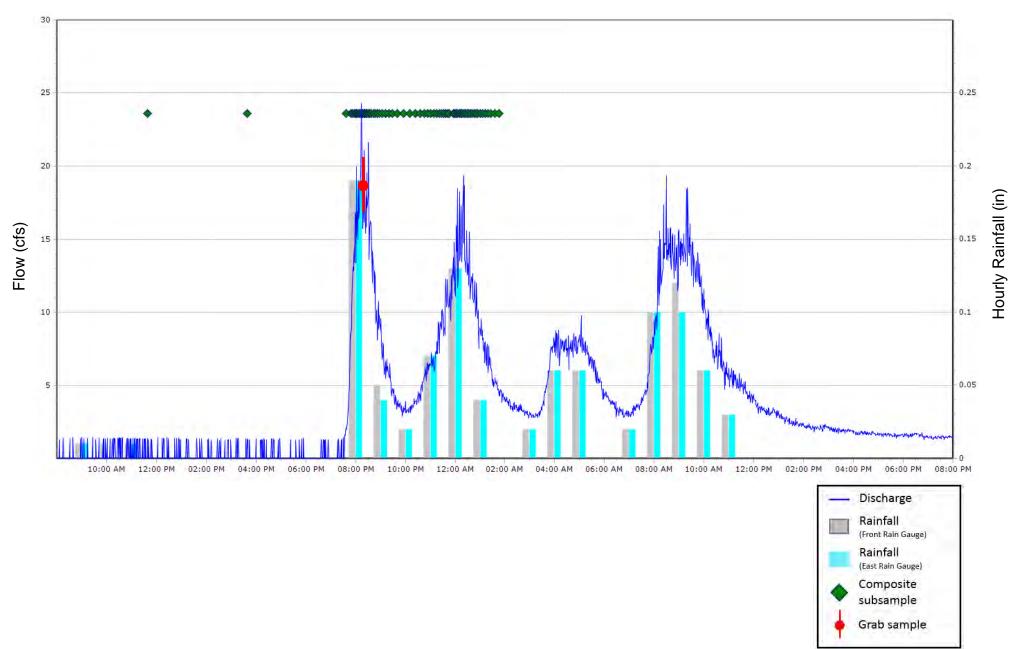



Lucky - 2/2/2019 Event

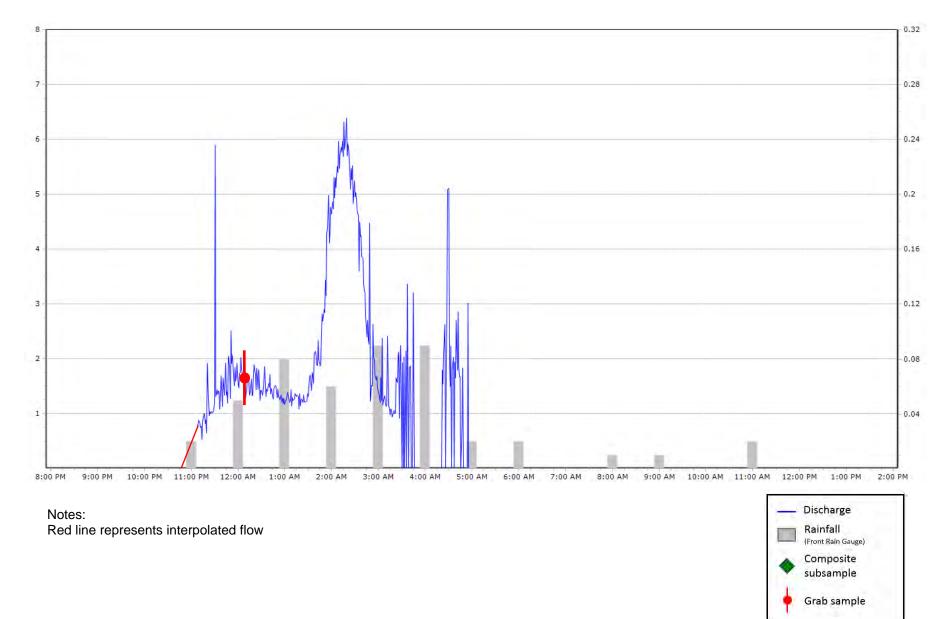





Whitewater - 2/2/2019 Event

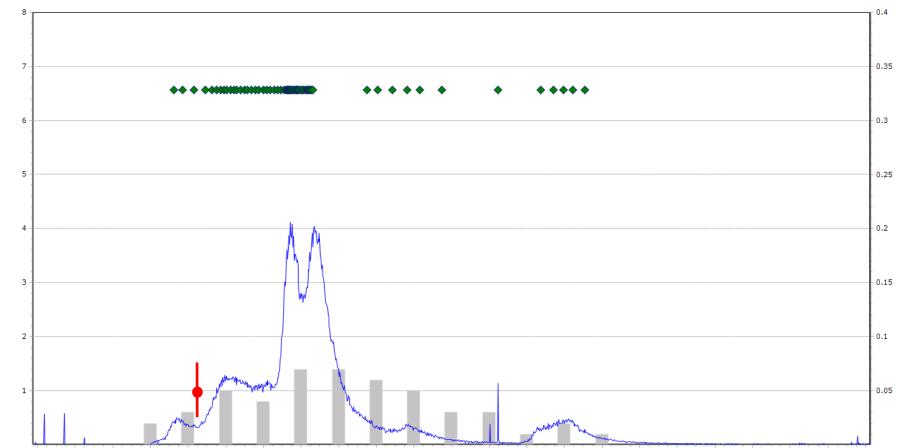



Main - 2/2/2019 Event



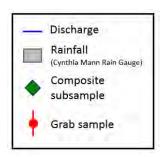

Grab sample

Americana - 2/2/2019 Event



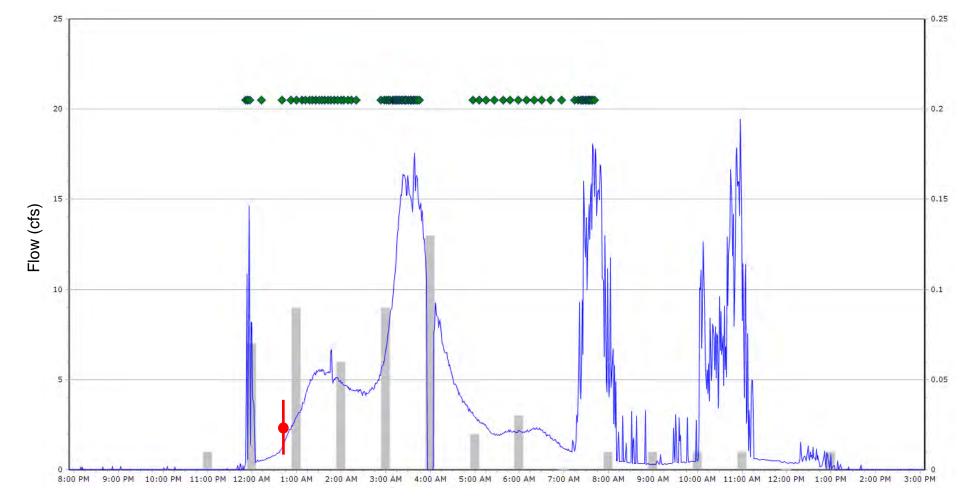

Main - 4/14/2019 Event

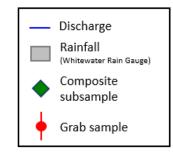



Flow (cfs)

Lucky - 4/14/2019 Event

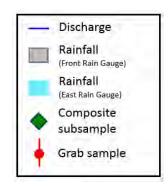



Flow (cfs)

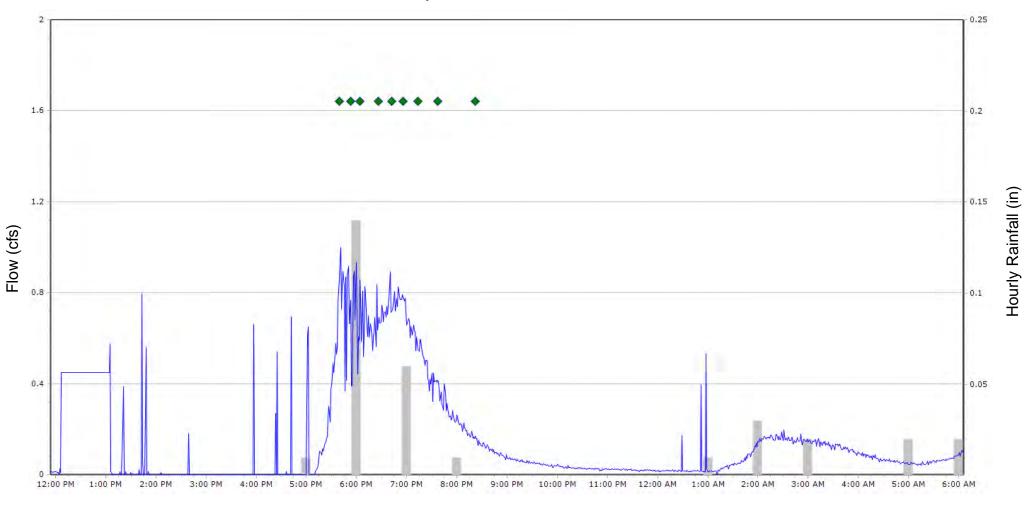

8:00 PM 9:00 PM 10:00 PM 11:00 PM 12:00 AM 1:00 AM 2:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 5:00 AM 5:00 AM 9:00 AM 10:00 AM 12:00 PM 1:00 PM 1:00 PM 3:00 PM 3:00 PM 5:00 PM 6:00 PM

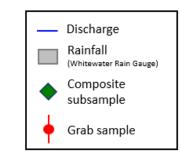


Hourly Rainfall (in)

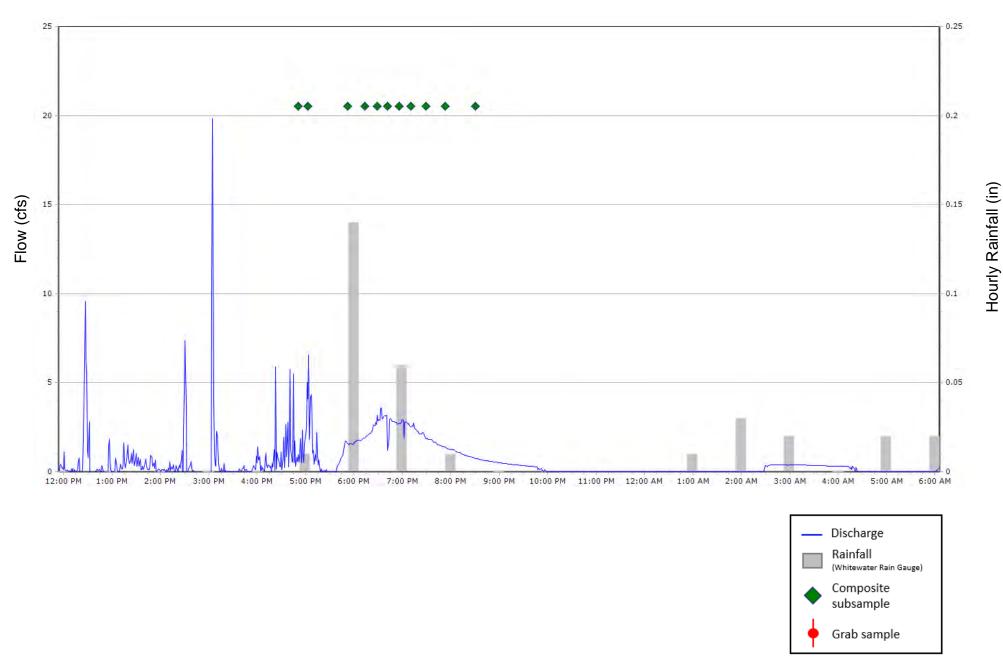

Whitewater - 4/14/2019 Event







Americana - 4/14/2019 Event






Lucky - 5/16/2019 Event





Whitewater - 5/16/2019 Event



Appendix B: Laboratory Analytical Reports





Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

#### Samples in this Report

| Lab ID     | Sample | Sample Description | Matrix Qualifiers | Date Sampled | Date Received |
|------------|--------|--------------------|-------------------|--------------|---------------|
| 8AC0084-01 | ACST1B | 181009-03-WG       | Water             | 10/09/2018   | 10/09/2018    |
| 8AC0084-02 | ACST1B | 181009-11-WG       | Water             | 10/09/2018   | 10/09/2018    |
| 8AC0084-03 | ACST1B | 181009-11-001      | Water             | 10/09/2018   | 10/09/2018    |
| 8AC0084-04 | ACST1B | 181009-11-101      | Water             | 10/09/2018   | 10/09/2018    |
| 8AC0084-05 | ACST1B | 181009-12-WG       | Water             | 10/09/2018   | 10/09/2018    |
| 8AC0084-06 | ACST1B | 181009-14-WG       | Water             | 10/09/2018   | 10/09/2018    |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### **Analysis Report**

| Location:                        | ACST1       | В          |           |                   |               | Location Description:        | 181009-03         | 3-WG             |                     |      |
|----------------------------------|-------------|------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collecte               | ed: 10/09/2 | 2018 08:55 |           |                   |               |                              |                   |                  |                     |      |
| Lab Number:                      | 8AC00       | 84-01      |           |                   |               | Sample Collector:            | AML               |                  |                     |      |
| Sample Type:                     | Grab        |            |           |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B8J0908     | 3090.0 M   | PN/100 mL | . 100.0           | 1.0           | Colilert                     | 10/09/18<br>11:58 | 10/10/18 12:00   | JJR                 | D    |
| Wet Chemistry<br>Chlorine Screen | B8J0912     | Absent     |           |                   |               | SM 4500-CL G-2000<br>mod     | 10/09/18          | 10/9/18 11:32    | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### **Analysis Report**

| Location:                        | -ACST?      | IB         |            |                   |                 | Location Description:        | 181009-1          | 1-WG             |                     |      |
|----------------------------------|-------------|------------|------------|-------------------|-----------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collect                | ed: 10/09/2 | 2018 09:35 | 5          |                   |                 |                              |                   |                  |                     |      |
| Lab Number:                      | 8AC00       | 84-02      |            |                   |                 | Sample Collector:            | AML               |                  |                     |      |
| Sample Type:                     | Grab        |            |            |                   |                 | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units      | Adjustec<br>MDL * | I Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B8J0908     | 11450 M    | IPN/100 mL | . 100.0           | 1.0             | Colilert                     | 10/09/18<br>11:58 | 10/10/18 12:00   | JJR                 | D    |
| Wet Chemistry<br>Chlorine Screen | B8J0912     | Absent     |            |                   |                 | SM 4500-CL G-2000<br>mod     | 10/09/18          | 10/9/18 11:32    | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### **Analysis Report**

| Location:<br>Date/Time Collecte  | ACST1   | IB<br>2018 12:00 | )         |                   |               | Location Description:        | 181009-1          | 1-001            |                     |      |
|----------------------------------|---------|------------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Lab Number:                      | 8AC00   | 84-03            |           |                   |               | Sample Collector:            | AML               |                  |                     |      |
| Sample Type:                     | Grab    |                  |           |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch   | Result           | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B8J0908 | <1.0 M           | PN/100 mL | . 1.0             | 1.0           | Colilert                     | 10/09/18<br>11:58 | 10/10/18 12:00   | JJR                 | U    |
| Wet Chemistry<br>Chlorine Screen | B8J0912 | Absent           |           |                   |               | SM 4500-CL G-2000<br>mod     | 10/09/18          | 10/9/18 11:32    | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### **Analysis Report**

| Location:                        | ACST1       | B          |           |                   |                 | Location Description:        | 181009-1          | 1-101            |                     |      |
|----------------------------------|-------------|------------|-----------|-------------------|-----------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collecte               | ed: 10/09/2 | 2018 12:01 |           |                   |                 |                              |                   |                  |                     |      |
| Lab Number:                      | 8AC00       | 84-04      |           |                   |                 | Sample Collector:            | AML               |                  |                     |      |
| Sample Type:                     | Grab        |            |           |                   |                 | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units     | Adjusted<br>MDL * | l Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B8J0908     | 11120 M    | PN/100 mL | . 100.0           | 1.0             | Colilert                     | 10/09/18<br>11:58 | 10/10/18 12:00   | JJR                 | D    |
| Wet Chemistry<br>Chlorine Screen | B8J0912     | Absent     |           |                   |                 | SM 4500-CL G-2000<br>mod     | 10/09/18          | 10/9/18 11:32    | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### **Analysis Report**

| Location:                        | ACST1       | В          |            |                   |               | Location Description:        | 181009-1          | 2-WG             |                     |      |
|----------------------------------|-------------|------------|------------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collecte               | ed: 10/09/2 | 2018 09:03 |            |                   |               |                              |                   |                  |                     |      |
| Lab Number:                      | 8AC00       | 84-05      |            |                   |               | Sample Collector:            | ABC               |                  |                     |      |
| Sample Type:                     | Grab        |            |            |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B8J0908     | 770.1 M    | IPN/100 mL | - 1.0             | 1.0           | Colilert                     | 10/09/18<br>11:58 | 10/10/18 12:00   | JJR                 |      |
| Wet Chemistry<br>Chlorine Screen | B8J0912     | Absent     |            |                   |               | SM 4500-CL G-2000<br>mod     | 10/09/18          | 10/9/18 11:32    | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

#### **Analysis Report**

| Location:                        | ACST1<br>ed: 10/09// | 1B<br>2018 09:19 | 1         |                   |               | Location Description:        | 181009-14         | 4-WG             |                     |      |
|----------------------------------|----------------------|------------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Lab Number:                      | 8AC00                |                  |           |                   |               | Sample Collector:            | ABC               |                  |                     |      |
| Sample Type:                     | Grab                 |                  |           |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch                | Result           | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B8J0908              | 15530 M          | PN/100 mL | . 100.0           | 1.0           | Colilert                     | 10/09/18<br>11:58 | 10/10/18 12:00   | JJR                 | D    |
| Wet Chemistry<br>Chlorine Screen | B8J0912              | Absent           |           |                   |               | SM 4500-CL G-2000<br>mod     | 10/09/18          | 10/9/18 11:32    | JJR                 |      |



#### **Quality Control Report**

| Analyte Name                           | Method<br>Blank Units   | %<br>Recovery | Recovery<br>Limits | RPD  | RPD<br>Limit                                                           | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|----------------------------------------|-------------------------|---------------|--------------------|------|------------------------------------------------------------------------|------------------|---------------------|-----------|
| Microbiology                           |                         |               |                    |      |                                                                        |                  |                     |           |
| Batch: B8J0908<br>Blank (B8J0908-BLK1) |                         |               |                    |      |                                                                        |                  |                     |           |
| E. Coli                                | Absent                  |               |                    |      |                                                                        | 10/10/2018       | JJR                 |           |
| LCS (B8J0908-BS1)<br>E. Coli           |                         |               | Present            |      | n wina gana diga gana da canada ka | 10/10/2018       | JJR                 |           |
| Duplicate (B8J0908-DUP1)<br>E. Coli    | Source ID: 8LS0351-06   |               |                    | Fail | 128                                                                    | 10/10/2018       | JJR                 |           |
| Duplicate (B8J0908-DUP3)<br>E. Coli    | Source ID: 8AC0084-06RE | E1            |                    | Pass | 128                                                                    | 10/10/2018       | JJR                 |           |



#### **Notes and Definitions**

| Item | Definition                                         |
|------|----------------------------------------------------|
| D    | Data reported from a dilution                      |
| U    | Analyte included in the analysis, but not detected |

#### Method Reference Acronyms

| Colilert | Colilert, IDEXX Laboratories, Inc.                                 |
|----------|--------------------------------------------------------------------|
| EPA      | Manual of Methods for Chemical Analysis of Water and Wastes, USEPA |
| GS       | USGS Techniques of Water-Resources Investigations                  |
| HH       | Hach Spectrophotometer Procedures Manual                           |
| SM       | Standard Methods for the Examination of Water and Wastewater       |
| SW       | Test methods for Evaluating Solid Waste, SW-846                    |
|          |                                                                    |

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Heather Rankin QA/QC Coordinator

| Ada County Highway District                                                                                                                                                              | ty High                                              | way Dis      | strict               |                             |                        |                     | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tvbe  | -                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                              |                |                            |               | •               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------|----------------------|-----------------------------|------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------|------------------------------|----------------|----------------------------|---------------|-----------------|
| Attn: Monica Lowe<br>3775 Adams Street<br>Garden City, Idaho 83714–6418<br>Tel. (208) 387–6255<br>Fax (208) 387–6391<br>Fax (208) 387–6391<br>Purchase Order:<br>Project:<br>Sampler(s): | Lowe<br>Street<br>Idaho 83<br>7–6391<br>der:<br>der: | 714-641{     | 63046<br>Storm<br>人人 | 3445<br>water-PI<br>Zehoc C |                        | S                   | - Conservation |       | a the second | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAL-DK01       | - EPA 365.1                        | b. Zn - EPA 200.7<br>A 545.2 | X Colilert     | N2340 B                    | 1             | S               |
| Lab#                                                                                                                                                                                     | Begin<br>Date                                        | End<br>Date  | Begin<br>Time        | Lime                        | Sample Identification  | Sampler Initial:    | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | derab | Composite<br>BOD <sub>5</sub> - SM 521                                                                         | COD - Hach 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TP - EPA 200.7 | Orthophosohada<br>Total As. Cd. Pl | Diss. Cd Cu. P.              | E, Coli - IDEX | Turbidity - EP/<br>MS - S8 | NH3 - SM 4500 | Total Containen |
| SACCOSH-1                                                                                                                                                                                | 81-6-01                                              | 81-6-01      | 10-9-18 0855         |                             | 181009-03-W6           | AMC                 | Ņ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >     |                                                                                                                | Net of the second secon |                |                                    |                              | ×              |                            |               | -               |
| 20-                                                                                                                                                                                      | -02 10-9-18                                          |              | 10-9-18 0935         |                             | 181009-11-WG           | JMA                 | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                              | ×              |                            |               | -               |
| -03                                                                                                                                                                                      | -03 10-9-18                                          | 1            | 10-9-18 1200         |                             | 181009-11-001          | A ML                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . >   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                              | ×              |                            |               | -               |
| - 1-0-                                                                                                                                                                                   | 1                                                    | 10-9-18 1201 | 1201                 |                             | 101-11-600181          | AME                 | · P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                              | ×              |                            |               | -               |
| -02<br>-02                                                                                                                                                                               | 81-6-01                                              | 1            | E060 8-6-01          |                             | 181009-12-WB           | ABC                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                              | X              |                            |               |                 |
| 010-                                                                                                                                                                                     | 81-6-01                                              | 8-6-01       | 6160                 |                             | 181009-14-WG           | ABC                 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                              | ×              |                            |               |                 |
|                                                                                                                                                                                          |                                                      |              |                      |                             |                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                              |                |                            |               |                 |
| Relinqu                                                                                                                                                                                  | Relinquished by (sign)                               | / (sign)     | Ŭ,                   | Date & Time<br>Transferred  | me Received by (sign)  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Com                                                                                                            | Comments/Special Instructions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /Speci         | al Inst                            | ructio                       | Sins:          |                            | 3             |                 |
| Church                                                                                                                                                                                   | 1 Jun                                                | $\leq$       | · l0-01              | 5401 81-6-01                | april 12 and 12 and 12 | 240-8-01<br>87-8-01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    | 5                            |                |                            |               |                 |
|                                                                                                                                                                                          |                                                      |              |                      |                             |                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                | 8AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20084          | 18                                 |                              |                |                            | 10/18         |                 |

•

Report Date: 11/05/2018 13:46

a

9



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

#### Samples in this Report

| Lab ID Sam     | nple Sample  | Description Ma | atrix Qualifiers | Date Sampled | Date Received |
|----------------|--------------|----------------|------------------|--------------|---------------|
| 8AC0085-01 ACS | ST1C 181009- | 11-WC W        | /ater            | 10/09/2018   | 10/10/2018    |
| 8AC0085-02 ACS | ST1C 181009- | 12-WC W        | /ater            | 10/09/2018   | 10/10/2018    |
| 8AC0085-03 ACS | ST1C 181009- | 14-WC W        | /ater            | 10/10/2018   | 10/10/2018    |
| 8AC0085-04 ACS | ST1C 181009- | 14-103 W       | /ater            | 10/10/2018   | 10/10/2018    |



#### **Analysis Report**

| Location:              | ACST      | 1C         |            |                   |               | Location Description:        | 181009-1         | I-WC             |                     |      |
|------------------------|-----------|------------|------------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|------|
| Date/Time Collected    | l: 10/09/ | 2018 10:45 | 5 - 10/09/ | 2018 22:11        |               |                              |                  |                  |                     |      |
| Lab Number:            | 8AC00     | 85-01      |            |                   |               | Sample Collector:            | ABC              |                  |                     |      |
| Sample Type:           | Comp      | osite      |            |                   |               | Sample Matrix:               | Water            |                  |                     |      |
| Analyte Name           | Batch     | Result     | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual |
| Wet Chemistry          |           |            |            |                   |               |                              |                  |                  |                     |      |
| Ammonia, as N          | B8J1503   | <0.0350    | mg/L       | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 10/15/18         | 10/15/18 12:17   | CJP                 | U    |
| BOD5                   | B8J1013   | 86.5       | mg/L       | 2.00              | 2.00          | SM 5210 B-2001               | 10/10/18         | 10/15/18 10:15   | BAK                 |      |
| COD                    | B8J1008   | 276        | mg/L       | 7.00              | 7.00          | HH 8000-1979                 | 10/10/18         | 10/10/18 14:00   | JAL                 |      |
| Nitrate-Nitrite, as N  | B8J1003   | 0.242      | mg/L       | 0.0200            | 0.0200        | EPA 353.2                    | 10/10/18         | 10/10/18 15:35   | SMC                 |      |
| TKN                    | B8K0104   | 3.21       | mg/L       | 0.130             | 0.130         | EPA 351.2                    | 11/01/18         | 11/2/18 11:43    | SMC                 |      |
| Total Dissolved Solids | B8J1015   | 101        | mg/L       | 20.0              | 20.0          | SM 2540 C-1997               | 10/10/18         | 10/10/18 15:30   | CJP                 |      |
| Total Suspended Solids | B8J1103   | 129        | mg/L       | 0.900             | 0.900         | SM 2540 D-1997               | 10/11/18         | 10/11/18 11:04   | KMG                 |      |
| Turbidity              | B8J1009   | 43.6       | NTU        | 3.0               | 0.3           | EPA180.1 R2.0 (1993)         | 10/10/18         | 10/10/18 11:49   | CJP                 | D    |
| Dissolved Wet Ch       | emistry   |            |            |                   |               |                              |                  |                  |                     |      |
| Orthophosphate, as P   | B8J1108   | 0.303      | mg/L       | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 10/11/18         | 10/11/18 11:36   | A.E                 |      |
| Total Metals           |           |            |            |                   |               |                              |                  |                  |                     |      |
| Mercury                | B8J1017   | 0.0169     | ug/L       | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 10/11/18         | 10/12/18 8:08    | SAS                 |      |
| Arsenic                | B8J1117   | <5.72      | ug/L       | 5.72              | 5.72          | EPA 200.7                    | 10/11/18         | 10/12/18 11:58   | AMO                 | U    |
| Cadmium                | B8J1117   | <1.00      | ug/L       | 1.00              | 1.00          | EPA 200.7                    | 10/11/18         | 10/12/18 11:58   | AMO                 | U    |
| Calcium                | B8J1117   | 6.52       | mg/L       | 0.0500            | 0.0500        | EPA 200.7                    | 10/11/18         | 10/12/18 11:58   | AMO                 |      |
| Lead                   | B8J1117   | 8.23       | ug/L       | 6.94              | 6.94          | EPA 200.7                    | 10/11/18         | 10/12/18 11:58   | AMO                 |      |
| Magnesium              | B8J1117   | 1490       | ug/L       | 50.0              | 50.0          | EPA 200.7                    | 10/11/18         | 10/12/18 11:58   | AMO                 |      |
| Phosphorus as P        | B8J1117   | 0.747      | mg/L       | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 10/11/18         | 10/12/18 11:58   | AMO                 |      |
| Hardness               | B8J1117   | 22.4       | mg/L       | 1.00              | 1.00          | EPA 200.7                    | 10/11/18         | 10/12/18 11:58   | AMO                 |      |
| Dissolved Metals       |           |            |            |                   |               |                              |                  |                  |                     |      |
| Cadmium                | B8J1217   | <1.00      | ug/L       | 1.00              | 1.00          | EPA 200.7                    | 10/12/18         | 10/12/18 12:39   | EDM                 | U    |
| Copper                 | B8J1217   | <10.0      | ug/L       | 10.0              | 10.0          | EPA 200.7                    | 10/12/18         | 10/12/18 12:39   | EDM                 | U    |
| Lead                   | B8J1217   | <6.94      | ug/L       | 6.94              | 6.94          | EPA 200.7                    | 10/12/18         | 10/12/18 12:39   | EDM                 | U    |
| Zinc                   | B8J1217   | 32.4       | ug/L       | 10.0              | 10.0          | EPA 200.7                    | 10/12/18         | 10/12/18 12:39   | EDM                 |      |

Report Date: 11/05/2018 13:46

а



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### **Analysis Report**

| Location:               | ACST       | 1C         |          |                   |               | Location Description:        | 181009-12        | 2-WC             |                     |      |
|-------------------------|------------|------------|----------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|------|
| Date/Time Collected     | d: 10/09/2 | 2018 08:35 | - 10/09/ | 2018 13:34        |               |                              |                  |                  |                     |      |
| Lab Number:             | 8AC00      | 85-02      |          |                   |               | Sample Collector:            | ABC              |                  |                     |      |
| Sample Type:            | Compo      | osite      |          |                   |               | Sample Matrix:               | Water            |                  |                     |      |
| Analyte Name            | Batch      | Result     | Units    | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual |
| Wet Chemistry           |            |            |          |                   |               |                              |                  |                  |                     |      |
| Ammonia, as N           | B8J1503    | 0.414      | mg/L     | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 10/15/18         | 10/15/18 12:14   | CJP                 |      |
| BOD5                    | B8J1013    | 17.2       | mg/L     | 2.00              | 2.00          | SM 5210 B-2001               | 10/10/18         | 10/15/18 10:08   | BAK                 |      |
| COD                     | B8J1008    | 128        | mg/L     | 7.00              | 7.00          | HH 8000-1979                 | 10/10/18         | 10/10/18 14:55   | JAL                 |      |
| Nitrate-Nitrite, as N   | B8J1003    | 0.236      | mg/L     | 0.0200            | 0.0200        | EPA 353.2                    | 10/10/18         | 10/10/18 15:36   | SMC                 |      |
| TKN                     | B8K0104    | 1.88       | mg/L     | 0.130             | 0.130         | EPA 351.2                    | 11/01/18         | 11/2/18 11:48    | SMC                 |      |
| Total Dissolved Solids  | B8J1015    | 52.0       | mg/L     | 20.0              | 20.0          | SM 2540 C-1997               | 10/10/18         | 10/10/18 15:30   | CJP                 |      |
| Total Suspended Solids  | B8J1103    | 95.8       | mg/L     | 0.900             | 0.900         | SM 2540 D-1997               | 10/11/18         | 10/11/18 11:02   | KMG                 |      |
| Turbidity               | B8J1009    | 44.3       | NTU      | 3.0               | 0.3           | EPA180.1 R2.0 (1993)         | 10/10/18         | 10/10/18 13:52   | CJP                 | D    |
| <b>Dissolved Wet Ch</b> | emistry    |            |          |                   |               |                              |                  |                  |                     |      |
| Orthophosphate, as P    | B8J1108    | 0.120      | mg/L     | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 10/11/18         | 10/11/18 11:37   | A.E                 |      |
| Total Metals            |            |            |          |                   |               |                              |                  |                  |                     |      |
| Mercury                 | B8J1017    | 0.0175     | ug/L     | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 10/11/18         | 10/12/18 8:43    | SAS                 |      |
| Arsenic                 | B8J1117    | <5.72      | ug/L     | 5.72              | 5.72          | EPA 200.7                    | 10/11/18         | 10/12/18 12:23   | AMO                 | U    |
| Cadmium                 | B8J1117    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 10/11/18         | 10/12/18 12:23   | AMO                 | U    |
| Calcium                 | B8J1117    | 4.48       | mg/L     | 0.0500            | 0.0500        | EPA 200.7                    | 10/11/18         | 10/12/18 12:23   | AMO                 |      |
| Lead                    | B8J1117    | 17.8       | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 10/11/18         | 10/12/18 12:23   | AMO                 |      |
| Magnesium               | B8J1117    | 1160       | ug/L     | 50.0              | 50.0          | EPA 200.7                    | 10/11/18         | 10/12/18 12:23   | AMO                 |      |
| Phosphorus as P         | B8J1117    | 0.314      | mg/L     | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 10/11/18         | 10/12/18 12:23   | AMO                 |      |
| Hardness                | B8J1117    | 16.0       | mg/L     | 1.00              | 1.00          | EPA 200.7                    | 10/11/18         | 10/12/18 12:23   | AMO                 |      |
| Dissolved Metals        |            |            |          |                   |               |                              |                  |                  |                     |      |
| Cadmium                 | B8J1217    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 10/12/18         | 10/12/18 12:44   | EDM                 | U    |
| Copper                  | B8J1217    | <10.0      | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 10/12/18         | 10/12/18 12:44   | EDM                 | U    |
| Lead                    | B8J1217    | <6.94      | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 10/12/18         | 10/12/18 12:44   | EDM                 | U    |
| Zinc                    | B8J1217    | 47.4       | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 10/12/18         | 10/12/18 12:44   | EDM                 |      |



#### **Analysis Report**

| Location:              | ACST       | IC         |          |                   |               | Location Description:        | 181009-14        | 4-WC             |                     |          |
|------------------------|------------|------------|----------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|----------|
| Date/Time Collected    | I: 10/09/2 | 2018 08:54 | - 10/10/ | 2018 09:09        |               |                              |                  |                  |                     |          |
| Lab Number:            | 8AC00      | 85-03      |          |                   |               | Sample Collector:            | ABC              |                  |                     |          |
| Sample Type:           | Compo      | osite      |          |                   |               | Sample Matrix:               | Water            |                  |                     |          |
| Analyte Name           | Batch      | Result     | Units    | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials |          |
| Wet Chemistry          |            |            |          |                   |               |                              |                  |                  |                     |          |
| Ammonia, as N          | B8J1503    | 0.145      | mg/L     | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 10/15/18         | 10/15/18 12:27   | CJP                 |          |
| BOD5                   | B8J1013    | 53.8       | mg/L     | 2.00              | 2.00          | SM 5210 B-2001               | 10/10/18         | 10/15/18 10:36   | BAK                 | Chlor-01 |
| COD                    | B8J1008    | 216        | mg/L     | 7.00              | 7.00          | HH 8000-1979                 | 10/10/18         | 10/10/18 14:30   | JAL                 |          |
| Nitrate-Nitrite, as N  | B8J1003    | 0.375      | mg/L     | 0.0200            | 0.0200        | EPA 353.2                    | 10/10/18         | 10/10/18 15:38   | SMC                 |          |
| TKN                    | B8K0104    | 2.50       | mg/L     | 0.130             | 0.130         | EPA 351.2                    | 11/01/18         | 11/2/18 11:49    | SMC                 |          |
| Total Dissolved Solids | B8J1015    | 101        | mg/L     | 20.0              | 20.0          | SM 2540 C-1997               | 10/10/18         | 10/10/18 15:30   | CJP                 |          |
| Total Suspended Solids | B8J1103    | 81.1       | mg/L     | 0.900             | 0.900         | SM 2540 D-1997               | 10/11/18         | 10/11/18 11:03   | KMG                 |          |
| Turbidity              | B8J1009    | 45.7       | NTU      | 3.0               | 0.3           | EPA180.1 R2.0 (1993)         | 10/10/18         | 10/10/18 12:09   | CJP                 | D        |
| Dissolved Wet Ch       | emistry    |            |          |                   |               |                              |                  |                  |                     |          |
| Orthophosphate, as P   | B8J1108    | 0.196      | mg/L     | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 10/11/18         | 10/11/18 11:42   | A.E                 |          |
| Total Metals           |            |            |          |                   |               |                              |                  |                  |                     |          |
| Mercury                | B8J1017    | 0.0146     | ug/L     | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 10/11/18         | 10/12/18 8:22    | SAS                 |          |
| Arsenic                | B8J1117    | 5.81       | ug/L     | 5.72              | 5.72          | EPA 200.7                    | 10/11/18         | 10/12/18 12:29   | AMO                 |          |
| Cadmium                | B8J1117    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 10/11/18         | 10/12/18 12:29   | AMO                 | U        |
| Calcium                | B8J1117    | 11.9       | mg/L     | 0.0500            | 0.0500        | EPA 200.7                    | 10/11/18         | 10/12/18 12:29   | AMO                 |          |
| Lead                   | B8J1117    | 11.5       | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 10/11/18         | 10/12/18 12:29   | AMO                 |          |
| Magnesium              | B8J1117    | 2290       | ug/L     | 50.0              | 50.0          | EPA 200.7                    | 10/11/18         | 10/12/18 12:29   | AMO                 |          |
| Phosphorus as P        | B8J1117    | 0.500      | mg/L     | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 10/11/18         | 10/12/18 12:29   | AMO                 |          |
| Hardness               | B8J1117    | 39.2       | mg/L     | 1.00              | 1.00          | EPA 200.7                    | 10/11/18         | 10/12/18 12:29   | AMO                 |          |
| Dissolved Metals       |            |            |          |                   |               |                              |                  |                  |                     |          |
| Cadmium                | B8J1217    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 10/12/18         | 10/12/18 12:54   | EDM                 | U        |
| Copper                 | B8J1217    | <10.0      | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 10/12/18         | 10/12/18 12:54   | EDM                 | U        |
| Lead                   | B8J1217    | <6.94      | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 10/12/18         | 10/12/18 12:54   | EDM                 | U        |
| Zinc                   | B8J1217    | 53.2       | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 10/12/18         | 10/12/18 12:54   | EDM                 |          |

Report Date: 11/05/2018 13:46

9



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### **Analysis Report**

| Location:               | ACST       | 1C         |          |                   |               | Location Description:        | 181009-1         | 4-103            |                     |      |
|-------------------------|------------|------------|----------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|------|
| Date/Time Collected     | I: 10/09/2 | 2018 08:54 | - 10/10/ | 2018 09:09        |               |                              |                  |                  |                     |      |
| Lab Number:             | 8AC00      | 85-04      |          |                   |               | Sample Collector:            | ABC              |                  |                     |      |
| Sample Type:            | Compo      | osite      |          |                   |               | Sample Matrix:               | Water            |                  |                     |      |
| Analyte Name            | Batch      | Result     | Units    | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual |
| Wet Chemistry           |            |            |          |                   |               |                              |                  |                  |                     |      |
| Ammonia, as N           | B8J1503    | 0.150      | mg/L     | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 10/15/18         | 10/15/18 12:22   | CJP                 |      |
| BOD5                    | B8J1013    | 54.6       | mg/L     | 2.00              | 2.00          | SM 5210 B-2001               | 10/10/18         | 10/15/18 10:42   | BAK                 |      |
| COD                     | B8J1008    | 192        | mg/L     | 7.00              | 7.00          | HH 8000-1979                 | 10/10/18         | 10/10/18 14:40   | JAL                 |      |
| Nitrate-Nitrite, as N   | B8J1003    | 0.376      | mg/L     | 0.0200            | 0.0200        | EPA 353.2                    | 10/10/18         | 10/10/18 15:39   | SMC                 |      |
| TKN                     | B8K0104    | 2.24       | mg/L     | 0.130             | 0.130         | EPA 351.2                    | 11/01/18         | 11/2/18 11:50    | SMC                 |      |
| Total Dissolved Solids  | B8J1015    | 105        | mg/L     | 20.0              | 20.0          | SM 2540 C-1997               | 10/10/18         | 10/10/18 15:30   | CJP                 |      |
| Total Suspended Solids  | B8J1103    | 92.1       | mg/L     | 0.900             | 0.900         | SM 2540 D-1997               | 10/11/18         | 10/11/18 11:01   | KMG                 |      |
| Turbidity               | B8J1009    | 47.7       | NTU      | 3.0               | 0.3           | EPA180.1 R2.0 (1993)         | 10/10/18         | 10/10/18 13:44   | CJP                 | D    |
| Dissolved Wet Ch        | emistry    |            |          |                   |               |                              |                  |                  |                     |      |
| Orthophosphate, as P    | B8J1108    | 0.195      | mg/L     | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 10/11/18         | 10/11/18 11:43   | A.E                 |      |
| Total Metals            |            |            |          |                   |               |                              |                  |                  |                     |      |
| Mercury                 | B8J1017    | 0.0138     | ug/L     | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 10/11/18         | 10/12/18 8:46    | SAS                 |      |
| Arsenic                 | B8J1117    | 7.60       | ug/L     | 5.72              | 5.72          | EPA 200.7                    | 10/11/18         | 10/12/18 12:34   | AMO                 |      |
| Cadmium                 | B8J1117    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 10/11/18         | 10/12/18 12:34   | AMO                 | U    |
| Calcium                 | B8J1117    | 18.5       | mg/L     | 0.0500            | 0.0500        | EPA 200.7                    | 10/11/18         | 10/12/18 12:34   | AMO                 |      |
| Lead                    | B8J1117    | 28.3       | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 10/11/18         | 10/12/18 12:34   | AMO                 |      |
| Magnesium               | B8J1117    | 3070       | ug/L     | 50.0              | 50.0          | EPA 200.7                    | 10/11/18         | 10/12/18 12:34   | AMO                 |      |
| Phosphorus as P         | B8J1117    | 0.774      | mg/L     | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 10/11/18         | 10/12/18 12:34   | AMO                 |      |
| Hardness                | B8J1117    | 58.8       | mg/L     | 1.00              | 1.00          | EPA 200.7                    | 10/11/18         | 10/12/18 12:34   | AMO                 |      |
| <b>Dissolved Metals</b> |            |            |          |                   |               |                              |                  |                  |                     |      |
| Cadmium                 | B8J1217    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 10/12/18         | 10/12/18 12:49   | EDM                 | U    |
| Copper                  | B8J1217    | <10.0      | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 10/12/18         | 10/12/18 12:49   | EDM                 | U    |
| Lead                    | B8J1217    | <6.94      | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 10/12/18         | 10/12/18 12:49   | EDM                 | U    |
| Zinc                    | B8J1217    | 50.0       | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 10/12/18         | 10/12/18 12:49   | EDM                 |      |



#### **Quality Control Report**

| Analyte Name                                         |          | lethod<br>Blank | Units      | %<br>Recovery | Recovery<br>Limits | RPD   | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|------------------------------------------------------|----------|-----------------|------------|---------------|--------------------|-------|--------------|------------------|---------------------|-----------|
| Wet Chemistry                                        |          | DIAIIK          | Units      | Recovery      | Liiiitə            |       | Linin        | Analyzeu         | Intiais             | waanner   |
| Batch: B8J1003                                       |          |                 |            |               |                    |       |              |                  |                     |           |
| Blank (B8J1003-BLK1)<br>Nitrate-Nitrite, as N        |          | < 0.02          | mg/L       |               |                    |       |              | 10/10/2018       | SMC                 | U         |
| LCS (B8J1003-BS1)<br>Nitrate-Nitrite, as N           |          |                 |            | 100           | 90-110             |       |              | 10/10/2018       | SMC                 |           |
| LCS (B8J1003-BS2)<br>Nitrate-Nitrite, as N           |          |                 |            | 102           | 90-110             |       |              | 10/10/2018       | SMC                 |           |
| LCS (B8J1003-BS3)<br>Nitrate-Nitrite, as N           |          |                 |            | 101           | 90-110             |       |              | 10/10/2018       | SMC                 |           |
| Duplicate (B8J1003-DUP1)<br>Nitrate-Nitrite, as N    | Source I | D: 8AC          | 0081-02    |               |                    | 0.532 | 10           | 10/10/2018       | SMC                 |           |
| Duplicate (B8J1003-DUP2)<br>Nitrate-Nitrite, as N    | Source I | D: 8CN          | 0014-03    |               |                    | 0.343 | 10           | 10/10/2018       | SMC                 | D         |
| Duplicate (B8J1003-DUP3)<br>Nitrate-Nitrite, as N    | Source I | D: 8TM          | 0058-03    |               |                    | 0.399 | 10           | 10/10/2018       | SMC                 |           |
| Duplicate (B8J1003-DUP4)<br>Nitrate-Nitrite, as N    | Source I | D: 8ES(         | 0062-03    |               |                    | 0.370 | 10           | 10/10/2018       | SMC                 |           |
| Matrix Spike (B8J1003-MS1)<br>Nitrate-Nitrite, as N  | Source   | e ID: 8A        | C0081-02   | 100           | 90-11 <sup>0</sup> |       |              | 10/10/2018       | SMC                 |           |
| Matrix Spike (B8J1003-MS2)<br>Nitrate-Nitrite, as N  | Source   | e ID: 8C        | N0014-03   | 98.2          | 90-110             |       |              | 10/10/2018       | SMC                 | D         |
| Matrix Spike (B8J1003-MS3)<br>Nitrate-Nitrite, as N  | Source   | e ID: 8T        | M0058-03   | 102           | 90-110             |       |              | 10/10/2018       | SMC                 |           |
| Matrix Spike (B8J1003-MS4)<br>Nitrate-Nitrite, as N  | Source   | e ID: 8E        | S0062-03   | 97.2          | 90-110             |       |              | 10/10/2018       | SMC                 |           |
| Matrix Spike (B8J1003-MS5)<br>Nitrate-Nitrite, as N  | Source   | e ID: 8B        | B0634-01   | 92.2          | 90-110             |       |              | 10/10/2018       | SMC                 | D         |
| Matrix Spike (B8J1003-MS6)<br>Nitrate-Nitrite, as N  | Source   | e ID: 8E        | P0127-01   | 102           | 90-110             |       |              | 10/10/2018       | SMC                 |           |
| Matrix Spike Dup (B8J1003-N<br>Nitrate-Nitrite, as N | MSD1)    | Source          | ID: 8AC008 | 31-02<br>99.7 | 90-110             | 0.577 | 10           | 10/10/2018       | SMC                 |           |
| Matrix Spike Dup (B8J1003-N<br>Nitrate-Nitrite, as N | NSD2)    | Source          | ID: 8CN001 | 14-03<br>97.9 | 90-110             | 0.113 | 10           | 10/10/2018       | SMC                 | D         |
| Matrix Spike Dup (B8J1003-N<br>Nitrate-Nitrite, as N | NSD3)    | Source          | ID: 8TM005 | 58-03<br>101  | 90-110             | 0.403 | 10           | 10/10/2018       | SMC                 |           |
| Matrix Spike Dup (B8J1003-M<br>Nitrate-Nitrite, as N | NSD4)    | Source          | ID: 8ES006 | 62-03<br>98.0 | 90-110             | 0.465 | 10           | 10/10/2018       | SMC                 |           |



# Quality Control Report (Continued)

5

| Analyte Name                                       | Method<br>Blank                          | Units                                   | %<br>Recovery                                                                     | Recovery<br>Limits                              | RPD   | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|----------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|-------|--------------|------------------|---------------------|-----------|
| Wet Chemistry (Conti                               | inued)                                   |                                         |                                                                                   |                                                 |       |              |                  |                     |           |
| Batch: B8J1008<br>Blank (B8J1008-BLK1)             |                                          |                                         |                                                                                   |                                                 |       |              |                  |                     |           |
| COD                                                | < 7                                      | mg/L                                    |                                                                                   |                                                 |       |              | 10/10/2018       | JAL                 | U         |
| LCS (B8J1008-BS1)<br>COD                           |                                          |                                         | 98.7                                                                              | 90-110                                          |       |              | 10/10/2018       | JAL                 |           |
| Duplicate (B8J1008-DUP1)<br>COD                    | Source ID: 8LS                           | 0354-01                                 |                                                                                   |                                                 | 3.28  | 10           | 10/10/2018       | JAL                 |           |
| Batch: B8J1009<br>Blank (B8J1009-BLK1)             |                                          |                                         |                                                                                   |                                                 |       |              |                  |                     |           |
| Turbidity                                          | < 0.3                                    | NTU                                     |                                                                                   |                                                 |       |              | 10/10/2018       | CJP                 | U         |
| LCS (B8J1009-BS1)<br>Turbidity                     |                                          |                                         | 102                                                                               | 90-110                                          |       |              | 10/10/2018       | CJP                 |           |
| Duplicate (B8J1009-DUP1)<br>Turbidity              | Source ID: 8ES                           | 0062-06                                 |                                                                                   |                                                 | 2.30  | 25           | 10/10/2018       | CJP                 |           |
| Batch: B8J1013<br>Blank (B8J1013-BLK1)             | an a an | (AANNA AN ANNA ANNA ANNA ANNA ANNA ANNA | 1. maadada internetian ama alia (1999). Alia adii adii adii adii adii adii adii a | elate (Hithi Minddiaatidi eti Mindoi ini terren |       |              |                  |                     |           |
| BOD5                                               | < 2                                      | mg/L                                    |                                                                                   |                                                 |       |              | 10/15/2018       | BAK                 | U         |
| LCS (B8J1013-BS1)<br>BOD5                          |                                          |                                         | 91.0                                                                              | 84.6-115.4                                      |       |              | 10/15/2018       | BAK                 |           |
| Duplicate (B8J1013-DUP1)<br>BOD5                   | Source ID: 8AC                           | 0085-01                                 |                                                                                   |                                                 | 5.46  | 30           | 10/15/2018       | BAK                 |           |
| Batch: B8J1015<br>Blank (B8J1015-BLK1)             |                                          |                                         |                                                                                   |                                                 |       |              |                  |                     |           |
| Total Dissolved Solids                             | < 20                                     | mg/L                                    |                                                                                   |                                                 |       |              | 10/10/2018       | CJP                 | U         |
| LCS (B8J1015-BS1)<br>Total Dissolved Solids        |                                          |                                         | 99.7                                                                              | 90-110                                          |       |              | 10/10/2018       | CJP                 |           |
| Duplicate (B8J1015-DUP1)<br>Total Dissolved Solids | Source ID: 8LS0                          | )354-01                                 |                                                                                   |                                                 | 0.507 | 10           | 10/10/2018       | CJP                 |           |
|                                                    |                                          |                                         |                                                                                   |                                                 |       |              |                  |                     |           |



# Quality Control Report (Continued)

| Analyte Name                                                     | Method<br>Blank     | Units      | %<br>Recovery    | Recovery<br>Limits | RPD   | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|------------------------------------------------------------------|---------------------|------------|------------------|--------------------|-------|--------------|------------------|---------------------|-----------|
| Wet Chemistry (Contin                                            | ued)                |            |                  |                    |       |              |                  |                     |           |
| Batch: B8J1103<br>Blank (B8J1103-BLK1)<br>Total Suspended Solids | < 0.9               | mg/L       |                  |                    |       |              | 10/11/2018       | KMG                 | U         |
| LCS (B8J1103-BS1)<br>Total Suspended Solids                      |                     |            | 91.0             | 90-110             |       |              | 10/11/2018       | KMG                 |           |
| Duplicate (B8J1103-DUP1)<br>Total Suspended Solids               | Source ID: 8BB      | 0676-02    |                  |                    | 3.23  | 20           | 10/11/2018       | KMG                 |           |
| Duplicate (B8J1103-DUP2)<br>Total Suspended Solids               | Source ID: 8BB      | 0677-02    |                  |                    | 3.59  | 20           | 10/11/2018       | KMG                 |           |
| Batch: B8J1503<br>Blank (B8J1503-BLK1)<br>Ammonia, as N          | < 0.035             | mg/L       |                  |                    |       |              | 10/15/2018       | CJP                 | U         |
| Blank (B8J1503-BLK2)<br>Ammonia, as N                            | < 0.035             | mg/L       |                  |                    |       |              | 10/15/2018       | CJP                 | U         |
| LCS (B8J1503-BS1)<br>Ammonia, as N                               |                     |            | 102              | 90-110             |       |              | 10/15/2018       | CJP                 |           |
| <b>LCS (B8J1503-BS2)</b><br>Ammonia, as N                        |                     |            | 105              | 90-110             |       |              | 10/15/2018       | CJP                 |           |
| Duplicate (B8J1503-DUP1)<br>Ammonia, as N                        | Source ID: 8BB      | 0543-01RE  | 1                |                    | 23.9  | 10           | 10/15/2018       | CJP                 | QC-01     |
| Duplicate (B8J1503-DUP2)<br>Ammonia, as N                        | Source ID: 8WE      | 0617-05    |                  |                    | 0.511 | 10           | 10/15/2018       | CJP                 |           |
| Duplicate (B8J1503-DUP3)<br>Ammonia, as N                        | Source ID: 8WE      | 0625-07    |                  |                    | 1.53  | 10           | 10/15/2018       | CJP                 |           |
| Duplicate (B8J1503-DUP4)<br>Ammonia, as N                        | Source ID: 8EW      | /0008-01   |                  |                    | 0.117 | 10           | 10/15/2018       | CJP                 |           |
| Matrix Spike (B8J1503-MS1)<br>Ammonia, as N                      | Source ID: 8B       | B0543-01R  | E1<br>89.3       | 80-120             |       |              | 10/15/2018       | CJP                 |           |
| Matrix Spike (B8J1503-MS2)<br>Ammonia, as N                      | Source ID: 8W       | /B0617-05  | 111              | 80-120             |       |              | 10/15/2018       | CJP                 |           |
| Matrix Spike (B8J1503-MS3)<br>Ammonia, as N                      | Source ID: 8W       | /B0625-07  | 112              | 80-120             |       |              | 10/15/2018       | CJP                 |           |
| Matrix Spike (B8J1503-MS4)<br>Ammonia, as N                      | Source ID: 8E       | W0008-01   | 107              | 80-120             |       |              | 10/15/2018       | CJP                 |           |
| Matrix Spike Dup (B8J1503-N<br>Ammonia, as N                     | ISD1) Source        | ID: 8BB054 | 13-01RE1<br>88.3 | 80-120             | 0.761 | 10           | 10/15/2018       | CJP                 |           |
| Matrix Spike Dup (B8J1503-N<br>Ammonia, as N                     | ISD2) Source        | ID: 8WB06  | 17-05<br>112     | 80-120             | 0.362 | 10           | 10/15/2018       | CJP                 |           |
| <b>Matrix Spike Dup (B8J1503-N</b><br>Ammonia, as N              | <b>ISD3)</b> Source | ID: 8WB06  | 25-07<br>110     | 80-120             | 0.846 | 10           | 10/15/2018       | CJP                 |           |



#### **Quality Control Report**

(Continued)

4

~

| Analyte Name                                                                   | Method<br>Blank | Units       | %<br>Recovery                                                                                                  | Recovery<br>Limits                                                          | RPD   | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier                                                                                                      |
|--------------------------------------------------------------------------------|-----------------|-------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|--------------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------|
| Wet Chemistry (Continued)                                                      | )               |             |                                                                                                                |                                                                             |       |              |                  |                     |                                                                                                                |
| Batch: B8J1503 (Continued)<br>Matrix Spike Dup (B8J1503-MSD4)<br>Ammonia, as N | Source          | ID: 8EW0008 | 3-01<br>106                                                                                                    | 80-120                                                                      | 0.469 | 10           | 10/15/2018       | CJP                 |                                                                                                                |
| Batch: B8K0104<br>Blank (B8K0104-BLK1)<br>TKN                                  | < 0.13          | mg/L        |                                                                                                                |                                                                             |       |              | 11/02/2018       | SMC                 | U                                                                                                              |
| LCS (B8K0104-BS1)<br>TKN                                                       |                 |             | 98.2                                                                                                           | 80-120                                                                      |       |              | 11/02/2018       | SMC                 |                                                                                                                |
| Duplicate (B8K0104-DUP1) Source<br>TKN                                         | ce ID: 8AC      | 0085-01     |                                                                                                                |                                                                             | 6.74  | 20           | 11/02/2018       | SMC                 |                                                                                                                |
| Duplicate (B8K0104-DUP2) Source<br>TKN                                         | ce ID: 8LS      | 0354-01     |                                                                                                                |                                                                             | 9.77  | 20           | 11/02/2018       | SMC                 | D                                                                                                              |
| Matrix Spike (B8K0104-MS1) Sou<br>TKN                                          | ırce ID: 8A     | C0085-01    | 132                                                                                                            | 80-120                                                                      |       |              | 11/02/2018       | SMC                 | QC-05                                                                                                          |
| Matrix Spike (B8K0104-MS2) Sou<br>TKN                                          | irce ID: 8L     | S0354-01    | 96.3                                                                                                           | 80-120                                                                      |       |              | 11/02/2018       | SMC                 | D                                                                                                              |
| Matrix Spike (B8K0104-MS3) Sou<br>TKN                                          | Irce ID: 8W     | /B0626-08   | 88.2                                                                                                           | 80-120                                                                      |       |              | 11/02/2018       | SMC                 | D                                                                                                              |
| Matrix Spike Dup (B8K0104-MSD1)<br>TKN                                         | Source          | ID: 8AC0085 | -01<br>87.8                                                                                                    | 80-120                                                                      | 18.5  | 20           | 11/02/2018       | SMC                 |                                                                                                                |
| Matrix Spike Dup (B8K0104-MSD2)<br>TKN                                         | Source          | ID: 8LS0354 | -01<br>95.8                                                                                                    | 80-120                                                                      | 0.385 | 20           | 11/02/2018       | SMC                 | D                                                                                                              |
| Dissolved Wet Chemistry                                                        |                 |             |                                                                                                                |                                                                             |       |              |                  |                     |                                                                                                                |
| Batch: B8J1108<br>Blank (B8J1108-BLK1)<br>Orthophosphate, as P                 | < 0.002         | mg/L        |                                                                                                                |                                                                             |       |              | 10/11/2018       | A.E                 | U                                                                                                              |
| LCS (B8J1108-BS1)<br>Orthophosphate, as P                                      |                 |             | 99.3                                                                                                           | 90-110                                                                      |       |              | 10/11/2018       | A.E                 |                                                                                                                |
| Duplicate (B8J1108-DUP1) Sourc<br>Orthophosphate, as P                         | e ID: 8WB       | 0672-03     | anta, tali ana tina kaka di saba di sa | 914664 ( 1617 et ) 2419 et 1937 et 1 et 1 en recent a recent anno 1839 et 1 | 8.40  | 10           | 10/11/2018       | A.E                 | hand faat of the second se |
| Duplicate (B8J1108-DUP2) Source<br>Orthophosphate, as P                        | e ID: 8AC0      | 085-02      |                                                                                                                |                                                                             | 0.733 | 10           | 10/11/2018       | A.E                 |                                                                                                                |
| Matrix Spike (B8J1108-MS1) Sour<br>Orthophosphate, as P                        | rce ID: 8W      | B0672-03    | 95.3                                                                                                           | 90-110                                                                      |       |              | 10/11/2018       | A.E                 |                                                                                                                |
| Matrix Spike (B8J1108-MS2) Sour<br>Orthophosphate, as P                        | rce ID: 8A0     | 0085-02     | 101                                                                                                            | 90-110                                                                      |       |              | 10/11/2018       | A.E                 |                                                                                                                |
| Matrix Spike Dup (B8J1108-MSD1)<br>Orthophosphate, as P                        | Source I        | D: 8WB0672  | -03<br>95.2                                                                                                    | 90-110                                                                      | 0.128 | 10           | 10/11/2018       | A.E                 |                                                                                                                |
| Matrix Spike Dup (B8J1108-MSD2)<br>Orthophosphate, as P                        | Source I        | D: 8AC0085- | • <b>02</b><br>101                                                                                             | 90-110                                                                      | 0.119 | 10           | 10/11/2018       | A.E                 |                                                                                                                |
|                                                                                |                 |             |                                                                                                                |                                                                             |       |              |                  |                     |                                                                                                                |

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety



# Quality Control Report

| Analyte Name                          | Method<br>Blank | Units                                                            | %<br>Recovery | Recovery<br>Limits                                                | RPD    | RPD<br>Limit | Date<br>Analyzed                        | Analyst<br>Initials | Qualifier |
|---------------------------------------|-----------------|------------------------------------------------------------------|---------------|-------------------------------------------------------------------|--------|--------------|-----------------------------------------|---------------------|-----------|
| Total Metals                          |                 |                                                                  |               |                                                                   |        |              |                                         |                     |           |
| Batch: B8J1017                        |                 |                                                                  |               |                                                                   |        |              |                                         |                     |           |
| Blank (B8J1017-BLK1)                  |                 |                                                                  |               |                                                                   |        |              |                                         |                     |           |
| Mercury                               | < 0.00471       | ug/L                                                             |               |                                                                   |        |              | 10/12/2018                              | SAS                 | U         |
| LCS (B8J1017-BS1)                     |                 |                                                                  |               | NY 1647-997 2007 2007 2008 20 20 20 20 20 20 20 20 20 20 20 20 20 |        |              | *** ** ******************************** |                     |           |
| Mercury                               |                 |                                                                  | 99.2          | 85-115                                                            |        |              | 10/12/2018                              | SAS                 |           |
| Duplicate (B8J1017-DUP1)<br>Mercury   | Source ID: 8AC0 | 085-01                                                           |               |                                                                   | 5.53   | 20           | 10/12/2018                              | SAS                 |           |
|                                       | Source ID: 8AC  | 0.005 0.2                                                        |               |                                                                   |        |              |                                         |                     |           |
| Duplicate (B8J1017-DUP2)<br>Mercury   | Source ID. BACC | 1000-00                                                          |               |                                                                   | 0.515  | 20           | 10/12/2018                              | SAS                 |           |
| Matrix Spike (B8J1017-MS1)            | Source ID: 8A   | 20085-01                                                         |               |                                                                   |        |              |                                         |                     |           |
| Mercury                               |                 | _                                                                | 99.1          | 70-130                                                            |        |              | 10/12/2018                              | SAS                 |           |
| Matrix Spike (B8J1017-MS2)<br>Mercury | Source ID: 8A   | 20085-03                                                         | 99.4          | 70-130                                                            |        |              | 10/12/2018                              | SAS                 |           |
| Matrix Spike Dup (B8J1017-            | MSD1) Source    | ID: 8AC008                                                       | 35-01         |                                                                   |        |              |                                         |                     |           |
| Mercury                               |                 |                                                                  | 97.4          | 70-130                                                            | 1.62   | 20           | 10/12/2018                              | SAS                 |           |
| Matrix Spike Dup (B8J1017-<br>Mercury | MSD2) Source    | ID: 8AC008                                                       | 85-03<br>99.4 | 70-130                                                            | 0.0234 | 20           | 10/12/2018                              | SAS                 |           |
| Batch: B8J1117                        |                 | 999999 499 49 49 49 49 59 50 50 50 50 50 50 50 50 50 50 50 50 50 |               |                                                                   |        |              |                                         |                     |           |
| Blank (B8J1117-BLK1)                  |                 |                                                                  |               |                                                                   |        |              |                                         |                     |           |
| Arsenic                               | < 5.72          | ug/L                                                             |               |                                                                   |        |              | 10/12/2018                              | AMO                 | U         |
| Cadmium                               | < 1             | ug/L                                                             |               |                                                                   |        |              | 10/12/2018                              | AMO                 | U         |
| Calcium                               | < 0.05          | mg/L                                                             |               |                                                                   |        |              | 10/12/2018                              | AMO                 | U         |
| Lead                                  | < 6.94          | ug/L                                                             |               |                                                                   |        |              | 10/12/2018                              | AMO                 | U         |
| Magnesium                             | < 50            | ug/L                                                             |               |                                                                   |        |              | 10/12/2018                              | AMO                 | U         |
| Phosphorus as P                       | < 0.006         | mg/L                                                             |               |                                                                   |        |              | 10/12/2018                              | AMO                 | U         |
| Hardness                              | < 1             | mg/L                                                             |               |                                                                   |        | *****        | 10/12/2018                              | AMO                 | U         |
| LCS (B8J1117-BS1)                     |                 |                                                                  | 107           | 85-115                                                            |        |              | 10/12/2018                              | AMO                 |           |
| Arsenic                               |                 |                                                                  |               |                                                                   |        |              |                                         |                     |           |
| Cadmium                               |                 |                                                                  | 105           | 85-115                                                            |        |              | 10/12/2018                              | AMO                 |           |
|                                       |                 |                                                                  | 105           | 85-115                                                            |        |              | 10/12/2018                              | AMO                 |           |
| Lead                                  |                 |                                                                  | 102           | 85-115                                                            |        |              | 10/12/2018                              | AMO                 |           |
| Magnesium                             |                 |                                                                  | 106           | 85-115                                                            |        |              | 10/12/2018                              | AMO                 |           |
| Phosphorus as P                       |                 |                                                                  | 101           | 85-115                                                            |        |              | 10/12/2018                              | AMO                 |           |
| Duplicate (B8J1117-DUP1)              | Source ID: 8AC0 | 085-01                                                           |               |                                                                   | NR     | 20           | 10/12/2019                              |                     |           |
| Arsenic                               |                 |                                                                  |               |                                                                   |        | 20           | 10/12/2018                              | AMO                 | U         |
| Cadmium                               |                 |                                                                  |               |                                                                   | NR     | 20           | 10/12/2018                              | AMO                 | 0         |
| Calcium                               |                 |                                                                  |               |                                                                   | 1.13   | 20           | 10/12/2018                              | AMO                 | 00.02     |
| Lead                                  |                 |                                                                  |               |                                                                   | 21.7   | 20           | 10/12/2018                              | AMO                 | QC-02     |
| Magnesium                             |                 |                                                                  |               |                                                                   | 1.21   | 20           | 10/12/2018                              | AMO                 |           |
| Phosphorus as P                       |                 |                                                                  |               |                                                                   | 0.285  | 20           | 10/12/2018                              | AMO                 |           |
| Hardness                              |                 |                                                                  |               |                                                                   | 1.15   | 200          | 10/12/2018                              | AMO                 |           |



# Quality Control Report (Continued)

| Analyte Name                 | Method<br>Blank | Units       | %<br>Recovery | Recovery<br>Limits | RPD   | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|------------------------------|-----------------|-------------|---------------|--------------------|-------|--------------|------------------|---------------------|-----------|
| Total Metals (Continued      | )               |             |               |                    |       |              |                  |                     |           |
| Batch: B8J1117 (Continued)   |                 |             |               |                    |       |              |                  |                     |           |
|                              | Source ID: 8A   | 20085-01    |               |                    |       |              |                  |                     |           |
| Arsenic                      |                 |             | 112           | 70-130             |       |              | 10/12/2018       | AMO                 |           |
| Cadmium                      |                 |             | 106           | 70-130             |       |              | 10/12/2018       | AMO                 |           |
| Calcium                      |                 |             | 104           | 70-130             |       |              | 10/12/2018       | AMO                 |           |
| Lead                         |                 |             | 104           | 70-130             |       |              | 10/12/2018       | AMO                 |           |
| Magnesium                    |                 |             | 108           | 70-130             |       |              | 10/12/2018       | AMO                 |           |
| Phosphorus as P              |                 |             | 103           | 70-130             |       |              | 10/12/2018       | AMO                 |           |
| Matrix Spike Dup (B8J1117-MS | D1) Source      | D: 8AC008   | 5-01          |                    |       |              |                  |                     |           |
| Arsenic                      |                 |             | 113           | 70-130             | 0.990 | 20           | 10/12/2018       | AMO                 |           |
| Cadmium                      |                 |             | 108           | 70-130             | 1.09  | 20           | 10/12/2018       | AMO                 |           |
| Calcium                      |                 |             | 105           | 70-130             | 0.589 | 20           | 10/12/2018       | AMO                 |           |
| Lead                         |                 |             | 106           | 70-130             | 1.81  | 20           | 10/12/2018       | AMO                 |           |
| Magnesium                    |                 |             | 108           | 70-130             | 0.360 | 20           | 10/12/2018       | AMO                 |           |
| Phosphorus as P              |                 |             | 102           | 70-130             | 0.472 | 20           | 10/12/2018       | AMO                 |           |
| Dissolved Metals             |                 |             |               |                    |       |              |                  |                     |           |
| Batch: B8J1217               |                 |             |               |                    |       |              |                  |                     |           |
| Blank (B8J1217-BLK1)         |                 |             |               |                    |       |              |                  |                     |           |
| Cadmium                      | < 1             | ug/L        |               |                    |       |              | 10/12/2018       | EDM                 | U         |
| Copper                       | < 10            | ug/L        |               |                    |       |              | 10/12/2018       | EDM                 | U         |
| Lead                         | < 6.94          | ug/L        |               |                    |       |              | 10/12/2018       | EDM                 | Ū         |
| Zinc                         | < 10            | ug/L        |               |                    |       |              | 10/12/2018       | EDM                 | U         |
| LCS (B8J1217-BS1)            |                 |             |               |                    |       |              |                  |                     |           |
| Cadmium                      |                 |             | 99.4          | 85-115             |       |              | 10/12/2018       | ÉDM                 |           |
| Copper                       |                 |             | 96.2          | 85-115             |       |              | 10/12/2018       | EDM                 |           |
| Lead                         |                 |             | 103           | 85-115             |       |              | 10/12/2018       | EDM                 |           |
| Zinc                         |                 |             | 105           | 85-115             |       |              | 10/12/2018       | EDM                 |           |
| Duplicate (B8J1217-DUP1) Se  | ource ID: 8AC0  | 085-03      |               |                    |       |              |                  |                     |           |
| Cadmium                      |                 |             |               |                    | NR    | 10           | 10/12/2018       | EDM                 | U         |
| Copper                       |                 |             |               |                    | NR    | 10           | 10/12/2018       | EDM                 | U         |
| Lead                         |                 |             |               |                    | NR    | 10           | 10/12/2018       | EDM                 | Ŭ         |
| Zinc                         |                 |             |               |                    | 0.696 | 10           | 10/12/2018       | EDM                 | -         |
| Matrix Spike (B8J1217-MS1)   | Source ID: 840  | 20085-03    |               |                    |       |              |                  |                     |           |
| Cadmium                      |                 |             | 98.8          | 70-130             |       |              | 10/12/2018       | EDM                 |           |
| Copper                       |                 |             | 103           | 70-130             |       |              | 10/12/2018       | EDM                 |           |
| Lead                         |                 |             | 102           | 70-130             |       |              | 10/12/2018       | EDM                 |           |
| Zinc                         |                 |             | 102           | 70-130             |       |              | 10/12/2018       | EDM                 |           |
| Matrix Spike Dup (B8J1217-MS | D1) Source      | D: 8AC008   | 5-03          |                    |       |              |                  |                     |           |
| Cadmium                      |                 | 2. 0. 00000 | 99.7          | 70-130             | 0.905 | 10           | 10/12/2018       | EDM                 |           |
| Copper                       |                 |             | 107           | 70-130             | 3.98  | 10           | 10/12/2018       | EDM                 |           |
| Lead                         |                 |             | 103           | 70-130             | 0.418 | 10           | 10/12/2018       | EDM                 |           |
| Zinc                         |                 |             | 103           | 70-130             | 0.285 | 10           | 10/12/2018       | EDM                 |           |
|                              |                 |             |               |                    |       |              | 10.12/2010       | 171                 |           |



#### **Notes and Definitions**

| ltem     | Definition                                                                                                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chlor-01 | The sample exhibited a false positive for the chlorine screen.                                                                                               |
| D        | Data reported from a dilution                                                                                                                                |
| QC-01    | The RPD is greater than the method acceptance criteria. The QC sample was non-homogeneous.                                                                   |
| QC-02    | The RPD is greater than the method acceptance criteria. At least one of the values used to calculate the RPD is less than PQL.                               |
| QC-05    | The spike recovery of either the MS or MSD is outside method acceptance limits. The batch was accepted because the LCS is within method acceptance criteria. |
| U        | Analyte included in the analysis, but not detected                                                                                                           |

#### Method Reference Acronyms

| Colilert Colilert, IDEXX Laboratories, Inc |
|--------------------------------------------|
|--------------------------------------------|

- EPA Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
- GS USGS Techniques of Water-Resources Investigations
- HH Hach Spectrophotometer Procedures Manual
- SM Standard Methods for the Examination of Water and Wastewater
- SW Test methods for Evaluating Solid Waste, SW-846

Janet Finegan-Kelly

Water Quality Laboratory Manager

Stephen Quintero or Heather Rankin QA/QC Coordinator

| Ada County Highway District                                                                                                                   | ty Highv                                  | vay Dis     | trict                             |                             |                       |                  |           |                   | _                                             |                                                       |                  |                |                   |                 |                |                 |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|-----------------------------------|-----------------------------|-----------------------|------------------|-----------|-------------------|-----------------------------------------------|-------------------------------------------------------|------------------|----------------|-------------------|-----------------|----------------|-----------------|----------------------|
| Attn: Monica Lowe                                                                                                                             | Lowe                                      |             |                                   |                             |                       |                  | Matrix    | Type              |                                               |                                                       |                  |                |                   |                 |                |                 |                      |
| 3775 Adams Street<br>Garden City, Idaho 83714–6418<br>Tel. (208) 387–6255<br>Fax (208) 387–6391<br>Purchase Order:<br>Project:<br>Sampler(s): | s Street<br>I daho 837<br>17–6391<br>der: | 714-6418    | 630460<br>Stormv<br>Andy<br>Andri | 145<br>vater-PI<br>رمداریمی |                       |                  |           |                   |                                               |                                                       | ,                | EPA 200,7      |                   |                 | 340 B          |                 |                      |
| Lab#                                                                                                                                          | Begin<br>Date                             | End<br>Date | Begin<br>Time                     | Time<br>Time                | Sample Identification | Sampler Initials | Water     | Grab<br>Composite | COD - Hach 8000<br>BOD <sup>2</sup> - SM 5210 | TDS - SM 2540 D                                       | TKN - Perstoro P | Orthophosphate | Diss. Cd. Cu. Pb. | E. Coli - IDEXX | Hardness - SM2 | NH3 - SM 4500 N | Total Containers     |
| 8 Accors                                                                                                                                      | 10/01/18 10/0/18                          | 10/9/18     | 1045                              | 3211                        | 181009 - 11 - WC      | ABC              | X         | 8                 | 8<br>8                                        | 2<br>X                                                | X X X            | 2              | X<br>X            | X               | א              | ×<br>8          | 4                    |
|                                                                                                                                               | 10/5/18                                   | 10/4/18     | 0835                              |                             | 1334 181009 - 12 - WC | ABC              | R         | X                 | X<br>Q                                        | x<br>x<br>x                                           | XXXX             | XX             | X                 | ¥.              | X              | x<br>X          | 5                    |
| - 60                                                                                                                                          | 10/4/18                                   | 10/10/18    | 0354                              | 0909                        | 0909 151009- 14 - WC  | 40c              | X         | ×                 | XX                                            | XX                                                    | ×<br>×<br>×      | X              | X<br>X            | X               | X              | 8               | 4                    |
|                                                                                                                                               |                                           |             |                                   | -                           |                       |                  |           |                   |                                               |                                                       |                  |                |                   |                 |                |                 |                      |
|                                                                                                                                               |                                           |             |                                   |                             |                       |                  |           |                   |                                               |                                                       |                  |                |                   |                 |                |                 |                      |
|                                                                                                                                               |                                           |             |                                   |                             |                       |                  |           |                   |                                               |                                                       |                  |                |                   |                 |                |                 | THE REAL PROPERTY OF |
|                                                                                                                                               |                                           |             |                                   |                             |                       |                  |           |                   |                                               |                                                       |                  |                |                   |                 |                |                 |                      |
| Reling                                                                                                                                        | Relinquished by (sign)                    | (sign)      |                                   | Date & Time<br>Transferred  | ne Received by (sign) |                  |           |                   | Comn                                          | Comments/Special Instructions:                        | pecial           | Instri         | Ictio             | ]s:             |                |                 |                      |
| X                                                                                                                                             | N                                         |             | 1/01                              | 10/18                       | [upu] Ky 10-10-18     | 81-18            | Please Sf | e solit           |                                               | 151609-14-WC and run<br>with the lase : 181009-14-103 | - 14 -<br>2 [    | wc             | av.               | 5/00            | 4              | Ц               | 103                  |
|                                                                                                                                               |                                           |             |                                   |                             |                       |                  | 8ACC      | 8Ac0085-04        |                                               | 181009-14-103                                         | -14-             | 601            |                   |                 |                |                 |                      |
| 000                                                                                                                                           |                                           |             |                                   |                             |                       |                  |           |                   | ***                                           | SACCORS                                               | 8                | 3              |                   |                 |                | 10/18           |                      |



#### Samples in this Report

| Lab ID     | Sample       | Sample Description                               | Matrix | Qualifiers | Date Sampled | Date Received |
|------------|--------------|--------------------------------------------------|--------|------------|--------------|---------------|
| 8AC0091-01 | ACST1B       | 181127-03-WG                                     | Water  |            | 11/27/2018   | 11/27/2018    |
| Comme      | ents:        |                                                  |        |            |              |               |
|            | Chunks of se | ediment noted by the analyst.                    |        |            |              |               |
| 8AC0091-02 | ACST1B       | 181127-11-WG                                     | Water  |            | 11/27/2018   | 11/27/2018    |
| Comme      | ents:        |                                                  |        |            |              |               |
|            | Analyst note | d that sample appeared to have dissolved solids. |        |            |              |               |
| 8AC0091-03 | ACST1B       | 181127-12-WG                                     | Water  |            | 11/27/2018   | 11/27/2018    |
| 8AC0091-04 | ACST1B       | 181127-14-WG                                     | Water  |            | 11/27/2018   | 11/27/2018    |
| 8AC0091-05 | ACST1B       | 181127-03-001                                    | Water  |            | 11/27/2018   | 11/27/2018    |
| 8AC0091-06 | ACST1B       | 181127-03-101                                    | Water  |            | 11/27/2018   | 11/27/2018    |
| Commo      | nte:         |                                                  |        |            |              |               |

Comments:

Analyst noted that sample is brown with lots of sediment.

Report Date: 12/05/2018 08:41



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### **Analysis Report**

| Location:                        | ACST        | 1B         |           |                   |               | Location Description:        | 181127-0          | 3-WG             |                     |      |
|----------------------------------|-------------|------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collecte               | ed: 11/27/2 | 2018 20:37 |           |                   |               |                              |                   |                  |                     |      |
| Lab Number:                      | 8AC00       | 91-01      |           |                   |               | Sample Collector:            | A.L               |                  |                     |      |
| Sample Type:                     | Grab        |            |           |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B8K2704     | >2419.6M   | PN/100 mL | 1.0               | 1.0           | Colilert                     | 11/27/18<br>22:55 | 11/28/18 23:05   | KMR                 | M-09 |
| Wet Chemistry<br>Chlorine Screen | B8K2811     | Absent     |           |                   |               | SM 4500-CL G-2000            | 11/27/18          | 11/27/18 21:38   | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1      | 1B         |           |                   |               | Location Description:        | 181127-1 <sup>.</sup> | I-WG             |                     |      |
|----------------------------------|------------|------------|-----------|-------------------|---------------|------------------------------|-----------------------|------------------|---------------------|------|
| Date/Time Collecte               | d: 11/27/2 | 2018 18:32 |           |                   |               |                              |                       |                  |                     |      |
| Lab Number:                      | 8AC00      | 91-02      |           |                   |               | Sample Collector:            | A.L                   |                  |                     |      |
| Sample Type:                     | Grab       |            |           |                   |               | Sample Matrix:               | Water                 |                  |                     |      |
| Analyte Name                     | Batch      | Result     | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time      | Analysis<br>Time | Analyst<br>Initials | Qual |
| <b>Microbiology</b><br>E. Coli   | B8K2704    | >2419.6M   | PN/100 mL | . 1.0             | 1.0           | Colilert                     | 11/27/18<br>22:55     | 11/28/18 23:05   | KMR                 | M-09 |
| Wet Chemistry<br>Chlorine Screen | B8K2811    | Absent     |           |                   |               | SM 4500-CL G-2000<br>mod     | 11/27/18              | 11/27/18 21:38   | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1       | В          |            |                   |               | Location Description:        | 181127-12         | 2-WG             |                     |      |
|----------------------------------|-------------|------------|------------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collecte               | ed: 11/27/2 | 2018 17:52 |            |                   |               |                              |                   |                  |                     |      |
| Lab Number:                      | 8AC00       | 91-03      |            |                   |               | Sample Collector:            | A.L               |                  |                     |      |
| Sample Type:                     | Grab        |            |            |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B8K2704     | 79.8M      | IPN/100 mL | - 1.0             | 1.0           | Colilert                     | 11/27/18<br>22:55 | 11/28/18 23:05   | KMR                 |      |
| Wet Chemistry<br>Chlorine Screen | B8K2811     | Absent     |            |                   |               | SM 4500-CL G-2000<br>mod     | 11/27/18          | 11/27/18 21:38   | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1       | В          |            |                   |               | Location Description:        | 181127-14         | 4-WG             |                     |      |
|----------------------------------|-------------|------------|------------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collecte               | ed: 11/27/2 | 2018 18:08 |            |                   |               |                              |                   |                  |                     |      |
| Lab Number:                      | 8AC00       | 91-04      |            |                   |               | Sample Collector:            | A.L               |                  |                     |      |
| Sample Type:                     | Grab        |            |            |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| <b>Microbiology</b><br>E. Coli   | B8K2704     | 148.3 M    | IPN/100 mL | . 1.0             | 1.0           | Colilert                     | 11/27/18<br>22:55 | 11/28/18 23:05   | KMR                 |      |
| Wet Chemistry<br>Chlorine Screen | B8K2811     | Absent     |            |                   |               | SM 4500-CL G-2000<br>mod     | 11/27/18          | 11/27/18 21:38   | JJR                 |      |



## **Analysis Report**

| Location:                        | ACST1       | В          |            |                   |               | Location Description:        | 181127-03         | 3-001            |                     |      |
|----------------------------------|-------------|------------|------------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collect                | ed: 11/27/2 | 2018 12:00 | )          |                   |               |                              |                   |                  |                     |      |
| Lab Number:                      | 8AC00       | 91-05      |            |                   |               | Sample Collector:            | A.L               |                  |                     |      |
| Sample Type:                     | Grab        |            |            |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B8K2704     | <1.0 M     | IPN/100 mL | . 1.0             | 1.0           | Colilert                     | 11/27/18<br>22:55 | 11/28/18 23:05   | KMR                 | ΗU   |
| Wet Chemistry<br>Chlorine Screen | B8K2811     | Absent     |            |                   |               | SM 4500-CL G-2000<br>mod     | 11/27/18          | 11/27/18 21:38   | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1       | IB         |           |                   |               | Location Description:        | 181127-03         | 3-101            |                     |        |
|----------------------------------|-------------|------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|--------|
| Date/Time Collecte               | ed: 11/27/2 | 2018 12:00 |           |                   |               |                              |                   |                  |                     |        |
| Lab Number:                      | 8AC00       | 91-06      |           |                   |               | Sample Collector:            | A.L               |                  |                     |        |
| Sample Type:                     | Grab        |            |           |                   |               | Sample Matrix:               | Water             |                  |                     |        |
| Analyte Name                     | Batch       | Result     | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual   |
| <b>Microbiology</b><br>E. Coli   | B8K2704     | >2419.6M   | PN/100 mL | . 1.0             | 1.0           | Colilert                     | 11/27/18<br>22:55 | 11/28/18 23:05   | KMR                 | H M-09 |
| Wet Chemistry<br>Chlorine Screen | B8K2811     | Absent     |           |                   |               | SM 4500-CL G-2000<br>mod     | 11/27/18          | 11/27/18 21:38   | JJR                 |        |



## **Quality Control Report**

| Analyte Name                                      | Method<br>Blank U | %<br>nits Recovery | Recovery<br>Limits | RPD  | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|---------------------------------------------------|-------------------|--------------------|--------------------|------|--------------|------------------|---------------------|-----------|
| Microbiology                                      |                   |                    |                    |      |              |                  |                     |           |
| Batch: B8K2704<br>Blank (B8K2704-BLK1)<br>E. Coli | Abaant            |                    |                    |      |              | 44/00/0040       |                     |           |
| E. Coll                                           | Absent            |                    |                    |      |              | 11/28/2018       | JJR                 |           |
| LCS (B8K2704-BS1)<br>E. Coli                      |                   |                    | Present            |      |              | 11/28/2018       | JJR                 |           |
| Duplicate (B8K2704-DUP1)<br>E. Coli               | Source ID: 8WB073 | 33-06              |                    | Pass | 128          | 11/28/2018       | JJR                 |           |



#### **Notes and Definitions**

| ltem | Definition                                                                    |
|------|-------------------------------------------------------------------------------|
| H    | Hold time Exceeded.                                                           |
| M-09 | Sample could not be analyzed at a lesser dilution due to matrix interference. |
| U    | Analyte included in the analysis, but not detected                            |

#### Method Reference Acronyms

- Colilert Colilert, IDEXX Laboratories, Inc.
- EPA Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
- GS USGS Techniques of Water-Resources Investigations
- HH Hach Spectrophotometer Procedures Manual
- SM Standard Methods for the Examination of Water and Wastewater
- SW Test methods for Evaluating Solid Waste, SW-846

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Heather Rankin QA/QC Coordinator

| and the second se | $\mathcal{F}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| alary and a distant state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AC            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sim$        |

10/18

---coc\_wql-wy49pi--

|                             | Matrix Type       | 210 B<br>210 B<br>000<br>0 C<br>20 - EPA 265.1<br>20 - EPA 200.7<br>20 - EPA 200.7<br>20 - 245.2<br>20 - 245.2<br>20 - 245.2<br>20 - 245.2    | Sampler Initia<br>Sampler Initia<br>Water<br>Composite<br>BOD <sub>6</sub> - SM 254<br>TES - SM 254<br>TSS - S | X X X X X    | X X X W      | ALXX             | ALXX         | ALXX          | X X X JA      | by (sign) Comments/Special Instructions: |
|-----------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------------------|--------------|---------------|---------------|------------------------------------------|
|                             |                   |                                                                                                                                               | Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181127-03-WG | 181127-11-WG | 181127 - 12 - WG | 181127-14-WG | 18/127-03-001 | 181127-03-101 | 2 Received                               |
|                             |                   | 445<br>vater-PI<br>avison<br>Conovel                                                                                                          | End<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |                  |              |               |               | Date & Time<br>Transferred<br>7//8 2102  |
| trict                       |                   | 630464<br>Stormw<br>A · C                                                                                                                     | Begin<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2037         | 1832         | 1752             | 1808         | 1200          | 0021          | Date $\delta$<br>Trans $11/k \pi/18$     |
| ray Dist                    |                   | 14-6418                                                                                                                                       | End<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00           |              |                  |              |               |               | (sign)                                   |
| ty Highw                    | Lowe              | Street<br>Idaho 837<br>7–6255<br>7–6391<br>der:                                                                                               | Begin<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11-27-18     |              |                  |              |               | ->            | Relinquished by (sign)                   |
| Ada County Highway District | Attn: Monica Lowe | 3775 Adams Street<br>Garden City, Idaho 83714–6418<br>Tel. (208) 387–6255<br>Fax (208) 387–6391<br>Purchase Order:<br>Project:<br>Sampler(s): | Lab#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0            | -02          | -03              | +0-          | Ŗ             | a)<br>2-      | Relinqu                                  |

Report Date: 12/13/2018 11:31



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### Samples in this Report

| Lab ID     | Sample | Sample Description    | Matrix Qual | lifiers Date Sampled | Date Received |
|------------|--------|-----------------------|-------------|----------------------|---------------|
| 8AC0093-01 | ACST1C | 181127-03-WC          | Water       | 11/28/2018           | 11/28/2018    |
| 8AC0093-02 | ACST1C | 181127-12-WC          | Water       | 11/28/2018           | 11/28/2018    |
| 8AC0093-03 | ACST1C | 18112 <b>7</b> -14-WC | Water       | 11/28/2018           | 11/28/2018    |



## **Analysis Report**

| Location:              | ACST       | 1C         |           |                   |               | Location Description:        | 181127-03        | 3-WC             |                     |      |
|------------------------|------------|------------|-----------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|------|
| Date/Time Collected    | l: 11/27/2 | 2018 21:42 | - 11/28/2 | 2018 03:05        |               |                              |                  |                  |                     |      |
| Lab Number:            | 8AC00      | 93-01      |           |                   |               | Sample Collector:            | ABC              |                  |                     |      |
| Sample Type:           | Compo      | osite      |           |                   |               | Sample Matrix:               | Water            |                  |                     |      |
| Analyte Name           | Batch      | Result     | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual |
| Wet Chemistry          |            |            |           |                   |               |                              |                  |                  |                     |      |
| Ammonia, as N          | B8K3001    | 0.232      | mg/L      | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 11/30/18         | 11/30/18 11:25   | ASM                 |      |
| BOD5                   | B8K2901    | 45.4       | mg/L      | 2.00              | 2.00          | SM 5210 B-2001               | 11/29/18         | 12/4/18 8:13     | ASM                 |      |
| COD                    | B8K2814    | 174        | mg/L      | 7.00              | 7.00          | HH 8000-1979                 | 11/28/18         | 11/28/18 16:35   | KMR                 |      |
| Nitrate-Nitrite, as N  | B8L1002    | 0.255      | mg/L      | 0.0200            | 0.0200        | EPA 353.2                    | 12/10/18         | 12/10/18 12:04   | SMC                 |      |
| TKN                    | B8L1004    | 2.59       | mg/L      | 0.130             | 0.130         | EPA 351.2                    | 12/10/18         | 12/11/18 8:42    | LRF                 |      |
| Total Dissolved Solids | B8K2807    | 106        | mg/L      | 20.0              | 20.0          | SM 2540 C-1997               | 11/28/18         | 11/30/18 13:23   | CJP                 |      |
| Total Suspended Solids | B8K2915    | 66.5       | mg/L      | 0.900             | 0.900         | SM 2540 D-1997               | 11/29/18         | 11/29/18 9:19    | ALD                 |      |
| Turbidity              | B8K2812    | 32.9       | NTU       | 0.3               | 0.3           | EPA180.1 R2.0 (1993)         | 11/28/18         | 11/28/18 14:12   | JAL                 |      |
| Dissolved Wet Ch       | emistry    |            |           |                   |               |                              |                  |                  |                     |      |
| Orthophosphate, as P   | B8K2907    | 0.341      | mg/L      | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 11/29/18         | 11/29/18 11:15   | SMC                 | M-06 |
| Total Metals           |            |            |           |                   |               |                              |                  |                  |                     |      |
| Mercury                | B8K2818    | 8.19E-3    | ug/L      | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 11/29/18         | 11/30/18 9:07    | SAS                 |      |
| Arsenic                | B8K2920    | <5.72      | ug/L      | 5.72              | 5.72          | EPA 200.7                    | 11/29/18         | 11/30/18 16:46   | EDM                 | U    |
| Cadmium                | B8L0515    | <1.00      | ug/L      | 1.00              | 1.00          | EPA 200.7                    | 12/05/18         | 12/6/18 17:37    | AMO                 | U    |
| Calcium                | B8K2920    | 8.07       | mg/L      | 0.0500            | 0.0500        | EPA 200.7                    | 11/29/18         | 11/30/18 16:46   | EDM                 |      |
| Lead                   | B8K2920    | <6.94      | ug/L      | 6.94              | 6.94          | EPA 200.7                    | 11/29/18         | 11/30/18 16:46   | EDM                 | U    |
| Magnesium              | B8K2920    | 1810       | ug/L      | 50.0              | 50.0          | EPA 200.7                    | 11/29/18         | 11/30/18 16:46   | EDM                 |      |
| Phosphorus as P        | B8K2920    | 0.810      | mg/L      | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 11/29/18         | 11/30/18 16:46   | EDM                 |      |
| Hardness               | B8K2920    | 27.6       | mg/L      | 1.00              | 1.00          | EPA 200.7                    | 11/29/18         | 11/30/18 16:46   | EDM                 |      |
| Dissolved Metals       |            |            |           |                   |               |                              |                  |                  |                     |      |
| Cadmium                | B8L0621    | <1.00      | ug/L      | 1.00              | 1.00          | EPA 200.7                    | 12/06/18         | 12/6/18 16:25    | AMO                 | U    |
| Copper                 | B8L0320    | <10.0      | ug/L      | 10.0              | 10.0          | EPA 200.7                    | 12/03/18         | 12/3/18 17:54    | EDM                 | U    |
| _ead                   | B8L0320    | <6.94      | ug/L      | 6.94              | 6.94          | EPA 200.7                    | 12/03/18         | 12/3/18 17:54    | EDM                 | U    |
| Zinc                   | B8L0320    | 118        | ug/L      | 10.0              | 10.0          | EPA 200.7                    | 12/03/18         | 12/3/18 17:54    | EDM                 |      |



## **Analysis Report**

| Location:              | ACST1      | IC         |           |                   |               | Location Description:        | 181127-12        | 2-WC             |                     |     |
|------------------------|------------|------------|-----------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|-----|
| Date/Time Collected    | i: 11/27/2 | 2018 17:41 | - 11/28/2 | 2018 00:26        |               |                              |                  |                  |                     |     |
| Lab Number:            | 8AC00      | 93-02      |           |                   |               | Sample Collector:            | ABC              |                  |                     |     |
| Sample Type:           | Compo      | osite      |           |                   |               | Sample Matrix:               | Water            |                  |                     |     |
| Analyte Name           | Batch      | Result     | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qua |
| Wet Chemistry          |            |            |           |                   |               |                              |                  |                  |                     |     |
| Ammonia, as N          | B8K3001    | 1.09       | mg/L      | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 11/30/18         | 11/30/18 11:17   | ASM                 |     |
| BOD5                   | B8K2901    | 23.7       | mg/L      | 2.00              | 2.00          | SM 5210 B-2001               | 11/29/18         | 12/4/18 8:09     | ASM                 |     |
| COD                    | B8K2814    | 150        | mg/L      | 7.00              | 7.00          | HH 8000-1979                 | 11/28/18         | 11/28/18 16:35   | KMR                 |     |
| Nitrate-Nitrite, as N  | B8L1002    | 0.390      | mg/L      | 0.0200            | 0.0200        | EPA 353.2                    | 12/10/18         | 12/10/18 12:05   | SMC                 |     |
| TKN                    | B8L1004    | 2.91       | mg/L      | 0.130             | 0.130         | EPA 351.2                    | 12/10/18         | 12/11/18 8:43    | LRF                 |     |
| Total Dissolved Solids | B8K2807    | 73.5       | mg/L      | 20.0              | 20.0          | SM 2540 C-1997               | 11/28/18         | 11/30/18 13:23   | CJP                 |     |
| Total Suspended Solids | B8K2915    | 83.1       | mg/L      | 0.900             | 0.900         | SM 2540 D-1997               | 11/29/18         | 11/29/18 9:20    | ALD                 |     |
| Turbidity              | B8K2812    | 59.9       | NTU       | 0.6               | 0.3           | EPA180.1 R2.0 (1993)         | 11/28/18         | 11/28/18 14:25   | JAL                 | D   |
| Dissolved Wet Ch       | emistry    |            |           |                   |               |                              |                  |                  |                     |     |
| Orthophosphate, as P   | B8K2907    | 0.137      | mg/L      | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 11/29/18         | 11/29/18 11:16   | SMC                 |     |
| Total Metals           |            |            |           |                   |               |                              |                  |                  |                     |     |
| Mercury                | B8K2818    | 0.0136     | ug/L      | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 11/29/18         | 11/30/18 9:10    | SAS                 |     |
| Arsenic                | B8K2920    | <5.72      | ug/L      | 5.72              | 5.72          | EPA 200.7                    | 11/29/18         | 11/30/18 16:22   | EDM                 | U   |
| Cadmium                | B8L0515    | <1.00      | ug/L      | 1.00              | 1.00          | EPA 200.7                    | 12/05/18         | 12/6/18 17:42    | AMO                 | U   |
| Calcium                | B8K2920    | 7.78       | mg/L      | 0.0500            | 0.0500        | EPA 200.7                    | 11/29/18         | 11/30/18 16:22   | EDM                 |     |
| Lead                   | B8K2920    | 12.8       | ug/L      | 6.94              | 6.94          | EPA 200.7                    | 11/29/18         | 11/30/18 16:22   | EDM                 |     |
| Magnesium              | B8K2920    | 1760       | ug/L      | 50.0              | 50.0          | EPA 200.7                    | 11/29/18         | 11/30/18 16:22   | EDM                 |     |
| Phosphorus as P        | B8K2920    | 0.338      | mg/L      | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 11/29/18         | 11/30/18 16:22   | EDM                 |     |
| Hardness               | B8K2920    | 26.7       | mg/L      | 1.00              | 1.00          | EPA 200.7                    | 11/29/18         | 11/30/18 16:22   | EDM                 |     |
| Dissolved Metals       |            |            |           |                   |               |                              |                  |                  |                     | -   |
| Cadmium                | B8L0621    | <1.00      | ug/L      | 1.00              | 1.00          | EPA 200.7                    | 12/06/18         | 12/6/18 16:30    | AMO                 | U   |
| Copper                 | B8L0320    | 11.0       | ug/L      | 10.0              | 10.0          | EPA 200.7                    | 12/03/18         | 12/3/18 17:59    | EDM                 |     |
| Lead                   | B8L0320    | <6.94      | ug/L      | 6.94              | 6.94          | EPA 200.7                    | 12/03/18         | 12/3/18 17:59    | EDM                 | U   |
| Zinc                   | B8L0320    | 60.4       | ug/L      | 10.0              | 10.0          | EPA 200.7                    | 12/03/18         | 12/3/18 17:59    | EDM                 | -   |



## **Analysis Report**

| Location:              | ACST    | 1C      |         |                   |               | Location Description:        | 181127-14        | 4-WC             |                     |      |
|------------------------|---------|---------|---------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|------|
| Date/Time Collected    |         |         | 11/28/2 | 2018 09:48        |               |                              |                  |                  |                     |      |
| Lab Number:            | 8AC00   | 93-03   |         |                   |               | Sample Collector:            | ABC              |                  |                     |      |
| Sample Type:           | Compo   | osite   |         |                   |               | Sample Matrix:               | Water            |                  |                     |      |
| Analyte Name           | Batch   | Result  | Units   | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qua  |
| Wet Chemistry          |         |         |         |                   |               |                              |                  |                  |                     |      |
| Ammonia, as N          | B8K3001 | 0.407   | mg/L    | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 11/30/18         | 11/30/18 11:31   | ASM                 |      |
| BOD5                   | B8K2901 | 36.9    | mg/L    | 2.00              | 2.00          | SM 5210 B-2001               | 11/29/18         | 12/4/18 8:20     | ASM                 |      |
| COD                    | B8K2814 | 149     | mg/L    | 7.00              | 7.00          | HH 8000-1979                 | 11/28/18         | 11/28/18 16:35   | KMR                 |      |
| Nitrate-Nitrite, as N  | B8L1002 | 0.675   | mg/L    | 0.0200            | 0.0200        | EPA 353.2                    | 12/10/18         | 12/10/18 12:10   | SMC                 |      |
| TKN                    | B8L1004 | 1.73    | mg/L    | 0.130             | 0.130         | EPA 351.2                    | 12/10/18         | 12/11/18 8:45    | LRF                 |      |
| Total Dissolved Solids | B8K2807 | 202     | mg/L    | 20.0              | 20.0          | SM 2540 C-1997               | 11/28/18         | 11/30/18 13:23   | CJP                 |      |
| Total Suspended Solids | B8K2915 | 56.3    | mg/L    | 0.900             | 0.900         | SM 2540 D-1997               | 11/29/18         | 11/29/18 9:20    | ALD                 |      |
| Turbidity              | B8K2812 | 49.6    | NTU     | 0.6               | 0.3           | EPA180.1 R2.0 (1993)         | 11/28/18         | 11/28/18 14:34   | JAL                 | D    |
| Dissolved Wet Ch       | emistry |         |         |                   |               |                              |                  |                  |                     |      |
| Orthophosphate, as P   | B8K2907 | 0.299   | mg/L    | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 11/29/18         | 11/29/18 11:21   | SMC                 | M-06 |
| Total Metals           |         |         |         |                   |               |                              |                  |                  |                     |      |
| Mercury                | B8K2818 | 8.49E-3 | ug/L    | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 11/29/18         | 11/30/18 9:14    | SAS                 |      |
| Arsenic                | B8K2920 | 7.60    | ug/L    | 5.72              | 5.72          | EPA 200.7                    | 11/29/18         | 11/30/18 16:51   | EDM                 |      |
| Cadmium                | B8L0515 | <1.00   | ug/L    | 1.00              | 1.00          | EPA 200.7                    | 12/05/18         | 12/6/18 17:47    | AMO                 | U    |
| Calcium                | B8K2920 | 24.6    | mg/L    | 0.0500            | 0.0500        | EPA 200.7                    | 11/29/18         | 11/30/18 16:51   | EDM                 |      |
| _ead                   | B8K2920 | 8.29    | ug/L    | 6.94              | 6.94          | EPA 200.7                    | 11/29/18         | 11/30/18 16:51   | EDM                 |      |
| Magnesium              | B8K2920 | 5780    | ug/L    | 50.0              | 50.0          | EPA 200.7                    | 11/29/18         | 11/30/18 16:51   | EDM                 |      |
| Phosphorus as P        | B8K2920 | 0.578   | mg/L    | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 11/29/18         | 11/30/18 16:51   | EDM                 |      |
| Hardness               | B8K2920 | 85.3    | mg/L    | 1.00              | 1.00          | EPA 200.7                    | 11/29/18         | 11/30/18 16:51   | EDM                 |      |
| Dissolved Metals       |         |         |         |                   |               |                              |                  |                  |                     |      |
| Cadmium                | B8L0621 | <1.00   | ug/L    | 1.00              | 1.00          | EPA 200.7                    | 12/06/18         | 12/6/18 16:35    | AMO                 | U    |
| Соррег                 | B8L0320 | <10.0   | ug/L    | 10.0              | 10.0          | EPA 200.7                    | 12/03/18         | 12/3/18 18:09    | EDM                 | U    |
| _ead                   | B8L0320 | <6.94   | ug/L    | 6.94              | 6.94          | EPA 200.7                    | 12/03/18         | 12/3/18 18:09    | EDM                 | υ    |
| Zinc                   | B8L0320 | 35.3    | ug/L    | 10.0              | 10.0          | EPA 200.7                    | 12/03/18         | 12/3/18 18:09    | EDM                 |      |



### **Quality Control Report**

|                                                     |                 |         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                               |                                 |                  |                     |            |
|-----------------------------------------------------|-----------------|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|---------------------|------------|
| Analyte Name                                        | Method<br>Blank | Units   | %<br>Recovery | Recovery<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPD                                                                                                             | RPD<br>Limit                    | Date<br>Analyzed | Analyst<br>Initials | Qualifier  |
| Wet Chemistry                                       |                 |         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                 |                  |                     |            |
| Batch: B8K2807<br>Blank (B8K2807-BLK1)              | . 00            |         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                 |                  |                     |            |
| Total Dissolved Solids                              | < 20            | mg/L    |               | RATE BELLEVILLE BUILDING BUILDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                                 | 11/30/2018       | CJP                 | U          |
| LCS (B8K2807-BS1)<br>Total Dissolved Solids         |                 |         | 94.5          | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |                                 | 11/30/2018       | CJP                 |            |
| Duplicate (B8K2807-DUP1)<br>Total Dissolved Solids  | Source ID: 8LS  | 0420-01 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.23                                                                                                            | 10                              | 11/30/2018       | CJP                 |            |
| Batch: B8K2812<br>Blank (B8K2812-BLK1)<br>Turbidity | < 0.3           | NTU     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t                                                                                                               |                                 | 11/28/2018       | JAL                 | U          |
| LCS (B8K2812-BS1)<br>Turbidity                      |                 |         | 101           | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |                                 | 11/28/2018       | JAL                 |            |
| Duplicate (B8K2812-DUP1)<br>Turbidity               | Source ID: 8LS  | 0420-01 |               | Alle (All Ball & Constant of Const | 9.72                                                                                                            | 25                              | 11/28/2018       | JAL                 |            |
| Batch: B8K2814<br>Blank (B8K2814-BLK2)<br>COD       | < 7             | mg/L    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                 | 11/28/2018       | KMR                 | U          |
| LCS (B8K2814-BS1)<br>COD                            |                 |         | 98.7          | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | ******************************* | 11/28/2018       | KMR                 |            |
| Duplicate (B8K2814-DUP1)<br>COD                     | Source ID: 8LS  | 0420-01 |               | Roll()(R)()()()()()()()()()()()()()()()()(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.22                                                                                                            | 10                              | 11/28/2018       | KMR                 |            |
| Batch: B8K2901<br>Blank (B8K2901-BLK1)<br>BOD5      | < 2             |         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                 | 42/04/2048       | A C M               | Seed-01, U |
| LCS (B8K2901-BS1)<br>BOD5                           | - 2             | mg/L    | 104           | 84.6-115.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                 | 12/04/2018       | ASM                 | 3660-01, U |
| Duplicate (B8K2901-DUP1)<br>BOD5                    | Source ID: 8AC  | 0094-01 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.99                                                                                                            | 30                              | 12/04/2018       | ASM                 |            |



## Quality Control Report (Continued)

| Analyte Name                                                     | Method<br>Blank | Units      | %<br>Recovery                                                  | Recovery<br>Limits | RPD    | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier                                    |
|------------------------------------------------------------------|-----------------|------------|----------------------------------------------------------------|--------------------|--------|--------------|------------------|---------------------|----------------------------------------------|
| Wet Chemistry (Contin                                            | nued)           |            |                                                                |                    |        |              |                  |                     |                                              |
| Batch: B8K2915<br>Blank (B8K2915-BLK1)<br>Total Suspended Solids | < 0.9           | mg/L       |                                                                |                    |        |              | 11/29/2018       | ALD                 | U                                            |
| LCS (B8K2915-BS1)<br>Total Suspended Solids                      |                 |            | 93.2                                                           | 90-110             |        | A            | 11/29/2018       | ALD                 |                                              |
| Duplicate (B8K2915-DUP1)<br>Total Suspended Solids               | Source ID: 8BB  | 0755-02    |                                                                |                    | 4.47   | 20           | 11/29/2018       | ALD                 |                                              |
| Batch: B8K3001<br>Blank (B8K3001-BLK1)<br>Ammonia, as N          | < 0.035         | mg/L       |                                                                |                    |        |              | 11/30/2018       | ASM                 | U                                            |
| LCS (B8K3001-BS1)<br>Ammonia, as N                               |                 |            | 101                                                            | 90-110             |        |              | 11/30/2018       | ASM                 |                                              |
| Duplicate (B8K3001-DUP1)<br>Ammonia, as N                        | Source ID: 8WE  | 0727-05    |                                                                |                    | 0.866  | 10           | 11/30/2018       | ASM                 | ***                                          |
| Duplicate (B8K3001-DUP2)<br>Ammonia, as N                        | Source ID: 8LS0 | )420-05    | ***************                                                |                    | 0.789  | 10           | 11/30/2018       | ASM                 |                                              |
| Matrix Spike (B8K3001-MS1)<br>Ammonia, as N                      | Source ID: 8W   | /B0727-05  | 104                                                            | 80-120             |        |              | 11/30/2018       | ASM                 |                                              |
| Matrix Spike (B8K3001-MS2)<br>Ammonia, as N                      | Source ID: 8L   | S0420-05   | 116                                                            | 80-120             |        |              | 11/30/2018       | ASM                 |                                              |
| Matrix Spike Dup (B8K3001-I<br>Ammonia, as N                     | MSD1) Source    | ID: 8WB07  | 27-05<br>104                                                   | 80-120             | 0.0542 | 10           | 11/30/2018       | ASM                 |                                              |
| Matrix Spike Dup (B8K3001-I<br>Ammonia, as N                     | MSD2) Source    | ID: 8LS042 | 0-05<br>110                                                    | 80-120             | 3.88   | 10           | 11/30/2018       | ASM                 |                                              |
| Batch: B8L1002<br>Blank (B8L1002-BLK1)<br>Nitrate-Nitrite, as N  | < 0.02          | mg/L       |                                                                |                    |        |              | 12/10/2018       | SMC                 | U                                            |
| LCS (B8L1002-BS1)<br>Nitrate-Nitrite, as N                       |                 |            | 96.4                                                           | 90-110             |        |              | 12/10/2018       | SMC                 |                                              |
| LCS (B8L1002-BS2)<br>Nitrate-Nitrite, as N                       |                 |            | 103                                                            | 90-110             |        |              | 12/10/2018       | SMC                 |                                              |
| Duplicate (B8L1002-DUP1)<br>Nitrate-Nitrite, as N                | Source ID: 8AC  | 093-02     |                                                                |                    | 0.281  | 10           | 12/10/2018       | SMC                 |                                              |
| Duplicate (B8L1002-DUP2)<br>Nitrate-Nitrite, as N                | Source ID: 8BB0 | 778-02     |                                                                |                    | 0.0703 | 10           | 12/10/2018       | SMC                 | линин на |
| Matrix Spike (B8L1002-MS2)<br>Nitrate-Nitrite, as N              | Source ID: 8BI  | 30778-02   | 92.1                                                           | 90-110             |        |              | 12/10/2018       | SMC                 |                                              |
| Matrix Spike (B8L1002-MS3)<br>Nitrate-Nitrite, as N              | Source ID: 8B   | 30732-01RE | E1<br>96.4                                                     | 90-110             |        |              | 12/10/2018       | SMC                 |                                              |
| Matrix Spike (B8L1002-MS4)<br>Nitrate-Nitrite, as N              | Source ID: 8A0  | 0093-02    | 99.9                                                           | 90-110             |        |              | 12/10/2018       | SMC                 |                                              |
|                                                                  |                 |            | this the data the the set carrange and the carrangement of the |                    |        |              |                  |                     |                                              |

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety



| Analyte Name                                                   | Method<br>Blank | Units       | %<br>Recovery                              | Recovery<br>Limits                       | RPD    | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|----------------------------------------------------------------|-----------------|-------------|--------------------------------------------|------------------------------------------|--------|--------------|------------------|---------------------|-----------|
| Wet Chemistry (Continued)                                      |                 |             |                                            |                                          |        |              |                  | -                   |           |
|                                                                | rce ID: 8B      | B0769-02    | 101                                        | 00.440                                   |        |              | 10/10/00/10      | 0140                |           |
| Nitrate-Nitrite, as N<br>Matrix Spike Dup (B8L1002-MSD2)       | Sourco          | ID: 8BB0778 | 104                                        | 90-110                                   |        |              | 12/10/2018       | SMC                 |           |
| Nitrate-Nitrite, as N                                          | Source          |             | 93.4                                       | 90-110                                   | 0.553  | 10           | 12/10/2018       | SMC                 |           |
| Matrix Spike Dup (B8L1002-MSD4)<br>Nitrate-Nitrite, as N       | Source          | ID: 8AC009  | 3-02<br>101                                | 90-110                                   | 0.456  | 10           | 12/10/2018       | SMC                 |           |
| Batch: B8L1004<br>Blank (B8L1004-BLK1)<br>TKN                  | < 0.13          | mg/L        |                                            | na an a |        |              | 12/11/2018       | LRF                 | U         |
| LCS (B8L1004-BS1)<br>TKN                                       |                 |             | 92.3                                       | 80-120                                   |        |              | 12/11/2018       | LRF                 |           |
| Duplicate (B8L1004-DUP1) Source<br>TKN                         | e ID: 8LS(      | )420-01     | 941 9799 97 197 197 197 197 197 197 197 19 |                                          | 4.52   | 20           | 12/11/2018       | LRF                 | D         |
| Duplicate (B8L1004-DUP2) Source                                | e ID: 8AC       | 0094-01     |                                            |                                          | 13.3   | 20           | 12/11/2018       | LRF                 |           |
| Matrix Spike (B8L1004-MS1) Sour<br>TKN                         | rce ID: 8L      | S0420-01    | 95.0                                       | 80-120                                   |        |              | 12/11/2018       | LRF                 | D         |
| Matrix Spike (B8L1004-MS2) Sour<br>TKN                         | rce ID: 8A      | C0094-01    | 102                                        | 80-120                                   |        |              | 12/11/2018       | LRF                 |           |
| Matrix Spike Dup (B8L1004-MSD1)<br>TKN                         | Source          | ID: 8LS0420 | )-01<br>96.6                               | 80-120                                   | 1.21   | 20           | 12/11/2018       | LRF                 | D         |
| Matrix Spike Dup (B8L1004-MSD2)<br>TKN                         | Source          | ID: 8AC009  | 4-01<br>98.3                               | 80-120                                   | 2.48   | 20           | 12/11/2018       | LRF                 |           |
| Dissolved Wet Chemistry                                        |                 |             |                                            |                                          |        |              |                  |                     |           |
| Batch: B8K2907<br>Blank (B8K2907-BLK1)<br>Orthophosphate, as P | < 0.002         | mg/L        |                                            |                                          |        |              | 11/29/2018       | SMC                 | U         |
| LCS (B8K2907-BS1)<br>Orthophosphate, as P                      |                 |             | 94.3                                       | 90-110                                   |        | ************ | 11/29/2018       | SMC                 |           |
| Duplicate (B8K2907-DUP1) Source<br>Orthophosphate, as P        | e ID: 8AC       | 0093-02     |                                            |                                          | 0.0699 | 10           | 11/29/2018       | SMC                 |           |
| Matrix Spike (B8K2907-MS1) Sou<br>Orthophosphate, as P         | rce ID: 8A      | C0093-02    | 100                                        | 90-110                                   |        |              | 11/29/2018       | SMC                 |           |
| Matrix Spike Dup (B8K2907-MSD1)<br>Orthophosphate, as P        | Source          | ID: 8AC009  | 3-02<br>101                                | 90-110                                   | 0.262  | 10           | 11/29/2018       | SMC                 |           |



| Analyte Name                          | Method<br>Blank | Units                                                         | %<br>Recovery | Recovery<br>Limits                       | RPD   | RPD<br>Limit                             | Date<br>Analyzed                       | Analyst<br>Initials                                    | Qualifier                              |
|---------------------------------------|-----------------|---------------------------------------------------------------|---------------|------------------------------------------|-------|------------------------------------------|----------------------------------------|--------------------------------------------------------|----------------------------------------|
| Total Metals                          |                 |                                                               |               |                                          |       |                                          |                                        |                                                        |                                        |
| Batch: B8K2818                        |                 |                                                               |               |                                          |       |                                          |                                        |                                                        |                                        |
| Blank (B8K2818-BLK1)                  |                 |                                                               |               |                                          |       |                                          |                                        |                                                        |                                        |
| Mercury                               | < 0.00471       | ug/L                                                          |               |                                          |       |                                          | 11/30/2018                             | SAS                                                    | U                                      |
|                                       |                 | - 0. –                                                        |               |                                          |       | P IP IP IP IP I P IP IP IP IP IP IP IP I |                                        | 0/10                                                   | -                                      |
| LCS (B8K2818-BS1)<br>Mercury          |                 |                                                               | 99.8          | 85-115                                   |       |                                          | 11/30/2018                             | SAS                                                    |                                        |
| Duplicate (B8K2818-DUP1)<br>Mercury   | Source ID: 8BB  | 0732-01                                                       |               |                                          | 13.6  | 20                                       | 11/30/2018                             | SAS                                                    | D                                      |
| Matrix Spike (B8K2818-MS1)<br>Mercury | Source ID: 8B   | B0732-01                                                      | 94.9          | 70-130                                   |       |                                          | 11/30/2018                             | SAS                                                    | D                                      |
| Matrix Spike Dup (B8K2818-M           | SD1) Source     | ID: 8BB073                                                    | 32-01         |                                          |       |                                          |                                        | NER LEPTOR OF LEFT ARE VEHICLE THE LEFT ARE UNIT AND A |                                        |
| Mercury                               |                 |                                                               | 95.6          | 70-130                                   | 0.651 | 20                                       | 11/30/2018                             | SAS                                                    | D                                      |
| Batch: B8K2920                        |                 | Lunan                                                         |               |                                          |       |                                          |                                        |                                                        |                                        |
| Blank (B8K2920-BLK1)                  |                 |                                                               |               |                                          |       |                                          |                                        |                                                        |                                        |
| Arsenic                               | < 5.72          | ug/L                                                          |               |                                          |       |                                          | 11/30/2018                             | EDM                                                    | U                                      |
| Calcium                               | < 0.05          | mg/L                                                          |               |                                          |       |                                          | 11/30/2018                             | EDM                                                    | U                                      |
| Lead                                  | < 6.94          | ug/L                                                          |               |                                          |       |                                          | 11/30/2018                             | EDM                                                    | U                                      |
| Magnesium                             | < 50            | ug/L                                                          |               |                                          |       |                                          | 11/30/2018                             | EDM                                                    | U                                      |
| Phosphorus as P                       | < 0.006         | mg/L                                                          |               |                                          |       |                                          | 11/30/2018                             | EDM                                                    | U                                      |
| Hardness                              | < 1             | mg/L                                                          |               |                                          |       |                                          | 11/30/2018                             | EDM                                                    | U                                      |
| LCS (B8K2920-BS1)                     |                 | 411-4, <del>ye</del> r yer yer yer yer yer yer yer yer yer ye |               |                                          |       |                                          | ······································ |                                                        |                                        |
| Arsenic                               |                 |                                                               | 106           | 85-115                                   |       |                                          | 11/30/2018                             | EDM                                                    |                                        |
| Calcium                               |                 |                                                               | 96.5          | 85-115                                   |       |                                          | 11/30/2018                             | EDM                                                    |                                        |
| Lead                                  |                 |                                                               | 106           | 85-115                                   |       |                                          | 11/30/2018                             | EDM                                                    |                                        |
| Magnesium                             |                 |                                                               | 103           | 85-115                                   |       |                                          | 11/30/2018                             | EDM                                                    |                                        |
| Phosphorus as P                       |                 |                                                               | 109           | 85-115                                   |       |                                          | 11/30/2018                             | EDM                                                    |                                        |
| ,                                     | Source ID: 8AC  | 0093-02                                                       |               |                                          |       |                                          |                                        |                                                        | *****                                  |
| Arsenic                               |                 |                                                               |               |                                          | NR    | 20                                       | 11/30/2018                             | EDM                                                    | U                                      |
| Calcium                               |                 |                                                               |               |                                          | 0.737 | 20                                       | 11/30/2018                             | EDM                                                    |                                        |
| Lead                                  |                 |                                                               |               |                                          | 4.55  | 20                                       | 11/30/2018                             | EDM                                                    |                                        |
| Magnesium                             |                 |                                                               |               |                                          | 0.520 | 20                                       | 11/30/2018                             | EDM                                                    |                                        |
| Phosphorus as P                       |                 |                                                               |               |                                          | 0.805 | 20                                       | 11/30/2018                             | EDM                                                    |                                        |
| Hardness                              |                 | 10.14.14.14.19.14.19.19.19.19.19.19.19.19.19.19.19.19.19.     |               | 19199-1011919919919191919191919191919191 | 0.678 | 200                                      | 11/30/2018                             | EDM                                                    |                                        |
| Matrix Spike (B8K2920-MS1)            | Source ID: 8A   | C0093-02                                                      |               |                                          |       |                                          |                                        |                                                        |                                        |
| Arsenic                               |                 |                                                               | 110           | 70-130                                   |       |                                          | 11/30/2018                             | EDM                                                    |                                        |
| Calcium                               |                 |                                                               | 97.2          | 70-130                                   |       |                                          | 11/30/2018                             | EDM                                                    |                                        |
| Lead                                  |                 |                                                               | 104           | 70-130                                   |       |                                          | 11/30/2018                             | EDM                                                    |                                        |
| Magnesium                             |                 |                                                               | 104           | 70-130                                   |       |                                          | 11/30/2018                             | EDM                                                    |                                        |
| Phosphorus as P                       |                 |                                                               | 110           | 70-130                                   |       |                                          | 11/30/2018                             | EDM                                                    | 01000000000000000000000000000000000000 |
| Matrix Spike Dup (B8K2920-M           | SD1) Source     | ID: 8AC009                                                    |               |                                          |       |                                          |                                        |                                                        |                                        |
| Arsenic                               |                 |                                                               | 109           | 70-130                                   | 0.873 | 20                                       | 11/30/2018                             | EDM                                                    |                                        |
| Calcium                               |                 |                                                               | 97.9          | 70-130                                   | 0.646 | 20                                       | 11/30/2018                             | EDM                                                    |                                        |
| Lead                                  |                 |                                                               | 105           | 70-130                                   | 0.660 | 20                                       | 11/30/2018                             | EDM                                                    |                                        |
| Magnesium<br>Phoephorus on P          |                 |                                                               | 104           | 70-130                                   | 0.128 | 20                                       | 11/30/2018                             | EDM                                                    |                                        |
| Phosphorus as P                       |                 |                                                               | 111           | 70-130                                   | 0.524 | 20                                       | 11/30/2018                             | EDM                                                    |                                        |



| Analyte Name                                      | Method<br>Blank | Units      | %<br>Recovery         | Recovery<br>Limits | RPD   | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|---------------------------------------------------|-----------------|------------|-----------------------|--------------------|-------|--------------|------------------|---------------------|-----------|
| Total Metals (Continued)                          |                 |            |                       |                    |       |              |                  |                     |           |
| Batch: B8L0515<br>Blank (B8L0515-BLK1)<br>Cadmium | < 1             | ug/L       |                       |                    |       |              | 12/06/2018       | AMO                 | U         |
| LCS (B8L0515-BS1)<br>Cadmium                      |                 |            | 99.6                  | 85-115             |       |              | 12/06/2018       | AMO                 |           |
| Duplicate (B8L0515-DUP1) Sour                     | rce ID: 8BB     | 0769-02    |                       |                    | NR    | 20           | 12/06/2018       | AMO                 | U         |
| Matrix Spike (B8L0515-MS1) So<br>Cadmium          | ource ID: 8B    | B0769-02   | 94.9                  | 70-130             | ***** |              | 12/06/2018       | AMO                 |           |
| Matrix Spike Dup (B8L0515-MSD1<br>Cadmium         | ) Source        | ID: 8BB076 | 9 <b>-</b> 02<br>94.5 | 70-130             | 0.358 | 20           | 12/06/2018       | AMO                 |           |
|                                                   |                 |            |                       |                    |       |              |                  |                     |           |



| Analyte Name                   | Method<br>Blank | Units       | %<br>Recovery | Recovery<br>Limits | RPD       | RPD<br>Limit                           | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|--------------------------------|-----------------|-------------|---------------|--------------------|-----------|----------------------------------------|------------------|---------------------|-----------|
| Dissolved Metals               |                 |             |               |                    |           |                                        |                  |                     |           |
| Batch: B8L0320                 |                 |             |               |                    |           |                                        |                  |                     |           |
| Blank (B8L0320-BLK1)           |                 |             |               |                    |           |                                        |                  |                     |           |
| Copper                         | < 10            | ug/L        |               |                    |           |                                        | 12/03/2018       | EDM                 | U         |
| Lead                           | < 6.94          | ug/L        |               |                    |           |                                        | 12/03/2018       | EDM                 | Ŭ         |
| Zinc                           | < 10            | ug/L        |               |                    |           |                                        | 12/03/2018       | EDM                 | Ŭ         |
| LCS (B8L0320-BS1)              |                 |             |               |                    |           |                                        |                  |                     |           |
| Copper                         |                 |             | 98.7          | 85-115             |           |                                        | 12/03/2018       | EDM                 |           |
| Lead                           |                 |             | 108           | 85-115             |           |                                        | 12/03/2018       | EDM                 |           |
| Zinc                           |                 |             | 108           | 85-115             |           |                                        | 12/03/2018       | EDM                 |           |
| Duplicate (B8L0320-DUP1) Sou   | rce ID: 8AC     | 0093-03     |               |                    |           |                                        |                  |                     |           |
| Copper                         |                 |             |               |                    | NR        | 10                                     | 12/03/2018       | EDM                 | U         |
| Lead                           |                 |             |               |                    | NR        | 10                                     | 12/03/2018       | EDM                 | U         |
| Zinc                           |                 |             |               |                    | 0.269     | 10                                     | 12/03/2018       | EDM                 |           |
|                                | ource ID: 8A    | C0093-03    |               |                    |           | 99 99 99 99 99 99 99 99 99 99 99 99 99 |                  |                     |           |
| Copper                         |                 |             | 112           | 70-130             |           |                                        | 12/03/2018       | EDM                 |           |
| Lead                           |                 |             | 102           | 70-130             |           |                                        | 12/03/2018       | EDM                 |           |
| Zinc                           |                 |             | 107           | 70-130             |           |                                        | 12/03/2018       | EDM                 |           |
| Matrix Spike Dup (B8L0320-MSD1 | ) Source        | ID: 8AC009  |               |                    |           |                                        |                  |                     |           |
| Copper                         |                 |             | 109           | 70-130             | 2.86      | 10                                     | 12/03/2018       | EDM                 |           |
| Lead                           |                 |             | 102           | 70-130             | 0.119     | 10                                     | 12/03/2018       | EDM                 |           |
| Zinc                           |                 | 1)+D/10)+41 | 106           | 70-130             | 0.215     | 10                                     | 12/03/2018       | EDM                 |           |
| Batch: B8L0621                 |                 |             |               |                    |           |                                        |                  |                     |           |
| Blank (B8L0621-BLK1)           |                 |             |               |                    |           |                                        |                  |                     |           |
| Cadmium                        | < 1             | ug/L        |               |                    |           |                                        | 12/06/2018       | AMO                 | U         |
| LCS (B8L0621-BS1)              |                 |             |               |                    |           |                                        |                  |                     |           |
| Cadmium                        |                 |             | 103           | 85-115             |           |                                        | 12/06/2018       | AMO                 |           |
| Duplicate (B8L0621-DUP1) Sou   | rce ID: 8AC     | 094-01RE    | 1             |                    | ********* |                                        |                  | *****               |           |
| Cadmium                        |                 |             |               |                    | NR        | 10                                     | 12/06/2018       | AMO                 | U         |
| Matrix Spike (B8L0621-MS1) So  | urce ID: 8A     | C0094-01R   | E1            |                    |           |                                        |                  |                     |           |
| Cadmium                        |                 |             | 90.2          | 70-130             |           |                                        | 12/06/2018       | AMO                 |           |
| Matrix Spike Dup (B8L0621-MSD1 | ) Source        | ID: 8AC009  | 4-01RE1       |                    |           |                                        |                  |                     |           |
| Cadmium                        |                 |             |               | 70-130             | 1.43      |                                        |                  |                     |           |



### **Notes and Definitions**

| ltem    | Definition                                                                                                                     |
|---------|--------------------------------------------------------------------------------------------------------------------------------|
| D       | Data reported from a dilution                                                                                                  |
| M-06    | The reported result has been confirmed by reanalysis.                                                                          |
| Seed-01 | The seed depletion is greater than that recommended by the method. The LCS is acceptable showing the seed supports the method. |
| U       | Analyte included in the analysis, but not detected                                                                             |

#### Method Reference Acronyms

| Colilert | Colilert, IDEXX Laboratories, Inc.                                 |
|----------|--------------------------------------------------------------------|
| EPA      | Manual of Methods for Chemical Analysis of Water and Wastes, USEPA |
| GS       | USGS Techniques of Water-Resources Investigations                  |
| HH       | Hach Spectrophotometer Procedures Manual                           |
| SM       | Standard Methods for the Examination of Water and Wastewater       |
| SW       | Test methods for Evaluating Solid Waste, SW-846                    |
|          |                                                                    |

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Heather Rankin QA/QC Coordinator

| AL ALL DURING THE OWNER |    |
|-------------------------|----|
|                         | ი  |
|                         | 8  |
|                         | 5  |
|                         | Ā  |
|                         | 20 |

| -          |
|------------|
| 1          |
|            |
| 1          |
| 1          |
| 1          |
| 1          |
| -          |
| 1          |
|            |
|            |
|            |
| 1          |
| 1          |
|            |
| - F        |
|            |
| - F        |
|            |
| 1          |
| 1          |
| 1          |
|            |
| I          |
|            |
|            |
|            |
| -          |
| 1          |
| Ŧ          |
| 1          |
| 1          |
| 1          |
|            |
| <u>c</u>   |
| ~          |
| وب ا       |
|            |
| 1.5        |
| - <b>S</b> |
|            |
|            |
|            |
| Т. С.      |
| ੋਰੇ        |
| ক্র        |
|            |
| ~          |
|            |
| - 11       |
|            |
| ື          |
| 0          |
| y y        |
| - C3       |
|            |
|            |

| Ada County Highway District                                                             | y Highv                    | vay Dis     | trict                                   |                                        |                                                                     |                  |              | 4                 | _                                  |                                                      |                |                 |                   |                      |                   |                                  |                             |                  |
|-----------------------------------------------------------------------------------------|----------------------------|-------------|-----------------------------------------|----------------------------------------|---------------------------------------------------------------------|------------------|--------------|-------------------|------------------------------------|------------------------------------------------------|----------------|-----------------|-------------------|----------------------|-------------------|----------------------------------|-----------------------------|------------------|
| Attn: Monica Lowe<br>3775 Adams Street<br>Garden City, Idaho 83714–6418                 | -owe<br>Street<br>daho 837 | '14–6418    |                                         |                                        |                                                                     | _                | Matrix       | Type              | -                                  |                                                      | -              | -               |                   |                      |                   |                                  |                             |                  |
| Tel. (208) 387–6255<br>Fax (208) 387–6391<br>Purchase Order:<br>Project:<br>Sampler(s): | 6255<br>6391<br>er:        |             | 63046445<br>Stormwater-PI<br>Andy Certs | 45<br>ater-PI<br>Carlson               |                                                                     |                  |              |                   |                                    |                                                      | P-DK01         |                 |                   |                      | r.08              |                                  |                             |                  |
| Lab#                                                                                    | Begin<br>Date              | End<br>Date | Begin<br>Time                           | End<br>Time                            | Sample Identification                                               | Sampler Initials | Water        | Grab<br>Composite | COD - Hsch 8000<br>BOD* - SM 52101 | TDS - SM 2540 C                                      | TP - EPA 200.7 | - ethophosphate | Total As. Cd. Pb. | Total Ho - EPA C     | r A93 - vfibidiuT | Hardness - SM2:<br>A93- ,003+000 | N 0097 WS - <sup>8</sup> HN | Total Containers |
|                                                                                         | 11/20/18 11/28/15 2142     | 11/28/15    | 2142                                    | -Sako                                  | 181127 - 03- WC                                                     | ARC              | R            | 2                 | メメ                                 | XX                                                   | X<br>X         | XX              | ×                 | X                    | X                 | X<br>X                           | X                           | _                |
|                                                                                         | 11-21 81/84/11 81/2×11     | 1/28/18     | IHAI                                    | 16.00                                  | K1127 - 12 - WC                                                     | ABC              | R            | Q                 | X<br>X                             | х<br>Х                                               | X<br>X         | 2<br>X          | X                 | x                    | ×.                | ×<br>بر                          | X                           | ~                |
| 1 1                                                                                     | 14/27/18 11/28/18          | 11/28/18    | 1700                                    | SHPO                                   | 18/177- 14 - UC                                                     | 48.0             | Q            | ×                 | X<br>X                             | ×<br>×                                               | X<br>X         | 2<br>X          | X                 | X                    | ×                 | ×<br>بر                          | ų                           | _                |
|                                                                                         |                            |             |                                         |                                        |                                                                     |                  |              |                   |                                    |                                                      |                |                 |                   |                      |                   |                                  |                             |                  |
|                                                                                         |                            |             |                                         |                                        |                                                                     |                  |              |                   |                                    |                                                      |                |                 |                   |                      |                   |                                  |                             | -                |
| Relinqui                                                                                | Relinquished by (sign)     | (sign)      | Date & Transfe<br>11/28/14              | Date & Time<br>Transferred<br>Ø/K 1325 | Time Received by (sign)<br>erred 11-28-18<br>1327 Opur Odd 11-28-18 |                  | 17 not do 70 | not evoryh        |                                    | Comments/Special Instructions:<br>Ualum & ANY Scuffe | Spec           | al lus          | S S               | ructions:<br>Senfle, |                   | please                           |                             |                  |
|                                                                                         | -                          |             |                                         |                                        |                                                                     |                  |              |                   |                                    |                                                      |                |                 |                   |                      |                   |                                  | 10/18                       |                  |

.



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## Samples in this Report

| Lab ID     | Sample | Sample Description | Matrix Qualifiers | Date Sampled | Date Received |
|------------|--------|--------------------|-------------------|--------------|---------------|
| 9AC0002-01 | ACST1B | 190202-03-WG       | Water             | 02/02/2019   | 02/03/2019    |
| 9AC0002-02 | ACST1B | 190202-11-WG       | Water             | 02/02/2019   | 02/03/2019    |
| 9AC0002-03 | ACST1B | 190202-11-001      | Water             | 02/02/2019   | 02/03/2019    |
| 9AC0002-04 | ACST1B | 190202-11-101      | Water             | 02/02/2019   | 02/03/2019    |
| 9AC0002-05 | ACST1B | 190202-12-WG       | Water             | 02/02/2019   | 02/03/2019    |
| 9AC0002-06 | ACST1B | 190202-14-WG       | Water             | 02/02/2019   | 02/03/2019    |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1       | IB         |           |                   |               | Location Description:        | 190202-03         | I-WG             |                     |      |
|----------------------------------|-------------|------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collecte               | ed: 02/02/2 | 2019 20:07 |           |                   |               |                              |                   |                  |                     |      |
| Lab Number:                      | 9AC00       | 02-01      |           |                   |               | Sample Collector:            | ABW               |                  |                     |      |
| Sample Type:                     | Grab        |            |           |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9B0413     | 461.1 M    | PN/100 mL | . 1.0             | 1.0           | Colilert                     | 02/03/19<br>07:15 | 2/4/19 7:15      | JJR                 | н    |
| Wet Chemistry<br>Chlorine Screen | B9B0414     | Absent     |           |                   |               | SM 4500-CL G-2000<br>mod     | 02/03/19          | 2/3/19 6:08      | JJR                 |      |

•



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1       | -          |            |                   |               | Location Description:        | 190202-11         | -WG            |      |                     |      |
|----------------------------------|-------------|------------|------------|-------------------|---------------|------------------------------|-------------------|----------------|------|---------------------|------|
| Date/Time Collect                | ed: 02/02/2 | 2019 20:48 | 3          |                   |               |                              |                   |                |      |                     |      |
| Lab Number:                      | 9AC00       | 02-02      |            |                   |               | Sample Collector:            | ABW               |                |      |                     |      |
| Sample Type:                     | Grab        |            |            |                   |               | Sample Matrix:               | Water             |                |      |                     |      |
| Analyte Name                     | Batch       | Result     | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analys<br>Time |      | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9B0413     | 1553.1 M   | IPN/100 mL | . 1.0             | 1.0           | Colilert                     | 02/03/19<br>07:15 | 2/4/19         | 7:15 | JJR                 | н    |
| Wet Chemistry<br>Chlorine Screen | B9B0414     | Absent     |            |                   |               | SM 4500-CL G-2000<br>mod     | 02/03/19          | 2/3/19 6       | 6:13 | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1       | IB         |                     |                   |               | Location Description:        | 190202-11         | -001             |                     |      |
|----------------------------------|-------------|------------|---------------------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collect                | ed: 02/02/2 | 2019 12:00 | )                   |                   |               |                              |                   |                  |                     |      |
| Lab Number:                      | 9AC00       | 02-03      |                     |                   |               | Sample Collector:            | ABW               |                  |                     |      |
| Sample Type:                     | Grab        |            |                     |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units               | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9B0413     | <1.0 M     | I <b>PN</b> /100 mL | . 1.0             | 1.0           | Colilert                     | 02/03/19<br>07:15 | 2/4/19 7:15      | JJR                 | ΗU   |
| Wet Chemistry<br>Chlorine Screen | B9B0414     | Absent     |                     |                   |               | SM 4500-CL G-2000<br>mod     | 02/03/19          | 2/3/19 6:08      | JJR                 |      |

.



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1       | 1B         |           |                   |               | Location Description:        | 190202-11         | -101             |                     |      |
|----------------------------------|-------------|------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collect                | ed: 02/02/2 | 2019 12:01 |           |                   |               |                              |                   |                  |                     |      |
| Lab Number:                      | 9AC00       | 02-04      |           |                   |               | Sample Collector:            | ABW               |                  |                     |      |
| Sample Type:                     | Grab        |            |           |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9B0413     | 1986.3 M   | PN/100 mL | . 1.0             | 1.0           | Colilert                     | 02/03/19<br>07:15 | 2/4/19 7:15      | JJR                 | н    |
| Wet Chemistry<br>Chlorine Screen | B9B0414     | Absent     |           |                   |               | SM 4500-CL G-2000<br>mod     | 02/03/19          | 2/3/19 6:08      | JJR                 |      |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1       | IB         |            |                   |               | Location Description:        | 190202-12         | 2-WG             |         |      |
|----------------------------------|-------------|------------|------------|-------------------|---------------|------------------------------|-------------------|------------------|---------|------|
| Date/Time Collected              | ed: 02/02/2 | 2019 20:06 | 5          |                   |               |                              |                   |                  |         |      |
| Lab Number:                      | 9AC00       | 02-05      |            |                   |               | Sample Collector:            | ABC               |                  |         |      |
| Sample Type:                     | Grab        |            |            |                   |               | Sample Matrix:               | Water             |                  |         |      |
| Analyte Name                     | Batch       | Result     | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst | Qual |
| Microbiology<br>E. Coli          | B9B0413     | 235.9 M    | IPN/100 mL | . 1.0             | 1.0           | Colilert                     | 02/03/19<br>07:15 | 2/4/19 7:1       | 15 JJR  | н    |
| Wet Chemistry<br>Chlorine Screen | B9B0414     | Absent     |            |                   |               | SM 4500-CL G-2000<br>mod     | 02/03/19          | 2/3/19 6:1       | I3 JJR  |      |

ç



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

## **Analysis Report**

| Location:                        | ACST1       | IB         |           |                   |                 | Location Description:        | 190202-14         | I-WG             |                     |      |
|----------------------------------|-------------|------------|-----------|-------------------|-----------------|------------------------------|-------------------|------------------|---------------------|------|
| Date/Time Collect                | ed: 02/02/2 | 2019 20:30 | )         |                   |                 |                              |                   |                  |                     |      |
| Lab Number:                      | 9AC00       | 02-06      |           |                   |                 | Sample Collector:            | ABC               |                  |                     |      |
| Sample Type:                     | Grab        |            |           |                   |                 | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch       | Result     | Units     | Adjusted<br>MDL * | l Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9B0413     | 609.0 M    | PN/100 mL | . 10.0            | 1.0             | Colilert                     | 02/03/19<br>07:15 | 2/4/19 7:15      | JJR                 | НD   |
| Wet Chemistry<br>Chlorine Screen | B9B0414     | Absent     |           |                   |                 | SM 4500-CL G-2000<br>mod     | 02/03/19          | 2/3/19 6:13      | JJR                 |      |



## **Quality Control Report**

| Analyte Name                                      | Method<br>Blank Un | its Recovery | Recovery<br>Limits | RPD  | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifie |
|---------------------------------------------------|--------------------|--------------|--------------------|------|--------------|------------------|---------------------|----------|
| Microbiology                                      |                    |              |                    |      |              |                  |                     |          |
| Batch: B9B0413<br>Blank (B9B0413-BLK1)<br>E. Coli | Absent             |              |                    |      |              | 02/04/2019       | JJR                 |          |
| L. CON                                            | Absent             |              |                    |      |              | 02/04/2013       |                     |          |
| LCS (B9B0413-BS1)<br>E. Coli                      |                    |              | Present            |      |              | 02/04/2019       | JJR                 |          |
| Duplicate (B9B0413-DUP1)<br>E. Coli               | Source ID: 9AC0002 | 2-02         |                    | 1300 | 128          | 02/04/2019       | JJR                 |          |



#### **Notes and Definitions**

| ltem | Definition                    |  |
|------|-------------------------------|--|
| D    | Data reported from a dilution |  |
| н    | Hold time Exceeded.           |  |

U Analyte included in the analysis, but not detected

#### **Method Reference Acronyms**

- Colilert Colilert, IDEXX Laboratories, Inc.
- EPA Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
- GS USGS Techniques of Water-Resources Investigations
- HH Hach Spectrophotometer Procedures Manual
- SM Standard Methods for the Examination of Water and Wastewater
- SW Test methods for Evaluating Solid Waste, SW-846

Janet Finegan-Kelly

Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

| Ada County Highway District                                                                                                                  | Highwa<br>we                    | ay Dis      | trict                                         |             |                       | L              | Mạtrix | Type | _                    |                                |              |                                 |                                |                                  |              |                                                                                                                 |                |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|-----------------------------------------------|-------------|-----------------------|----------------|--------|------|----------------------|--------------------------------|--------------|---------------------------------|--------------------------------|----------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|----------------|
| 3775 Adams Street<br>Garden City, Idaho 83714–6418<br>Tel. (208) 387–6255<br>Fax (208) 387–6391<br>Purchase Order<br>Project:<br>Sampler(s): | eet<br>tho 8371<br>2255<br>3391 | 4-6418      | 63046445<br>Stormwater-Pl<br>Andrea<br>Andrea | インシェ        | eorad<br>eigel        | sis            |        |      |                      | 0 0                            | ro.PAI-DK01  | ate - EPA 200.7<br>Pb-EPA 200.7 | Pb. Zn - EPA 200.7<br>PA 245.2 |                                  | 2W2340 B     | Commission and the second s | ers &          |
| Lab#                                                                                                                                         | Begin<br>Date                   | End<br>Date | Begin<br>Time                                 | End<br>Time | Sample Identification | Sampler Initia | Water  | Grab | Composite<br>BOD SM5 | TDS - SM 254<br>TDS - SM 254   | TKN - Persto |                                 | Diss. Cd Cu.                   | E. Coli - IDE.<br>Turbidity - El | 8 - ssenbrah | 097 WS - 8HN                                                                                                    | Total Containe |
| 10-2000)                                                                                                                                     | 2/2                             | 61          | 2002                                          | N           | 190202-03-W6          | 480            | ×      | X    |                      |                                |              |                                 |                                | ×                                |              |                                                                                                                 | -              |
| Ŷ                                                                                                                                            | 2/2/                            | 61          | 2048                                          | X           |                       | ABD            | X      | X    |                      |                                |              |                                 |                                | ×                                |              |                                                                                                                 | ~              |
| 63                                                                                                                                           | 2/2                             | 119         | 12.00                                         | 0           | 190202-11-001         | der            | X      | X    |                      |                                | 1            |                                 |                                | X                                |              |                                                                                                                 | -              |
| Ho-                                                                                                                                          | 2/2/2                           | 61          | 120                                           |             | 1-1                   | ABW            | X      |      |                      |                                |              |                                 | ,                              | X                                |              |                                                                                                                 | ~              |
| N<br>S                                                                                                                                       | 2/2/                            | 13          | 2006                                          |             | 190202 - 12- WG       | ABC            | R      | ৪    |                      |                                |              |                                 |                                | X                                |              |                                                                                                                 |                |
| 00                                                                                                                                           | 2/2/1                           | 51          | 2630                                          |             | 196202 - 14- WG       | ABC            | প      | X    |                      |                                |              |                                 |                                | X                                |              |                                                                                                                 | _              |
|                                                                                                                                              |                                 |             |                                               |             |                       |                |        |      |                      |                                |              |                                 |                                |                                  |              |                                                                                                                 |                |
| Relinquished by (sign)                                                                                                                       | ed by (s                        | ign)        | Da                                            | Date & Time | Received by (sign)    |                |        |      | Com                  | Comments/Special Instructions: | Specia       | l Instr                         | nctio                          | ::                               |              |                                                                                                                 |                |
| C. C. C.                                                                                                                                     | - FR                            |             | 02/02/10                                      | 19 2112     | Mes C                 | 0000 -         |        |      |                      |                                |              |                                 |                                |                                  |              |                                                                                                                 |                |
| coc_wql-wy19pi                                                                                                                               | <b></b>                         |             |                                               |             |                       |                |        |      |                      | 9 AL 000 2                     | 8            |                                 |                                |                                  |              | 40/18                                                                                                           |                |



### Samples in this Report

| Lab ID     | Sample | Sample Description | Matrix | Qualifiers | Date Sampled | Date Received |
|------------|--------|--------------------|--------|------------|--------------|---------------|
| 9AC0003-01 | ACST1C | 190202-03-WC       | Water  |            | 02/02/2019   | 02/03/2019    |
| 9AC0003-02 | ACST1C | 190202-11-WC       | Water  |            | 02/03/2019   | 02/03/2019    |
| 9AC0003-03 | ACST1C | 190202-12-WC       | Water  |            | 02/02/2019   | 02/03/2019    |
| 9AC0003-04 | ACST1C | 190202-14-WC       | Water  |            | 02/03/2019   | 02/03/2019    |
|            |        |                    |        |            |              |               |

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety



## **Analysis Report**

| Location:               | ACST1      | C          |          |                   |               | Location Description:        | 190202-03        | B-WC             |                     |      |
|-------------------------|------------|------------|----------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|------|
| Date/Time Collected     | l: 02/02/2 | 2019 19:41 | - 02/02/ | 2019 23:58        |               |                              |                  |                  |                     |      |
| Lab Number:             | 9AC00      | 03-01      |          |                   |               | Sample Collector:            | ABC              |                  |                     |      |
| Sample Type:            | Compo      | osite      |          |                   |               | Sample Matrix:               | Water            |                  |                     |      |
| Analyte Name            | Batch      | Result     | Units    | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual |
| Wet Chemistry           |            |            |          |                   |               |                              |                  |                  |                     |      |
| Ammonia, as N           | B9B0807    | 0.355      | mg/L     | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 02/08/19         | 2/8/19 14:15     | BAK                 |      |
| BOD5                    | B9B0406    | 12.0       | mg/L     | 2.00              | 2.00          | SM 5210 B-2001               | 02/04/19         | 2/9/19 10:24     | ALN                 |      |
| COD                     | B9B0403    | 149        | mg/L     | 7.00              | 7.00          | HH 8000-1979                 | 02/04/19         | 2/4/19 10:15     | ASM                 |      |
| Nitrate-Nitrite, as N   | B9B2115    | 0.170      | mg/L     | 0.0250            | 0.0250        | EPA 353.2                    | 02/21/19         | 2/21/19 12:41    | JAL                 |      |
| TKN                     | B9B2505    | 2.88       | mg/L     | 0.130             | 0.130         | EPA 351.2                    | 02/25/19         | 2/26/19 9:20     | LRF                 |      |
| Total Dissolved Solids  | B9B0405    | 35.7       | mg/L     | 20.0              | 20.0          | SM 2540 C-1997               | 02/04/19         | 2/4/19 13:00     | CJP                 |      |
| Total Suspended Solids  | B9B0412    | 147        | mg/L     | 0.900             | 0.900         | SM 2540 D-1997               | 02/04/19         | 2/4/19 10:34     | KMŔ                 |      |
| Turbidity               | B9B0411    | 25.7       | NTU      | 0.3               | 0.3           | EPA180.1 R2.0 (1993)         | 02/04/19         | 2/4/19 10:11     | ALG                 |      |
| Dissolved Wet Ch        | emistry    |            |          |                   |               |                              |                  |                  |                     | 2    |
| Orthophosphate, as P    | B9B0402    | 0.0716     | mg/L     | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 02/04/19         | 2/4/19 10:08     | SMC                 |      |
| Total Metals            |            |            |          |                   |               |                              |                  |                  |                     |      |
| Mercury                 | B9B0419    | 0.0126     | ug/L     | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 02/05/19         | 2/6/19 9:01      | SAS                 |      |
| Arsenic                 | B9B0506    | <5.72      | ug/L     | 5.72              | 5.72          | EPA 200.7                    | 02/05/19         | 2/7/19 13:41     | EDM                 | U    |
| Cadmium                 | B9B0506    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 02/05/19         | 2/7/19 13:41     | EDM                 | U    |
| Calcium                 | B9B0506    | 4.43       | mg/L     | 0.0500            | 0.0500        | EPA 200.7                    | 02/05/19         | 2/7/19 13:41     | EDM                 |      |
| Lead                    | B9B0506    | <6.94      | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 02/05/19         | 2/7/19 13:41     | EDM                 | U    |
| Magnesium               | B9B0506    | 1490       | ug/L     | 50.0              | 50.0          | EPA 200.7                    | 02/05/19         | 2/7/19 13:41     | EDM                 |      |
| Phosphorus as P         | B9B0506    | 0.345      | mg/L     | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 02/05/19         | 2/7/19 13:41     | EDM                 |      |
| Hardness                | B9B0506    | 17.2       | mg/L     | 1.00              | 1.00          | EPA 200.7                    | 02/05/19         | 2/7/19 13:41     | EDM                 |      |
| <b>Dissolved Metals</b> |            |            |          |                   |               |                              |                  |                  |                     |      |
| Cadmium                 | B9B1114    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 02/11/19         | 2/11/19 15:02    | EDM                 | U    |
| Copper                  | B9B1114    | <10.0      | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 02/11/19         | 2/11/19 15:02    | EDM                 | U    |
| Lead                    | B9B1114    | <6.94      | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 02/11/19         | 2/11/19 15:02    | EDM                 | U    |
| Zinc                    | B9B1114    | 18.6       | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 02/11/19         | 2/11/19 15:02    | EDM                 |      |



## **Analysis Report**

| Location: ACST1C        |         |        |          |                   |                 | Location Description:        | 190202-11        |                  |                     |      |
|-------------------------|---------|--------|----------|-------------------|-----------------|------------------------------|------------------|------------------|---------------------|------|
| Date/Time Collecte      |         |        | - 02/03/ | 2019 00:24        | ļ               |                              |                  |                  |                     |      |
| Lab Number:             | 9AC00   |        |          |                   |                 | Sample Collector:            | ABC              |                  |                     |      |
| Sample Type:            | Compo   | osite  |          |                   |                 | Sample Matrix:               | Water            |                  |                     |      |
| Analyte Name            | Batch   | Result | Units    | Adjusted<br>MDL * | I Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual |
| Wet Chemistry           |         |        |          |                   |                 |                              |                  |                  |                     |      |
| Ammonia, as N           | B9B0807 | 0.371  | mg/L     | 0.0350            | 0.0350          | SM 4500-NH3 D-1997           | 02/08/19         | 2/8/19 14:23     | BAK                 |      |
| BOD5                    | B9B0406 | 16.2   | mg/L     | 2.00              | 2.00            | SM 5210 B-2001               | 02/04/19         | 2/9/19 10:31     | ALN                 |      |
| COD                     | B9B0403 | 173    | mg/L     | 7.00              | 7.00            | HH 8000-1979                 | 02/04/19         | 2/4/19 10:15     | ASM                 |      |
| Nitrate-Nitrite, as N   | B9B2115 | 0.232  | mg/L     | 0.0250            | 0.0250          | EPA 353.2                    | 02/21/19         | 2/21/19 12:46    | JAL                 |      |
| TKN                     | B9B2505 | 3.17   | mg/L     | 0.130             | 0.130           | EPA 351.2                    | 02/25/19         | 2/26/19 9:21     | LRF                 |      |
| Total Dissolved Solids  | B9B0405 | . 82.5 | mg/L     | 20.0              | 20.0            | SM 2540 C-1997               | 02/04/19         | 2/4/19 13:00     | CJP                 |      |
| Total Suspended Solids  | B9B0412 | 203    | mg/L     | 0.900             | 0.900           | SM 2540 D-1997               | 02/04/19         | 2/4/19 10:35     | KMR                 |      |
| Turbidity               | B9B0411 | 19.3   | NTU      | 0.3               | 0.3             | EPA180.1 R2.0 (1993)         | 02/04/19         | 2/4/19 10:35     | ALG                 |      |
| Dissolved Wet Ch        | emistry |        |          |                   |                 |                              |                  |                  |                     |      |
| Orthophosphate, as P    | B9B0402 | 0.165  | mg/L     | 2.00E-3           | 2.00E-3         | EPA 365.1                    | 02/04/19         | 2/4/19 10:09     | SMC                 |      |
| Total Metals            |         |        |          |                   |                 |                              |                  |                  |                     |      |
| Mercury                 | B9B0419 | 0.0263 | ug/L     | 4.71E-3           | 4.71E-3         | EPA 245.2                    | 02/05/19         | 2/6/19 9:35      | SAS                 |      |
| Arsenic                 | B9B0506 | <5.72  | ug/L     | 5.72              | 5.72            | EPA 200.7                    | 02/05/19         | 2/7/19 14:06     | EDM                 | U    |
| Cadmium                 | B9B0506 | <1.00  | ug/L     | 1.00              | 1.00            | EPA 200.7                    | 02/05/19         | 2/7/19 14:06     | EDM                 | U    |
| Calcium                 | B9B0506 | 7.45   | mg/L     | 0.0500            | 0.0500          | EPA 200.7                    | 02/05/19         | 2/7/19 14:06     | EDM                 |      |
| Lead                    | B9B0506 | 18.0   | ug/L     | 6.94              | 6.94            | EPA 200.7                    | 02/05/19         | 2/7/19 14:06     | EDM                 |      |
| Magnesium               | B9B0506 | 5110   | ug/L     | 50.0              | 50.0            | EPA 200.7                    | 02/05/19         | 2/7/19 14:06     | EDM                 |      |
| Phosphorus as P         | B9B0506 | 0.554  | mg/L     | 6.00E-3           | 6.00E-3         | EPA 200.7                    | 02/05/19         | 2/7/19 14:06     | EDM                 |      |
| Hardness                | B9B0506 | 39.6   | mg/L     | 1.00              | 1.00            | EPA 200.7                    | 02/05/19         | 2/7/19 14:06     | EDM                 |      |
| <b>Dissolved Metals</b> |         |        |          |                   |                 |                              |                  |                  |                     |      |
| Cadmium                 | B9B1114 | <1.00  | ug/L     | 1.00              | 1.00            | EPA 200.7                    | 02/11/19         | 2/11/19 14:47    | EDM                 | U    |
| Copper                  | B9B1114 | <10.0  | ug/L     | 10.0              | 10.0            | EPA 200.7                    | 02/11/19         | 2/11/19 14:47    | EDM                 | U    |
| Lead                    | B9B1114 | <6.94  | ug/L     | 6.94              | 6.94            | EPA 200.7                    | 02/11/19         | 2/11/19 14:47    | EDM                 | U    |
| Zinc                    | B9B1114 | 25.8   | ug/L     | 10.0              | 10.0            | EPA 200.7                    | 02/11/19         | 2/11/19 14:47    | EDM                 |      |



## **Analysis Report**

| Location: ACST1C        |            |            | Location Description: |                   |               |                              | 190202-12-WC     |                  |                     |      |  |
|-------------------------|------------|------------|-----------------------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|------|--|
| Date/Time Collected     | l: 02/02/2 | 2019 19:32 | - 02/02/              | 2019 21:19        |               |                              |                  |                  |                     |      |  |
| Lab Number:             | 9AC00      | 03-03      |                       |                   |               | Sample Collector:            | ABC              |                  |                     |      |  |
| Sample Type:            | Compo      | osite      |                       |                   |               | Sample Matrix:               | Water            |                  |                     |      |  |
| Analyte Name            | Batch      | Result     | Units                 | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual |  |
| Wet Chemistry           |            |            |                       |                   |               |                              |                  |                  |                     |      |  |
| Ammonia, as N           | B9B0807    | 0.471      | mg/L                  | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 02/08/19         | 2/8/19 14:36     | BAK                 |      |  |
| BOD5                    | B9B0406    | 10.5       | mg/L                  | 2.00              | 2.00          | SM 5210 B-2001               | 02/04/19         | 2/9/19 10:18     | ALN                 |      |  |
| COD                     | B9B0403    | 179        | mg/L                  | 7.00              | 7.00          | HH 8000-1979                 | 02/04/19         | 2/4/19 10:15     | ASM                 |      |  |
| Nitrate-Nitrite, as N   | B9B2115    | 0.153      | mg/L                  | 0.0250            | 0.0250        | EPA 353.2                    | 02/21/19         | 2/21/19 12:47    | JAL                 |      |  |
| TKN                     | B9B2505    | 2.50       | mg/L                  | 0.130             | 0.130         | EPA 351.2                    | 02/25/19         | 2/26/19 9:23     | LRF                 |      |  |
| Total Dissolved Solids  | B9B0405    | 72.0       | mg/L                  | 20.0              | 20.0          | SM 2540 C-1997               | 02/04/19         | 2/4/19 13:00     | CJP                 |      |  |
| Total Suspended Solids  | B9B0412    | 253        | mg/L                  | 0.900             | 0.900         | SM 2540 D-1997               | 02/04/19         | 2/4/19 10:35     | KMR                 |      |  |
| Turbidity               | B9B0411    | 24.3       | NTU                   | 0.3               | 0.3           | EPA180.1 R2.0 (1993)         | 02/04/19         | 2/4/19 11:02     | ALG                 |      |  |
| Dissolved Wet Ch        | emistry    |            |                       |                   |               |                              |                  |                  |                     |      |  |
| Orthophosphate, as P    | B9B0402    | 0.0650     | mg/L                  | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 02/04/19         | 2/4/19 10:10     | SMC                 |      |  |
| Total Metals            |            |            |                       |                   |               |                              |                  |                  |                     |      |  |
| Mercury                 | B9B0419    | 0.0353     | ug/L                  | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 02/05/19         | 2/6/19 9:15      | SAS                 |      |  |
| Arsenic                 | B9B0506    | <5.72      | ug/L                  | 5.72              | 5.72          | EPA 200.7                    | 02/05/19         | 2/7/19 14:11     | EDM                 | U    |  |
| Cadmium                 | B9B0506    | <1.00      | ug/L                  | 1.00              | 1.00          | EPA 200.7                    | 02/05/19         | 2/7/19 14:11     | EDM                 | U    |  |
| Calcium                 | B9B0506    | 5.10       | mg/L                  | 0.0500            | 0.0500        | EPA 200.7                    | 02/05/19         | 2/7/19 14:11     | EDM                 |      |  |
| Lead                    | B9B0506    | 26.0       | ug/L                  | 6.94              | 6.94          | EPA 200.7                    | 02/05/19         | 2/7/19 14:11     | EDM                 |      |  |
| Magnesium               | B9B0506    | 5390       | ug/L                  | 50.0              | 50.0          | EPA 200.7                    | 02/05/19         | 2/7/19 14:11     | EDM                 |      |  |
| Phosphorus as P         | B9B0506    | 0.352      | mg/L                  | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 02/05/19         | 2/7/19 14:11     | EDM                 |      |  |
| Hardness                | B9B0506    | 34.9       | mg/L                  | 1.00              | 1.00          | EPA 200.7                    | 02/05/19         | 2/7/19 14:11     | EDM                 |      |  |
| <b>Dissolved Metals</b> |            |            |                       |                   |               |                              |                  |                  |                     |      |  |
| Cadmium                 | B9B1114    | <1.00      | ug/L                  | 1.00              | 1.00          | EPA 200.7                    | 02/11/19         | 2/11/19 14:52    | EDM                 | U    |  |
| Copper                  | B9B1114    | <10.0      | ug/L                  | 10.0              | 10.0          | EPA 200.7                    | 02/11/19         | 2/11/19 14:52    | EDM                 | U    |  |
| Lead                    | B9B1114    | <6.94      | ug/L                  | 6.94              | 6.94          | EPA 200.7                    | 02/11/19         | 2/11/19 14:52    | EDM                 | U    |  |
| Zinc                    | B9B1114    | 24.9       | ug/L                  | 10.0              | 10.0          | EPA 200.7                    | 02/11/19         | 2/11/19 14:52    | EDM                 |      |  |



## **Analysis Report**

| Location:              | ACST1      | IC         |            |                   |                 | Location Description:        | 190202-14        | 4-WC             |                     |     |
|------------------------|------------|------------|------------|-------------------|-----------------|------------------------------|------------------|------------------|---------------------|-----|
| Date/Time Collected    | d: 02/02/2 | 2019 11:39 | ) - 02/03/ | 2019 01:45        | i               |                              |                  |                  |                     |     |
| Lab Number:            | 9AC00      | 03-04      |            |                   |                 | Sample Collector:            | ABC              |                  |                     |     |
| Sample Type:           | Compo      | osite      |            |                   |                 | Sample Matrix:               | Water            |                  |                     |     |
| Analyte Name           | Batch      | Result     | Units      | Adjustec<br>MDL * | l Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qua |
| Wet Chemistry          |            |            |            |                   |                 |                              |                  |                  |                     |     |
| Ammonia, as N          | B9B0807    | 0.362      | mg/L       | 0.0350            | 0.0350          | SM 4500-NH3 D-1997           | 02/08/19         | 2/8/19 14:44     | BAK                 |     |
| BOD5                   | B9B0406    | 10.7       | mg/L       | 2.00              | 2.00            | SM 5210 B-2001               | 02/04/19         | 2/9/19 10:13     | ALN                 |     |
| COD                    | B9B0403    | 132        | mg/L       | 7.00              | 7.00            | HH 8000-1979                 | 02/04/19         | 2/4/19 10:15     | ASM                 |     |
| Nitrate-Nitrite, as N  | B9B2115    | 0.447      | mg/L       | 0.0250            | 0.0250          | EPA 353.2                    | 02/21/19         | 2/21/19 12:49    | JAL                 |     |
| TKN                    | B9B2505    | 2.49       | mg/L       | 0.130             | 0.130           | EPA 351.2                    | 02/25/19         | 2/26/19 9:24     | LRF                 |     |
| Total Dissolved Solids | B9B0405    | 134        | mg/L       | 20.0              | 20.0            | SM 2540 C-1997               | 02/04/19         | 2/4/19 13:00     | CJP                 |     |
| Total Suspended Solids | B9B0412    | 170        | mg/L       | 0.900             | 0.900           | SM 2540 D-1997               | 02/04/19         | 2/4/19 10:54     | KMR                 |     |
| Turbidity              | B9B0411    | 14.9       | NTU        | 0.3               | 0.3             | EPA180.1 R2.0 (1993)         | 02/04/19         | 2/4/19 11:11     | ALG                 |     |
| Dissolved Wet Ch       | emistry    |            |            |                   |                 |                              |                  |                  |                     |     |
| Orthophosphate, as P   | B9B0402    | 0.114      | mg/L       | 2.00E-3           | 2.00E-3         | EPA 365.1                    | 02/04/19         | 2/4/19 10:15     | SMC                 |     |
| Total Metals           |            |            |            |                   |                 |                              |                  |                  |                     |     |
| Mercury                | B9B0419    | 0.0218     | ug/L       | 4.71E-3           | 4.71E-3         | EPA 245.2                    | 02/05/19         | 2/6/19 9:39      | SAS                 |     |
| Arsenic                | B9B0506    | 6.48       | ug/L       | 5.72              | 5.72            | EPA 200.7                    | 02/05/19         | 2/7/19 14:16     | EDM                 |     |
| Cadmium                | B9B0506    | <1.00      | ug/L       | 1.00              | 1.00            | EPA 200.7                    | 02/05/19         | 2/7/19 14:16     | EDM                 | U   |
| Calcium                | B9B0506    | 11.8       | mg/L       | 0.0500            | 0.0500          | EPA 200.7                    | 02/05/19         | 2/7/19 14:16     | EDM                 |     |
| Lead                   | B9B0506    | 14.0       | ug/L       | 6.94              | 6.94            | EPA 200.7                    | 02/05/19         | 2/7/19 14:16     | EDM                 |     |
| Magnesium              | B9B0506    | 5530       | ug/L       | 50.0              | 50.0            | EPA 200.7                    | 02/05/19         | 2/7/19 14:16     | EDM                 |     |
| Phosphorus as P        | B9B0506    | 0.354      | mg/L       | 6.00E-3           | 6.00E-3         | EPA 200.7                    | 02/05/19         | 2/7/19 14:16     | EDM                 |     |
| Hardness               | B9B0506    | 52.3       | mg/L       | 1.00              | 1.00            | EPA 200.7                    | 02/05/19         | 2/7/19 14:16     | EDM                 |     |
| Dissolved Metals       |            |            |            |                   |                 |                              |                  |                  |                     |     |
| Cadmium                | B9B1114    | <1.00      | ug/L       | 1.00              | 1.00            | EPA 200.7                    | 02/11/19         | 2/11/19 14:57    | EDM                 | U   |
| Соррег                 | B9B1114    | <10.0      | ug/L       | 10.0              | 10.0            | EPA 200.7                    | 02/11/19         | 2/11/19 14:57    | EDM                 | U   |
| Lead                   | B9B1114    | <6.94      | ug/L       | 6.94              | 6.94            | EPA 200.7                    | 02/11/19         | 2/11/19 14:57    | EDM                 | υ   |
| Zinc                   | B9B1114    | 18.8       | ug/L       | 10.0              | 10.0            | EPA 200.7                    | 02/11/19         | 2/11/19 14:57    | EDM                 |     |



## **Quality Control Report**

| Analyte Name                                       | Method<br>Blank | Units                                                                                                           | %<br>Recovery | Recovery<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RPD                                                                                                            | RPD<br>Limit                                 | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|----------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|---------------------|-----------|
| Wet Chemistry                                      |                 |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                              |                  |                     |           |
| Batch: B9B0403                                     |                 |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                              |                  |                     |           |
| Blank (B9B0403-BLK1)<br>COD                        | < 7             | mg/L                                                                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                              | 02/04/2019       | ASM                 | U         |
| LCS (B9B0403-BS1)<br>COD                           |                 |                                                                                                                 | 98.0          | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                              | 02/04/2019       | ASM                 |           |
| Duplicate (B9B0403-DUP1)<br>COD                    | Source ID: 9AC  | 0003-01                                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.59                                                                                                           | 10                                           | 02/04/2019       | ASM                 |           |
| Batch: B9B0405                                     |                 |                                                                                                                 |               | stermen mensisk kirkerent er och mensionen men i kå elsen til men skå konfolde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | 11.00.104701.000 UT1111111004044444444444444 |                  |                     |           |
| Blank (B9B0405-BLK1)<br>Total Dissolved Solids     | < 20            | mg/L                                                                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                              | 02/04/2019       | CJP                 | U         |
| LCS (B9B0405-BS1)<br>Total Dissolved Solids        |                 |                                                                                                                 | 97.5          | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                              | 02/04/2019       | CJP                 |           |
| Duplicate (B9B0405-DUP1)<br>Total Dissolved Solids | Source ID: 9AC  | 0003-01                                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.6                                                                                                           | 10                                           | 02/04/2019       | CJP                 | QC-02     |
| Batch: B9B0406                                     |                 |                                                                                                                 |               | 8,082,001 (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) (2019) |                                                                                                                |                                              |                  |                     |           |
| <b>Blank (B9B0406-BLK1)</b><br>BOD5                | < 2             | mg/L                                                                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                              | 02/09/2019       | ALN                 | U         |
| LCS (B9B0406-BS1)<br>BOD5                          |                 | an an a na sao ao amin'ny faritr'o amin'ny faritr'o dia mandra dia dia dia dia dia dia dia dia dia di           | 103           | 84.6-115.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                              | 02/09/2019       | ALN                 |           |
| LCS (B9B0406-BS2)<br>BOD5                          |                 | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | 109           | 84.6-115.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                              | 02/09/2019       | ALN                 |           |
| Duplicate (B9B0406-DUP1)<br>BOD5                   | Source ID: 9LS  | 0048-01                                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.82                                                                                                           | 30                                           | 02/09/2019       | ALN                 |           |
| Batch: B9B0411                                     |                 |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                              |                  |                     |           |
| Blank (B9B0411-BLK1)<br>Turbidity                  | < 0.3           | NTÜ                                                                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                              | 02/04/2019       | ALG                 | U         |
| LCS (B9B0411-BS1)<br>Turbidity                     |                 |                                                                                                                 | 100           | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a-ballen av 1. a. 1. |                                              | 02/04/2019       | ALG                 |           |
| Duplicate (B9B0411-DUP1)<br>Turbidity              | Source ID: 9AC  | 0003-02                                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.45                                                                                                           | 25                                           | 02/04/2019       | ALG                 |           |



| Analyte Name                                                     | Method<br>Blank | Units      | %<br>Recovery | Recovery<br>Limits | RPD   | RPD<br>Limit                           | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|------------------------------------------------------------------|-----------------|------------|---------------|--------------------|-------|----------------------------------------|------------------|---------------------|-----------|
| Wet Chemistry (Contin                                            | ued)            |            |               |                    |       |                                        |                  |                     |           |
| Batch: B9B0412<br>Blank (B9B0412-BLK1)<br>Total Suspended Solids | < 0.9           | mg/L       |               |                    |       |                                        | 02/04/2019       | KMR                 | U         |
| LCS (B9B0412-BS1)<br>Total Suspended Solids                      |                 |            | 96.0          | 90-110             |       |                                        | 02/04/2019       | KMR                 |           |
| Duplicate (B9B0412-DUP1)<br>Total Suspended Solids               | Source ID: 9AC  | 0003-03    |               |                    | 3.35  | 20                                     | 02/04/2019       | KMR                 |           |
| Batch: B9B0807<br>Blank (B9B0807-BLK1)<br>Ammonia, as N          | < 0.035         | mg/L       |               |                    |       |                                        | 02/08/2019       | BAK                 | U         |
| LCS (B9B0807-BS1)<br>Ammonia, as N                               |                 |            | 104           | 90-110             |       |                                        | 02/08/2019       | BAK                 |           |
| Duplicate (B9B0807-DUP1)<br>Ammonia, as N                        | Source ID: 9LS  | 0048-04    |               |                    | 0.286 | 10                                     | 02/08/2019       | BAK                 |           |
| <b>Matrix Spike (B9B0807-MS1)</b><br>Ammonia, as N               | Source ID: 9L   | S0048-04   | 104           | 80-120             |       |                                        | 02/08/2019       | BAK                 |           |
| Matrix Spike Dup (B9B0807-N<br>Ammonia, as N                     | (ISD1) Source   | ID: 9LS004 | 8-04<br>103   | 80-120             | 0.390 | 10                                     | 02/08/2019       | BAK                 |           |
| Batch: B9B2115<br>Blank (B9B2115-BLK1)<br>Nitrate-Nitrite, as N  | < 0.025         | mg/L       |               |                    |       |                                        | 02/21/2019       | JAL                 | U         |
| LCS (B9B2115-BS1)<br>Nitrate-Nitrite, as N                       |                 |            | 97.7          | 90-110             |       |                                        | 02/21/2019       | JAL                 |           |
| Duplicate (B9B2115-DUP1)<br>Nitrate-Nitrite, as N                | Source ID: 9AC  | 0003-01    |               |                    | 6.68  | 10                                     | 02/21/2019       | JAL                 |           |
| Duplicate (B9B2115-DUP2)<br>Nitrate-Nitrite, as N                | Source ID: 9BB0 | 0083-01    |               |                    | 0.641 | 10                                     | 02/21/2019       | JAL                 |           |
| Matrix Spike (B9B2115-MS1)<br>Nitrate-Nitrite, as N              | Source ID: 9A   | C0003-01   | 98.7          | 90-110             |       | erran verdölder Melovididen var balade | 02/21/2019       | JAL                 |           |
| Matrix Spike (B9B2115-MS2)<br>Nitrate-Nitrite, as N              | Source ID: 9B   | B0083-01   | 94.9          | 90-110             |       |                                        | 02/21/2019       | JAL                 |           |
| Matrix Spike Dup (B9B2115-N<br>Nitrate-Nitrite, as N             | ISD1) Source    | ID: 9AC000 | 3-01<br>98.3  | 90-110             | 0.293 | 10                                     | 02/21/2019       | JAL                 |           |
| Matrix Spike Dup (B9B2115-N<br>Nitrate-Nitrite, as N             | ISD2) Source    | ID: 9BB008 | 3-01<br>95.3  | 90-110             | 0.220 | 10                                     | 02/21/2019       | JAL                 |           |



| Analyte Name                                        | Method<br>Blank | Units                  | %<br>Recovery    | Recovery<br>Limits | RPD   | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|-----------------------------------------------------|-----------------|------------------------|------------------|--------------------|-------|--------------|------------------|---------------------|-----------|
| Wet Chemistry (Continu                              | ued)            |                        |                  |                    |       |              |                  |                     |           |
| Batch: B9B2505                                      | ,               |                        |                  |                    |       |              |                  |                     |           |
| <b>Blank (B9B2505-BLK1)</b><br>TKN                  | < 0.13          | mg/L                   |                  |                    |       |              | 02/26/2019       | LRF                 | U         |
| LCS (B9B2505-BS1)<br>TKN                            |                 |                        | 97.5             | 80-120             |       |              | 02/26/2019       | LRF                 |           |
| Duplicate (B9B2505-DUP1)                            | Source ID: 9LSC | 052-05RE1              |                  |                    | 2.18  | 20           | 02/26/2019       | LRF                 | D         |
| Duplicate (B9B2505-DUP2)<br>TKN                     | Source ID: 9WB  | 0100-05RE <sup>·</sup> | 1                |                    | 0.640 | 20           | 02/26/2019       | LRF                 | D         |
| Matrix Spike (B9B2505-MS1)<br>TKN                   | Source ID: 9L   | 60052-05RE             | 1<br>106         | 80-120             |       |              | 02/26/2019       | LRF                 | D         |
| <b>Matrix Spike (B9B2505-MS2)</b><br>TKN            | Source ID: 9W   | /B0100-05R             | E1<br>105        | 80-120             |       |              | 02/26/2019       | LRF                 | D         |
| Matrix Spike Dup (B9B2505-M<br>TKN                  | SD1) Source     | ID: 9LS0052            | 2-05RE1<br>107   | 80-120             | 0.506 | 20           | 02/26/2019       | LRF                 | D         |
| Matrix Spike Dup (B9B2505-M<br>TKN                  | SD2) Source     | ID: 9WB010             | 00-05RE1<br>94.1 | 80-120             | 3.77  | 20           | 02/26/2019       | LRF                 | D         |
| <b>Dissolved Wet Chemist</b>                        | ry              |                        |                  |                    |       |              |                  |                     |           |
| Batch: B9B0402                                      |                 |                        |                  |                    |       |              |                  |                     |           |
| Blank (B9B0402-BLK1)<br>Orthophosphate, as P        | < 0.002         | mg/L                   |                  |                    |       |              | 02/04/2019       | SMC                 | U         |
| LCS (B9B0402-BS1)<br>Orthophosphate, as P           |                 |                        | 95.6             | 90-110             |       |              | 02/04/2019       | SMC                 |           |
| Duplicate (B9B0402-DUP1)<br>Orthophosphate, as P    | Source ID: 9AC  | 0003-03                |                  |                    | 0.299 | 10           | 02/04/2019       | SMC                 |           |
| Matrix Spike (B9B0402-MS1)<br>Orthophosphate, as P  | Source ID: 9A   | C0003-03               | 101              | 90-110             |       |              | 02/04/2019       | SMC                 |           |
| Matrix Spike Dup (B9B0402-M<br>Orthophosphate, as P | SD1) Source     | ID: 9AC000             | 3-03<br>99.8     | 90-110             | 0.629 | 10           | 02/04/2019       | SMC                 |           |



| Analyte Name                          | Method<br>Blank | Units                                      | %<br>Recovery | Recovery<br>Limits                                                | RPD                                                  | RPD<br>Limit                                     | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|---------------------------------------|-----------------|--------------------------------------------|---------------|-------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------|---------------------|-----------|
| Total Metals                          |                 |                                            |               |                                                                   |                                                      |                                                  |                  |                     |           |
| Batch: B9B0419                        |                 |                                            |               |                                                                   |                                                      |                                                  |                  |                     |           |
| Blank (B9B0419-BLK1)                  |                 |                                            |               |                                                                   |                                                      |                                                  |                  |                     |           |
| Mercury                               | < 0.00471       | ug/L                                       |               |                                                                   |                                                      |                                                  | 02/06/2019       | SAS                 | U         |
| LCS (B9B0419-BS1)                     |                 | ana 1997 1997 1997 1997 1997 1997 1997 199 |               |                                                                   | nê de de de anti-anti-anti-anti-anti-anti-anti-anti- | 1997 - B. S. |                  |                     |           |
| Mercury                               |                 |                                            | 97.2          | 85-115                                                            |                                                      |                                                  | 02/06/2019       | SAS                 |           |
| Duplicate (B9B0419-DUP1)<br>Mercury   | Source ID: 9AC  | 0003-01                                    |               |                                                                   | 4.27                                                 | 20                                               | 02/06/2019       | SAS                 |           |
| Duplicate (B9B0419-DUP2)<br>Mercury   | Source ID: 9AC  | 0003-03                                    |               |                                                                   | 16.3                                                 | 20                                               | 02/06/2019       | SAS                 |           |
| Matrix Spike (B9B0419-MS1)            | Source ID: 9A   | C0003-01                                   |               |                                                                   | ·                                                    |                                                  |                  |                     |           |
| Mercury                               |                 |                                            | 98.1          | 70-130                                                            |                                                      |                                                  | 02/06/2019       | SAS                 |           |
| Matrix Spike (B9B0419-MS2)<br>Mercury | Source ID: 9A   | C0003-03                                   | 98.9          | 70-130                                                            |                                                      |                                                  | 02/06/2010       | CAC                 |           |
| -                                     |                 |                                            |               | 70-130                                                            |                                                      |                                                  | 02/06/2019       | SAS                 |           |
| Matrix Spike Dup (B9B0419-<br>Mercury | MSD1) Source    | ID: 9AC00                                  | 03-01<br>99.9 | 70-130                                                            | 1.70                                                 | 20                                               | 02/06/2019       | SAS                 |           |
| Matrix Spike Dup (B9B0419-<br>Mercury | MSD2) Source    | ID: 9AC00                                  | 03-03<br>97.9 | 70-130                                                            | 0.835                                                | 20                                               | 02/06/2019       | SAS                 |           |
| Batch: B9B0506                        |                 |                                            |               |                                                                   |                                                      |                                                  |                  |                     |           |
| Blank (B9B0506-BLK1)                  |                 |                                            |               |                                                                   |                                                      |                                                  |                  |                     |           |
| Arsenic                               | < 5.72          | ug/L                                       |               |                                                                   |                                                      |                                                  | 02/07/2019       | EDM                 | U         |
| Cadmium                               | < 1             | ug/L                                       |               |                                                                   |                                                      |                                                  | 02/07/2019       | EDM                 | U         |
| Calcium                               | < 0.05          | mg/L                                       |               |                                                                   |                                                      |                                                  | 02/07/2019       | EDM                 | U         |
| Lead                                  | < 6.94          | ug/L                                       |               |                                                                   |                                                      |                                                  | 02/07/2019       | EDM                 | U         |
| Magnesium                             | < 50            | ug/L                                       |               |                                                                   |                                                      |                                                  | 02/07/2019       | EDM                 | U         |
| Phosphorus as P<br>Hardness           | < 0.006         | mg/L                                       |               |                                                                   |                                                      |                                                  | 02/07/2019       | EDM                 | U         |
|                                       | < 1             | mg/L                                       |               | afait la chui a falfaith (la chui an chui an an an an agus gus ag |                                                      |                                                  | 02/07/2019       | EDM                 | U         |
| LCS (B9B0506-BS1)<br>Arsenic          |                 |                                            | 105           | 85-115                                                            |                                                      |                                                  | 02/07/2019       | EDM                 |           |
| Cadmium                               |                 |                                            | 104           | 85-115                                                            |                                                      |                                                  | 02/07/2019       | EDM                 |           |
| Calcium                               |                 |                                            | 101           | 85-115                                                            |                                                      |                                                  | 02/07/2019       | EDM                 |           |
| Lead                                  |                 |                                            | 108           | 85-115                                                            |                                                      |                                                  | 02/07/2019       | EDM                 |           |
| Magnesium                             |                 |                                            | 104           | 85-115                                                            |                                                      |                                                  | 02/07/2019       | EDM                 | •         |
| Phosphorus as P                       |                 |                                            | 109           | 85-115                                                            |                                                      |                                                  | 02/07/2019       | EDM                 |           |
| Duplicate (B9B0506-DUP1)              | Source ID: 9AC  | 1002 01                                    |               |                                                                   |                                                      |                                                  | 02.07.2018       |                     |           |
| Arsenic                               | Source ID. SACI | 10-201                                     |               |                                                                   | NR                                                   | 20                                               | 02/07/2019       | EDM                 |           |
| Cadmium                               |                 |                                            |               |                                                                   | NR                                                   | 20                                               | 02/07/2019       | EDM                 | U         |
| Calcium                               |                 |                                            |               |                                                                   | 1.54                                                 | 20                                               | 02/07/2019       |                     | 0         |
| Lead                                  |                 |                                            |               |                                                                   | NR                                                   |                                                  |                  | EDM                 | υ         |
| Magnesium                             |                 |                                            |               |                                                                   | 2.40                                                 | 20<br>20                                         | 02/07/2019       | EDM                 | 0         |
| Phosphorus as P                       |                 |                                            |               |                                                                   | 2.40                                                 | 20                                               | 02/07/2019       | EDM                 |           |
| Hardness                              |                 |                                            |               |                                                                   |                                                      | 20                                               | 02/07/2019       | EDM                 |           |
|                                       |                 |                                            |               |                                                                   | 1.85                                                 | 200                                              | 02/07/2019       | EDM                 |           |



| Analyte Name                   | Method<br>Blank | Units      | %<br>Recovery | Recovery<br>Limits | RPD    | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|--------------------------------|-----------------|------------|---------------|--------------------|--------|--------------|------------------|---------------------|-----------|
| Total Metals (Continued)       |                 |            |               |                    |        |              |                  |                     |           |
| Batch: B9B0506 (Continued)     |                 |            |               |                    |        |              |                  |                     |           |
|                                | ource ID: 9A    | C0003-01   |               |                    |        |              |                  |                     |           |
| Arsenic                        |                 |            | 112           | 70-130             |        |              | 02/07/2019       | EDM                 |           |
| Cadmium                        |                 |            | 106           | 70-130             |        |              | 02/07/2019       | EDM                 |           |
| Calcium                        |                 |            | 100           | 70-130             |        |              | 02/07/2019       | EDM                 |           |
| Lead                           |                 |            | 114           | 70-130             |        |              | 02/07/2019       | EDM                 |           |
| Magnesium                      |                 |            | 104           | 70-130             |        |              | 02/07/2019       | EDM                 |           |
| Phosphorus as P                |                 |            | 112           | 70-130             |        |              | 02/07/2019       | EDM                 |           |
| Matrix Spike Dup (B9B0506-MSD  | 1) Source       | ID: 9AC000 | 3-01          |                    |        |              |                  |                     |           |
| Arsenic                        |                 |            | 112           | 70-130             | 0.594  | 20           | 02/07/2019       | EDM                 |           |
| Cadmium                        |                 |            | 106           | 70-130             | 0.141  | 20           | 02/07/2019       | EDM                 |           |
| Calcium                        |                 |            | 99.7          | 70-130             | 0.440  | 20           | 02/07/2019       | EDM                 |           |
| Lead                           |                 |            | 114           | 70-130             | 0.0328 | 20           | 02/07/2019       | EDM                 |           |
| Magnesium                      |                 |            | 105           | 70-130             | 0.153  | 20           | 02/07/2019       | EDM                 |           |
| Phosphorus as P                |                 |            | 113           | 70-130             | 0.722  | 20           | 02/07/2019       | EDM                 |           |
| Dissolved Metals               |                 |            |               |                    |        |              |                  |                     |           |
| Batch: B9B1114                 |                 |            |               |                    |        |              |                  |                     |           |
| Blank (B9B1114-BLK1)           |                 |            |               |                    |        |              |                  |                     |           |
| Cadmium                        | < 1             | ug/Ł       |               |                    |        |              | 02/11/2019       | EDM                 | U         |
| Copper                         | < 10            | ug/L       |               |                    |        |              | 02/11/2019       | EDM                 | U         |
| Lead                           | < 6.94          | ug/L       |               |                    |        |              | 02/11/2019       | EDM                 | U         |
| Zinc                           | < 10            | ug/L       |               |                    |        |              | 02/11/2019       | EDM                 | U         |
| LCS (B9B1114-BS1)              |                 |            |               |                    |        |              |                  |                     |           |
| Cadmium                        |                 |            | 96.1          | 85-115             |        |              | 02/11/2019       | EDM                 |           |
| Copper                         |                 |            | 95.1          | 85-115             |        |              | 02/11/2019       | EDM                 |           |
| Lead                           |                 |            | 100           | 85-115             |        |              | 02/11/2019       | EDM                 |           |
| Zinc                           |                 |            | 97.2          | 85-115             |        |              | 02/11/2019       | EDM                 |           |
|                                | rce ID: 9AC     | 0003-01    |               |                    |        |              |                  |                     |           |
| Cadmium                        |                 |            |               |                    | NR     | 10           | 02/11/2019       | EDM                 | U         |
| Copper                         |                 |            |               |                    | NR     | 10           | 02/11/2019       | EDM                 | U         |
| Lead                           |                 |            |               |                    | NR     | 10           | 02/11/2019       | EDM                 | U         |
| Zinc                           |                 |            |               |                    | 2.16   | 10           | 02/11/2019       | EDM                 |           |
| Matrix Spike (B9B1114-MS1) So  | ource ID: 9A    | C0003-01   |               |                    |        |              |                  |                     |           |
| Cadmium                        |                 |            | 96.3          | 70-130             |        |              | 02/11/2019       | EDM                 |           |
| Copper                         |                 |            | 98.8          | 70-130             |        |              | 02/11/2019       | EDM                 |           |
| Lead                           |                 |            | 103           | 70-130             |        |              | 02/11/2019       | EDM                 |           |
| Zinc                           |                 |            | 97.3          | 70-130             |        |              | 02/11/2019       | EDM                 |           |
| Matrix Spike Dup (B9B1114-MSD1 | 1) Source       | 1D: 9AC000 | 3-01          |                    |        |              |                  |                     |           |
| Cadmium                        |                 |            | 96.2          | 70-130             | 0.169  | 10           | 02/11/2019       | EDM                 |           |
| Copper                         |                 |            | 99.5          | 70-130             | 0.685  | 10           | 02/11/2019       | EDM                 |           |
| Lead                           |                 |            | 100           | 70-130             | 2.98   | 10           | 02/11/2019       | EDM                 |           |
| Zinc                           |                 |            | 97.5          | 70-130             | 0.147  | 10           | 02/11/2019       | EDM                 |           |
|                                |                 |            |               |                    |        |              |                  |                     |           |



#### **Notes and Definitions**

| item  | Definition                                                                                                                        |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|
| D     | Data reported from a dilution                                                                                                     |
| QC-02 | The RPD is greater than the method acceptance criteria. At least one of the values used to calculate the RPD is<br>less than PQL. |
| U     | Analyte included in the analysis, but not detected                                                                                |

#### Method Reference Acronyms

- Colilert Colilert, IDEXX Laboratories, Inc.
- EPA Manual of Methods for Chemical Analysis of Water and Wastes, USEPA
- GS USGS Techniques of Water-Resources Investigations
- HH Hach Spectrophotometer Procedures Manual
- SM Standard Methods for the Examination of Water and Wastewater
- SW Test methods for Evaluating Solid Waste, SW-846

Janet Finegán-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

| l                                 |               |
|-----------------------------------|---------------|
| ļ                                 | _             |
| l                                 | N             |
| ļ                                 | 6             |
| ļ                                 | ĸ             |
| l                                 | R             |
| l                                 | Ų,            |
| ļ                                 | $\mathcal{Q}$ |
|                                   | 4             |
| A Devolution of the second period | $\sim$        |
| ş                                 | $\smile$      |

-10/18--

| Воділ Ели ві слоне<br>аля Saudets         Воділ Ели ві слоне<br>залявента         Воділ Ели ві слоне стал.         Воділ слоне стал.           0.837-5651         Залявента         Воділ Ели ві слоне         Воділ Води         Воділ Води         Води         Води         Води         Води         Води         Води         Води<                                                                 | Ada County Highway District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nty High                                              | way Dis     | strict        |                 |                  |                |                     |        |       | -                      |                       |       |      |                                                                                                                 |                                |      |     |              |            |              |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|---------------|-----------------|------------------|----------------|---------------------|--------|-------|------------------------|-----------------------|-------|------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|------|-----|--------------|------------|--------------|-----------------|
| Biggin End<br>337-5555     End<br>337-5555       Option:<br>337-5555     Sounded:<br>Sounded:<br>Sounded:<br>Sounded:<br>Sounded:<br>Sounded:<br>Addr. Level<br>Addr. K K K K K K K K K K K K K K K K K K K                                                                                                                                                                                                                                                                                                                                                                                                       | Attn: Monica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a Lowe                                                |             |               |                 |                  |                |                     | Matrix | Type  | Г                      |                       |       |      |                                                                                                                 |                                |      |     |              |            |              |                 |
| gin End Begin End         Sample Identification           divident Lemin-1           fright         End         Begin End         Sample Identification         Sample Identification           1/4         3/3/17         1/4/1         23.58         1/00.02, - 3/4 50.02         00.024         M62C         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3775 Adams<br>3arden City,<br>Fel. (208) 38<br>-ax (208) 38<br>-urchase Or<br>Project:<br>3ampler(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s Street<br>1 Idaho 83<br>87–6255<br>87–6391<br>rder: | .714–641£   |               | 145<br>Vater-PI |                  |                |                     |        |       |                        |                       |       | LONG | in the second | 1.002 AS                       |      |     |              |            | / 0-5        |                 |
| Gin         End<br>Time         Begin<br>Time         End<br>Time         Sample Identification         Sample Id |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |             | Andres        | 2               | ird.             |                | sji                 |        |       | 8013                   |                       |       |      | l - 91                                                                                                          |                                |      |     |              |            | HN O         | SIG             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Begin<br>Date                                         | End<br>Date | Begin<br>Time |                 |                  | flication      | ı<br>Sampler Initis | Water  | dereb | ing store in the store | March States - Second |       |      | erlasorlaorthO                                                                                                  | A DATE OF THE REAL PROPERTY OF |      |     | 2 - ssenbrah | ∃- °ON+°ON | 097 WS - 8HN | enistroO listoT |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/2/19                                                | 3/2/19      | 1441          | 2358            | 190202 - 03 - W  |                | ABC                 | 2      |       | -                      | -                     | ~     |      | 2                                                                                                               | -                              | -    | ×   | X            | ×          | X            | 0               |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/2/19                                                | 2/3/19      | 2000          | HYOO            | 190262 - 11 - W  |                | NOC                 | X      | ~     |                        |                       | X     |      | 2                                                                                                               |                                |      | X   | X            | ×          | ×            | 3               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/2/19                                                | 2/2/19      | 1932          | 2119            | 12 - W           |                | ABC                 | X      | ~     | I                      | 1                     | X     | X    | ¥                                                                                                               |                                |      | 2   | ×            | ×          | X            | 2               |
| 0/45     1/46     10/45       Per Hulty Carlson     1       Per Auty Carlson       Date & Time       Transferred       X/3/19       X/3/19       OPT ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŧq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/2/19                                                | 2/3/19      |               |                 | 190202 - 14 - WU |                | ABC                 | 2      | ~     | I                      |                       | X     |      |                                                                                                                 |                                |      | ×   | X            | ×          | X            | 3               |
| per Awly Carlson<br>Date & Time<br>Transferred<br>2/3/19 0948 20M 2-3-19 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |             |               | 0145            |                  |                |                     |        |       |                        |                       |       |      |                                                                                                                 |                                |      |     |              |            |              |                 |
| Date & Time     Received by (sign)       Transferred     2-3-19       2/14     C9478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ver Trieven an we set that the set is a set of the set |                                                       |             |               | PEr An          | dy Carlson       |                |                     |        |       |                        |                       |       | -    |                                                                                                                 | -                              |      | +   |              |            |              |                 |
| Date & Time     Received by (sign)       Transferred     Received by (sign)       メ(3/19     0948       ア3/19     0948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |             |               |                 |                  |                |                     |        |       |                        |                       |       |      | 1                                                                                                               | -                              | 1    | -   |              |            |              |                 |
| Date & Time     Received by (sign)       Transferred     Received by (sign)       2/3/19     C948       2-3-19     1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |             |               |                 |                  |                |                     |        |       |                        |                       |       |      | 1                                                                                                               |                                | ·    | 1   |              |            |              |                 |
| 0948 BOW 2-3-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uished by                                             | / (sign)    |               | ate & Til       | Rec              | ived by (sign) |                     |        |       | ပိ                     | mme                   | nts/S | peci | allu                                                                                                            | stru                           | ctio | ls: |              |            |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jen -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                     | , {         | 3/3/1         | 1 094           | MQ               | -3-19          |                     |        |       |                        |                       |       |      |                                                                                                                 |                                | 6    | 0   |              | · ·        |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |             |               |                 |                  |                |                     |        |       |                        |                       |       |      |                                                                                                                 |                                |      |     |              |            |              |                 |

۳,

Report Date: 04/19/2019 10:54



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

#### Samples in this Report

| Lab ID     | Sample | Sample Description | Matrix Qualifier | s Date Sampled | Date Received |
|------------|--------|--------------------|------------------|----------------|---------------|
| 9AC0015-01 | ACST1B | 190414-03-WG       | Water            | 04/14/2019     | 04/14/2019    |
| 9AC0015-02 | ACST1B | 190414-11-WG       | Water            | 04/14/2019     | 04/14/2019    |
| 9AC0015-03 | ACST1B | 190414-12-WG       | Water            | 04/14/2019     | 04/14/2019    |
| 9AC0015-04 | ACST1B | 190414-14-WG       | Water            | 04/14/2019     | 04/14/2019    |
| 9AC0015-05 | ACST1B | 190414-14-001      | Water            | 04/14/2019     | 04/14/2019    |
| 9AC0015-06 | ACST1B | 190414-14-101      | Water            | 04/14/2019     | 04/14/2019    |



### **Analysis Report**

| Location:<br>Date/Time Collecte  | ACST1<br>ed: 04/14/2 | IB<br>2019 00:13 | 3          |                   |               | Location Description:        | 190414-03         | 3-WG             |                     |      |
|----------------------------------|----------------------|------------------|------------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Lab Number:                      | 9AC00                | 15-01            |            |                   |               | Sample Collector:            | AML               |                  |                     |      |
| Sample Type:                     | Grab                 |                  |            |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch                | Result           | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9D1507              | 156.5 M          | IPN/100 mL | . 1.0             | 1.0           | Colilert                     | 04/14/19<br>07:00 | 4/15/19 7:15     | JJR                 |      |
| Wet Chemistry<br>Chlorine Screen | B9D1514              | Absent           |            |                   |               | SM 4500-CL G-2000<br>mod     | 04/14/19          | 4/14/19 6:18     | JJR                 |      |



## **Analysis Report**

| Location:<br>Date/Time Collecte  | ACST <sup>2</sup><br>ed: 04/14/ | 1B<br>2019 00:42 | 2          |                   |               | Location Description:        | 190414-11         | I-WG             |                     |      |
|----------------------------------|---------------------------------|------------------|------------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Lab Number:                      | 9AC00                           | 15-02            |            |                   |               | Sample Collector:            | AML               |                  |                     |      |
| Sample Type:                     | Grab                            |                  |            |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch                           | Result           | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9D1507                         | 179.3 N          | IPN/100 mL | - 1.0             | 1.0           | Colilert                     | 04/14/19<br>07:10 | 4/15/19 7:15     | JJR                 |      |
| Wet Chemistry<br>Chlorine Screen | B9D1514                         | Absent           |            |                   |               | SM 4500-CL G-2000<br>mod     | 04/14/19          | 4/14/19 6:23     | JJR                 |      |

\* The reported adjusted "MDL" is sample-specific. The analysis MDL as defined by 40 CFR pt 136 App.B. was corrected for dilution, dry weight, or method-defined ML.

;



## **Analysis Report**

| Location:<br>Date/Time Collecte  | ACST1<br>ed: 04/14/2 | B<br>2019 00:09 | )         |                   |               | Location Description:        | 190414-12         | 2-WG             |                     |      |
|----------------------------------|----------------------|-----------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Lab Number:                      | 9AC00                | 15-03           |           |                   |               | Sample Collector:            | ABC               |                  |                     |      |
| Sample Type:                     | Grab                 |                 |           |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch                | Result          | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9D1507              | 186.0 M         | PN/100 mL | . 1.0             | 1.0           | Colilert                     | 04/14/19<br>07:10 | 4/15/19 7:15     | JJR                 |      |
| Wet Chemistry<br>Chlorine Screen | B9D1514              | Absent          |           |                   |               | SM 4500-CL G-2000<br>mod     | 04/14/19          | 4/14/19 6:23     | JJR                 |      |

¥



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

#### **Analysis Report**

| Location:<br>Date/Time Collect   | ACST <sup>2</sup><br>ted: 04/14/2 | IB<br>2019 00:25 | 5         |                   |               | Location Description:        | 190414-14         | 4-WG             |                     |      |
|----------------------------------|-----------------------------------|------------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Lab Number:                      | 9AC00                             | 15-04            |           |                   |               | Sample Collector:            | ABC               |                  |                     |      |
| Sample Type:                     | Grab                              |                  |           |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch                             | Result           | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9D1507                           | 325.5 M          | PN/100 mL | . 1.0             | 1.0           | Colilert                     | 04/14/19<br>07:10 | 4/15/19 7:15     | JJR                 |      |
| Wet Chemistry<br>Chlorine Screen | B9D1514                           | Absent           |           |                   |               | SM 4500-CL G-2000<br>mod     | 04/14/19          | 4/14/19 6:23     | JJR                 |      |



### **Analysis Report**

| Location:<br>Date/Time Collected<br>Lab Number: | ACST1<br>04/14/2<br>9AC00 | 2019 12:00 |           |                   |               | Location Description:<br>Sample Collector: | 190414-14<br>ABC  | I-001            |                     |      |
|-------------------------------------------------|---------------------------|------------|-----------|-------------------|---------------|--------------------------------------------|-------------------|------------------|---------------------|------|
| Sample Type:                                    | Grab                      | 10-00      |           |                   |               | Sample Matrix:                             | Water             |                  |                     |      |
| Analyte Name                                    | Batch                     | Result     | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference               | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli                         | B9D1507                   | <1.0M      | PN/100 mL | . 1.0             | 1.0           | Colilert                                   | 04/14/19<br>07:00 | 4/15/19 7:15     | JJR                 | U    |
| Wet Chemistry<br>Chlorine Screen                | B9D1514                   | Absent     |           |                   |               | SM 4500-CL G-2000<br>mod                   | 04/14/19          | 4/14/19 6:18     | JJR                 |      |



### **Analysis Report**

| Location:<br>Date/Time Collect   | ACST1<br>ed: 04/14/2 | /14/2019 12:00 |           |                   |               | Location Description:        | 190414-14         | 4-101            |                     |      |
|----------------------------------|----------------------|----------------|-----------|-------------------|---------------|------------------------------|-------------------|------------------|---------------------|------|
| Lab Number:                      | 9AC00                | 15-06          |           |                   |               | Sample Collector:            | ABC               |                  |                     |      |
| Sample Type:                     | Grab                 |                |           |                   |               | Sample Matrix:               | Water             |                  |                     |      |
| Analyte Name                     | Batch                | Result         | Units     | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time  | Analysis<br>Time | Analyst<br>Initials | Qual |
| Microbiology<br>E. Coli          | B9D1507              | 328.2 M        | PN/100 mL | 1.0               | 1.0           | Colilert                     | 04/14/19<br>07:00 | 4/15/19 7:15     | JJR                 |      |
| Wet Chemistry<br>Chlorine Screen | B9D1514              | Absent         |           |                   |               | SM 4500-CL G-2000<br>mod     | 04/14/19          | 4/14/19 6:18     | JJR                 |      |



|                                     | Method          | 11.24. | %        | Recovery | RPD  | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifie |
|-------------------------------------|-----------------|--------|----------|----------|------|--------------|------------------|---------------------|----------|
| Analyte Name                        | Blank           | Units  | Recovery | Limits   | RPD  | LIMIT        | Analyzeu         | initials            | quanne   |
| Microbiology                        |                 |        |          |          |      |              |                  |                     |          |
| Batch: B9D1507                      |                 |        |          |          |      |              |                  |                     |          |
| Blank (B9D1507-BLK1)                |                 |        |          |          |      |              |                  |                     |          |
| E. Coli                             | Absent          |        |          |          |      |              | 04/15/2019       | JJR                 |          |
| LCS (B9D1507-BS1)<br>E. Coli        |                 |        |          | Present  |      |              | 04/15/2019       | JJR                 |          |
| Duplicate (B9D1507-DUP1)<br>E. Coli | Source ID: 9AC0 | 016-01 |          |          | Pass | 128          | 04/15/2019       | JJR                 |          |

÷

.



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

#### Notes and Definitions

| ltem | Definition                                         |  |
|------|----------------------------------------------------|--|
| U    | Analyte included in the analysis, but not detected |  |

#### Method Reference Acronyms

| Colilert | Colilert, IDEXX Laboratories, Inc.                                 |
|----------|--------------------------------------------------------------------|
| EPA      | Manual of Methods for Chemical Analysis of Water and Wastes, USEPA |
| GS       | USGS Techniques of Water-Resources Investigations                  |
| HH       | Hach Spectrophotometer Procedures Manual                           |
| SM       | Standard Methods for the Examination of Water and Wastewater       |
| SW       | Test methods for Evaluating Solid Waste, SW-846                    |

0 \$ 10 Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

| Attn: Monica Lowe                                                                                                                     | a Lowe                                                                                                                                        |              |                                |                   |                          |                 | Matrix | Type | Γ.        |                                |                                                   |                                         |                              |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------|-------------------|--------------------------|-----------------|--------|------|-----------|--------------------------------|---------------------------------------------------|-----------------------------------------|------------------------------|----------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                       |                                                                                                                                               |              |                                |                   |                          |                 |        |      |           |                                |                                                   |                                         | İ                            |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3775 Adams Street<br>Garden City, Idaho 83<br>Tel. (208) 387–6255<br>Fax (208) 387–6391<br>Purchase Order:<br>Project:<br>Sampler(s): | 3775 Adams Street<br>Garden City, Idaho 83714–6418<br>Tel. (208) 387–6255<br>Fax (208) 387–6391<br>Purchase Order:<br>Project:<br>Sampler(s): | 714-641{     | 8<br>63046445<br>Stormwater-PI | 45<br>ater-PI     |                          | S               |        |      | 90        | a                              | PAI-DK01                                          | 1.205.A93 - 1                           | 7.005 A93 - n5. d<br>2.345.2 |                |                                 | E and the second s |
| Lab#                                                                                                                                  | Begin<br>Date                                                                                                                                 | End<br>Date  | Begin<br>Tme                   | End               | Sample Identification    | Sampler Initial | Water  | Grab | Composite | COD - Hach 80                  | TPS - 5M 2540<br>TKN - Perstorn<br>TP - 5PA 200.7 | Octhophosophate<br>Total As. Cd. Pt     | Diss. Cd Cu. P.              | E. Coll - IDEX | MS - seanbhath<br>Hardness - SM | 0054 MS - 8HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| S 1000 HI                                                                                                                             | 4/14/19                                                                                                                                       | $\backslash$ | 0013                           | $\backslash$      | 19W-EO-14091             | TWP             | X      | ×    |           |                                |                                                   |                                         |                              | ×              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9                                                                                                                                     | 4/14/4                                                                                                                                        | 1            | 0047                           | $\mathbf{i}$      | 190414-11-MG             | TWAY            | X      | X    | -         |                                |                                                   |                                         |                              | X              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                       | 14/14/14                                                                                                                                      | 1            | 6009                           | ١                 | 190414 - 12- WG          | ABC             | -      | ×    |           |                                |                                                   |                                         |                              | x              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| す                                                                                                                                     | 4/14/14                                                                                                                                       | 1            | 0025                           | 1                 | 190414 - 14 - WG         | ABC             | ¥<br>v | ×    |           |                                |                                                   |                                         |                              | X              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.0-                                                                                                                                  | 4/14/14                                                                                                                                       | 1            | oot oot                        | 1                 | 120-14-14-001            | ABC             | R      | X    |           |                                |                                                   |                                         |                              | X              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 90-                                                                                                                                   | 4/14/14                                                                                                                                       |              | 1200                           |                   | 10/ - 1/ - 101           | Wer             | ۶<br>د | X    |           |                                |                                                   |                                         |                              | 2              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                       | Relinguished by (Sign)                                                                                                                        | (sign)       |                                | Date & Time       | me<br>Received by (sign) |                 |        |      | Co        | Comments/Special Instructions; | Speci                                             | al Inst                                 | ructio                       |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| X                                                                                                                                     | 3                                                                                                                                             |              | 4/1                            | ranstern<br>//9 C | Vista V                  | 4/14/<br>06     | 0      |      |           |                                | E.C.                                              | , i i i i i i i i i i i i i i i i i i i |                              |                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Report Date: 04/26/2019 10:51



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### Samples in this Report

| Lab ID     | Sample | Sample Description | Matrix Qualifiers | Date Sampled | Date Received |
|------------|--------|--------------------|-------------------|--------------|---------------|
| 9AC0014-01 | ACST1C | 190414-03-WC       | Water             | 04/14/2019   | 04/14/2019    |
| 9AC0014-02 | ACST1C | 190414-11-WC       | Water             | 04/14/2019   | 04/14/2019    |



#### **Analysis Report**

| Location:              | ACST1      | IC         |            |                   |               | Location Description:        | 190414-03        | 3-WC             |                     |      |
|------------------------|------------|------------|------------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|------|
| Date/Time Collected    | d: 04/13/2 | 2019 23:37 | ' - 04/14/ | 2019 10:33        |               |                              |                  |                  |                     |      |
| Lab Number:            | 9AC00      | 14-01      |            |                   |               | Sample Collector:            | ABC              |                  |                     |      |
| Sample Type:           | Compo      | osite      |            |                   |               | Sample Matrix:               | Water            |                  |                     |      |
| Analyte Name           | Batch      | Result     | Units      | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual |
| Wet Chemistry          |            |            |            |                   |               |                              |                  |                  |                     |      |
| Ammonia, as N          | B9D2001    | 0.483      | mg/L       | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 04/20/19         | 4/20/19 14:25    | BAK                 |      |
| BOD5                   | B9D1511    | 11.8       | mg/L       | 2.00              | 2.00          | SM 5210 B-2001               | 04/15/19         | 4/20/19 9:44     | ALG                 |      |
| COD                    | B9D1503    | 66.0       | mg/L       | 7.00              | 7.00          | SM 5220 D-2017               | 04/15/19         | 4/15/19 9:30     | ASM                 |      |
| Nitrate-Nitrite, as N  | B9D2501    | 0.157      | mg/L       | 0.0250            | 0.0250        | EPA 353.2                    | 04/25/19         | 4/25/19 8:38     | JAL                 |      |
| TKN                    | B9D1604    | 2.00       | mg/L       | 0.130             | 0.130         | EPA 351.2                    | 04/16/19         | 4/17/19 9:33     | LRF                 |      |
| Total Dissolved Solids | B9D1516    | 30.3       | mg/L       | 20.0              | 20.0          | SM 2540 C-1997               | 04/15/19         | 4/15/19 13:13    | ALD                 |      |
| Total Suspended Solids | B9D1513    | 37.5       | mg/L       | 0.900             | 0.900         | SM 2540 D-1997               | 04/15/19         | 4/15/19 10:43    | CPC                 |      |
| Turbidity              | B9D1504    | 12.7       | NTU        | 0.3               | 0.3           | EPA180.1 R2.0 (1993)         | 04/15/19         | 4/15/19 8:45     | ALG                 |      |
| Dissolved Wet Ch       | nemistry   |            |            |                   |               |                              |                  |                  |                     |      |
| Orthophosphate, as P   | B9D1505    | 0.132      | mg/L       | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 04/15/19         | 4/15/19 9:20     | ALN                 |      |
| Total Metals           |            |            |            |                   |               |                              |                  |                  |                     |      |
| Mercury                | B9D1712    | 8.51E-3    | ug/L       | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 04/18/19         | 4/19/19 8:50     | SAS                 |      |
| Arsenic                | B9D1519    | <5.72      | ug/L       | 5.72              | 5.72          | EPA 200.7                    | 04/15/19         | 4/16/19 10:28    | AMO                 | U    |
| Cadmium                | B9D1519    | <1.00      | ug/L       | 1.00              | 1.00          | EPA 200.7                    | 04/15/19         | 4/16/19 10:28    | AMO                 | U    |
| Calcium                | B9D1519    | 4.44       | mg/L       | 0.0500            | 0.0500        | EPA 200.7                    | 04/15/19         | 4/16/19 10:28    | AMO                 |      |
| Lead                   | B9D1519    | <6.94      | ug/L       | 6.94              | 6.94          | EPA 200.7                    | 04/15/19         | 4/16/19 10:28    | AMO                 | U    |
| Magnesium              | B9D1519    | 601        | ug/L       | 50.0              | 50.0          | EPA 200.7                    | 04/15/19         | 4/16/19 10:28    | AMO                 |      |
| Phosphorus as P        | B9D1519    | 0.303      | mg/L       | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 04/15/19         | 4/16/19 10:28    | AMO                 |      |
| Hardness               | B9D1519    | 13.6       | mg/L       |                   |               | EPA 200.7                    | 04/15/19         | 4/16/19 10:28    | AMO                 |      |
| Dissolved Metals       |            |            |            |                   |               |                              |                  |                  |                     |      |
| Cadmium                | B9D1617    | <1.00      | ug/L       | 1.00              | 1.00          | EPA 200.7                    | 04/16/19         | 4/16/19 15:21    | EDM                 | U    |
| Copper                 | B9D1617    | <10.0      | ug/L       | 10.0              | 10.0          | EPA 200.7                    | 04/16/19         | 4/16/19 15:21    | EDM                 | U    |
| Lead                   | B9D1617    | <6.94      | ug/L       | 6.94              | 6.94          | EPA 200.7                    | 04/16/19         | 4/16/19 15:21    | EDM                 | U    |
| Zinc                   | B9D1617    | 20.2       | ug/L       | 10.0              | 10.0          | EPA 200.7                    | 04/16/19         | 4/16/19 15:21    | EDM                 |      |



#### **Analysis Report**

| Location:                         | ACST                |        |          |                   |               | Location Description:        | 190414-1         | 1-WC             |                    |          |
|-----------------------------------|---------------------|--------|----------|-------------------|---------------|------------------------------|------------------|------------------|--------------------|----------|
| Date/Time Collecte<br>Lab Number: | d: 04/13/2<br>9AC00 |        | - 04/14/ | /2019 07:41       |               | Sample Collector:            | ABC              |                  |                    |          |
| Sample Type:                      | Compo               |        |          |                   |               | Sample Matrix:               | Water            |                  |                    |          |
| Sample Type.                      | Compo               | JSILE  |          |                   |               | Sample Matrix.               | Water            |                  |                    |          |
| Analyte Name                      | Batch               | Result | Units    | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analys<br>Initials |          |
| Wet Chemistry                     |                     |        |          |                   |               |                              |                  |                  |                    |          |
| Ammonia, as N                     | B9D2001             | 0.642  | mg/L     | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 04/20/19         | 4/20/19 15:10    | BAK                |          |
| BOD5                              | B9D1511             | 10.7   | mg/L     | 2.00              | 2.00          | SM 5210 B-2001               | 04/15/19         | 4/20/19 9:38     | ALG                | Chlor-01 |
| COD                               | B9D1503             | 125    | mg/L     | 7.00              | 7.00          | SM 5220 D-2017               | 04/15/19         | 4/15/19 9:30     | ASM                |          |
| Nitrate-Nitrite, as N             | B9D2501             | 0.177  | mg/L     | 0.0250            | 0.0250        | EPA 353.2                    | 04/25/19         | 4/25/19 8:43     | JAL                |          |
| TKN                               | B9D1604             | 2.64   | mg/L     | 0.130             | 0.130         | EPA 351.2                    | 04/16/19         | 4/17/19 9:34     | LRF                |          |
| Total Dissolved Solids            | B9D1516             | 49.8   | mg/L     | 20.0              | 20.0          | SM 2540 C-1997               | 04/15/19         | 4/15/19 13:13    | ALD                |          |
| Total Suspended Solids            | B9D1513             | 128    | mg/L     | 0.900             | 0.900         | SM 2540 D-1997               | 04/15/19         | 4/15/19 10:43    | CPC                |          |
| Turbidity                         | B9D1504             | 46.1   | NTU      | 0.6               | 0.3           | EPA180.1 R2.0 (1993)         | 04/15/19         | 4/15/19 8:59     | ALG                | D        |
| Dissolved Wet Ch                  | emistry             |        | ,        |                   |               |                              |                  |                  |                    |          |
| Orthophosphate, as P              | B9D1505             | 0.143  | mg/L     | 2.00E-3           | 2.00E-3       | EPA 365.1                    | 04/15/19         | 4/15/19 9:21     | ALN                |          |
| Total Metals                      |                     |        |          |                   |               |                              |                  |                  |                    |          |
| Mercury                           | B9D1712             | 0.0160 | ug/L     | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 04/18/19         | 4/19/19 9:25     | SAS                |          |
| Arsenic                           | B9D1519             | <5.72  | ug/L     | 5.72              | 5.72          | EPA 200.7                    | 04/15/19         | 4/16/19 10:53    | AMO                | U        |
| Cadmium                           | B9D1519             | <1.00  | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 04/15/19         | 4/16/19 10:53    | AMO                | U        |
| Calcium                           | B9D1519             | 6.62   | mg/L     | 0.0500            | 0.0500        | EPA 200.7                    | 04/15/19         | 4/16/19 10:53    | AMO                |          |
| Lead                              | B9D1519             | 9.64   | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 04/15/19         | 4/16/19 10:53    | AMO                |          |
| Magnesium                         | B9D1519             | 1790   | ug/L     | 50.0              | 50.0          | EPA 200.7                    | 04/15/19         | 4/16/19 10:53    | AMO                |          |
| Phosphorus as P                   | B9D1519             | 0.420  | mg/L     | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 04/15/19         | 4/16/19 10:53    | AMO                |          |
| Hardness                          | B9D1519             | 23.9   | mg/L     |                   |               | EPA 200.7                    | 04/15/19         | 4/16/19 10:53    | AMO                |          |
| Dissolved Metals                  |                     |        |          |                   |               |                              |                  |                  |                    |          |
| Cadmium                           | B9D1617             | <1.00  | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 04/16/19         | 4/16/19 16:37    | EDM                | U        |
| Copper                            | B9D1617             | <10.0  | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 04/16/19         | 4/16/19 16:37    | EDM                | U        |
| Lead                              | B9D1617             | <6.94  | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 04/16/19         | 4/16/19 16:37    | EDM                | U        |
| Zinc                              | B9D1617             | 12.6   | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 04/16/19         | 4/16/19 16:37    | EDM                |          |



| Analyte Name                                                     | Method<br>Blank | Units   | %<br>Recovery                                    | Recovery<br>Limits | RPD  | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier                                                                                                         |
|------------------------------------------------------------------|-----------------|---------|--------------------------------------------------|--------------------|------|--------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|
| Wet Chemistry                                                    |                 |         |                                                  |                    |      |              |                  |                     |                                                                                                                   |
| Batch: B9D1503<br>Blank (B9D1503-BLK1)<br>COD                    | < 7             | mg/L    |                                                  |                    |      |              | 04/15/2019       | ASM                 | U                                                                                                                 |
| LCS (B9D1503-BS1)<br>COD                                         |                 |         | 98.3                                             | 90-110             |      |              | 04/15/2019       | ASM                 |                                                                                                                   |
| Duplicate (B9D1503-DUP1)<br>COD                                  | Source ID: 9AC  | 0014-01 |                                                  |                    | 2.99 | 10           | 04/15/2019       | ASM                 |                                                                                                                   |
| Batch: B9D1504<br>Blank (B9D1504-BLK1)<br>Turbidity              | < 0.3           | NTU     |                                                  |                    |      |              | 04/15/2019       | ALG                 | U                                                                                                                 |
| LCS (B9D1504-BS1)<br>Turbidity                                   |                 |         | 101                                              | 90-110             |      |              | 04/15/2019       | ALG                 |                                                                                                                   |
| Duplicate (B9D1504-DUP1)<br>Turbidity                            | Source ID: 9AC  | 0014-01 | nan nder annan na fan fan fan fan fan fan fan fa |                    | 5.10 | 25           | 04/15/2019       | ALG                 | 1. MA (MARCAN) |
| Batch: B9D1511<br>Blank (B9D1511-BLK1)<br>BOD5                   | < 2             | mg/L    |                                                  |                    |      |              | 04/20/2019       | ALG                 | U                                                                                                                 |
| LCS (B9D1511-BS1)<br>BOD5                                        |                 |         | 103                                              | 84.6-115.4         |      |              | 04/20/2019       | ALG                 |                                                                                                                   |
| LCS (B9D1511-BS2)<br>BOD5                                        |                 |         | 102                                              | 84.6-115.4         |      |              | 04/20/2019       | ALG                 |                                                                                                                   |
| Duplicate (B9D1511-DUP1)<br>BOD5                                 | Source ID: 9EP  | 0036-01 |                                                  |                    | 1.05 | 30           | 04/20/2019       | ALG                 | D                                                                                                                 |
| Batch: B9D1513<br>Blank (B9D1513-BLK1)<br>Total Suspended Solids | < 0.9           | mg/L    |                                                  |                    |      |              | 04/15/2019       | CPC                 | U                                                                                                                 |
| LCS (B9D1513-BS1)<br>Total Suspended Solids                      |                 |         | 99.8                                             | 90-110             |      |              | 04/15/2019       | CPC                 |                                                                                                                   |
| Duplicate (B9D1513-DUP1)<br>Total Suspended Solids               | Source ID: 9LS  | 0143-01 |                                                  |                    | 1.27 | 20           | 04/15/2019       | CPC                 |                                                                                                                   |



| Analyte Name                                       |        | Method<br>Blank | Units     | %<br>Recovery | Recovery<br>Limits                           | RPD    | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|----------------------------------------------------|--------|-----------------|-----------|---------------|----------------------------------------------|--------|--------------|------------------|---------------------|-----------|
| Wet Chemistry (Contir                              | nued)  |                 |           |               |                                              |        |              |                  |                     |           |
| Batch: B9D1516<br>Blank (B9D1516-BLK1)             |        | - 00            | 4         |               |                                              |        |              | 0.445-100.40     |                     |           |
| Total Dissolved Solids                             |        | < 20            | mg/L      |               |                                              |        |              | 04/15/2019       | ALD                 | U         |
| LCS (B9D1516-BS1)<br>Total Dissolved Solids        |        |                 |           | 97.3          | 90-110                                       |        |              | 04/15/2019       | ALD                 |           |
| Duplicate (B9D1516-DUP1)<br>Total Dissolved Solids | Source | D: 9AC          | 0014-01   |               |                                              | 20.7   | 10           | 04/15/2019       | ALD                 | QC-02     |
| Batch: B9D1604<br>Blank (B9D1604-BLK1)<br>TKN      |        | < 0.13          | mg/L      |               |                                              |        |              | 04/17/2019       | LRF                 | U         |
| LCS (B9D1604-BS1)<br>TKN                           |        |                 |           | 108           | 80-120                                       |        |              | 04/17/2019       | LRF                 |           |
| LCS (B9D1604-BS2)<br>TKN                           |        |                 |           | 102           | 80-120                                       |        |              | 04/17/2019       | LRF                 |           |
| Duplicate (B9D1604-DUP1)<br>TKN                    | Source | ID: 9LS0        | 130-01    |               | 411/2010-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | 0.0177 | 20 .         | 04/17/2019       | LRF                 | D         |
| Duplicate (B9D1604-DUP2)<br>TKN                    | Source | ID: 9WB         | 0253-08   |               | الم      | 7.81   | 20           | 04/17/2019       | LRF                 | D         |
| Duplicate (B9D1604-DUP3)<br>TKN                    | Source | ID: 9PK         | 007-01    |               |                                              | 0.0747 | 20           | 04/17/2019       | LRF                 |           |
| Matrix Spike (B9D1604-MS1)<br>TKN                  | Sourc  | ce ID: 9LS      | \$0130-01 | 95.9          | 80-120                                       |        |              | 04/17/2019       | LRF                 | D         |
| Matrix Spike (B9D1604-MS2)<br>TKN                  | Sourc  | ce ID: 9W       | B0253-08  | 99.6          | 80-120                                       |        | ****         | 04/17/2019       | LRF                 | D         |
| Matrix Spike (B9D1604-MS3)<br>TKN                  | Sourc  | ce ID: 9Pł      | (0007-01  | 103           | 80-120                                       |        |              | 04/17/2019       | LRF                 |           |
| Matrix Spike Dup (B9D1604-N<br>TKN                 | ISD1)  | Source          | D: 9LS013 | 0-01<br>97.7  | 80-120                                       | 1.43   | 20           | 04/17/2019       | LRF                 | D         |
| Matrix Spike Dup (B9D1604-M<br>TKN                 | ISD2)  | Source          | D: 9WB02  | 53-08<br>90.6 | 80-120                                       | 7.96   | 20           | 04/17/2019       | LRF                 | D         |
| Matrix Spike Dup (B9D1604-N<br>TKN                 | ISD3)  | Source          | D: 9PK000 | 07-01<br>99.0 | 80-120                                       | 3.93   | 20           | 04/17/2019       | LRF                 |           |



| Analyte Name                                                    | Method<br>Blank      | Units                                                     | %<br>Recovery | Recovery<br>Limits | RPD   | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier                                                                      |
|-----------------------------------------------------------------|----------------------|-----------------------------------------------------------|---------------|--------------------|-------|--------------|------------------|---------------------|--------------------------------------------------------------------------------|
| Wet Chemistry (Contin                                           | ued)                 |                                                           |               |                    |       |              |                  |                     |                                                                                |
| Batch: B9D2001<br>Blank (B9D2001-BLK1)<br>Ammonia, as N         | < 0.035              | mg/L                                                      |               |                    |       |              | 04/20/2019       | BAK                 | U                                                                              |
| LCS (B9D2001-BS1)<br>Ammonia, as N                              |                      |                                                           | 101           | 90-110             |       |              | 04/20/2019       | BAK                 |                                                                                |
| Duplicate (B9D2001-DUP1)<br>Ammonia, as N                       | Source ID: 9BB       | 0247-01                                                   | vi            |                    | 1.22  | 10           | 04/20/2019       | BAK                 |                                                                                |
| Matrix Spike (B9D2001-MS1)<br>Ammonia, as N                     | Source ID: 9E        | B0247-01                                                  | 103           | 80-120             |       |              | 04/20/2019       | BAK                 |                                                                                |
| Matrix Spike Dup (B9D2001-N<br>Ammonia, as N                    | /ISD1) Source        | ID: 9BB0247                                               | 7-01<br>103   | 80-120             | 0.203 | 10           | 04/20/2019       | BAK                 |                                                                                |
| Batch: B9D2501<br>Blank (B9D2501-BLK1)<br>Nitrate-Nitrite, as N | < 0.025              | mg/L                                                      |               |                    |       |              | 04/25/2019       | JAL                 | U                                                                              |
| Blank (B9D2501-BLK2)<br>Nitrate-Nitrite, as N                   | < 0.025              | mg/L                                                      |               |                    |       |              | 04/25/2019       | JAL                 | U                                                                              |
| LCS (B9D2501-BS1)<br>Nitrate-Nitrite, as N                      |                      |                                                           | 103           | 90-110             |       |              | 04/25/2019       | JAL                 | ann an cal a ch fe (Mrid a Marsain a ch an |
| LCS (B9D2501-BS2)<br>Nitrate-Nitrite, as N                      |                      | n - 649.64964.660.689.689.669.669.669.669.669.669.669.669 | 107           | 90-110             |       |              | 04/25/2019       | JAL                 |                                                                                |
| Duplicate (B9D2501-DUP1)<br>Nitrate-Nitrite, as N               | Source ID: 9AC       | 0014-01                                                   |               |                    | 5.36  | 10           | 04/25/2019       | JAL                 |                                                                                |
| Duplicate (B9D2501-DUP2)<br>Nitrate-Nitrite, as N               | Source ID: 9PK       | 0007-01                                                   |               |                    | 1.79  | 10           | 04/25/2019       | JAL                 |                                                                                |
| Duplicate (B9D2501-DUP3)<br>Nitrate-Nitrite, as N               | Source ID: 9PK       | 0007-11                                                   |               |                    | 4.94  | 10           | 04/25/2019       | JAL                 |                                                                                |
| Matrix Spike (B9D2501-MS1)<br>Nitrate-Nitrite, as N             | Source ID: 9A        | C0014-01                                                  | 104           | 90-110             |       |              | 04/25/2019       | JAL                 |                                                                                |
| Matrix Spike (B9D2501-MS2)<br>Nitrate-Nitrite, as N             | Source ID: 9F        | PK0007-01                                                 | 102           | 90-110             |       |              | 04/25/2019       | JAL                 |                                                                                |
| Matrix Spike (B9D2501-MS3)<br>Nitrate-Nitrite, as N             | Source ID: 9F        | °K0007-11                                                 | 107           | 90-110             |       |              | 04/25/2019       | JAL                 |                                                                                |
| Matrix Spike Dup (B9D2501-N<br>Nitrate-Nitrite, as N            | <b>/SD1)</b> Source  | ID: 9AC0014                                               | I-01<br>102   | 90-110             | 1.76  | 10           | 04/25/2019       | JAL                 |                                                                                |
| Matrix Spike Dup (B9D2501-N<br>Nitrate-Nitrite, as N            | <b>(ISD2)</b> Source | ID: 9PK0007                                               | 7-01<br>105   | 90-110             | 2.19  | 10           | 04/25/2019       | JAL                 |                                                                                |
| Matrix Spike Dup (B9D2501-N<br>Nitrate-Nitrite, as N            | ISD3) Source         | ID: 9PK0007                                               | 7-11<br>105   | 90-110             | 1.38  | .10          | 04/25/2019       | JAL                 |                                                                                |



| Analyte Name                                            | Method<br>Blank | Units     | %<br>Recovery | Recovery<br>Limits | RPD                                                                                                            | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|---------------------------------------------------------|-----------------|-----------|---------------|--------------------|----------------------------------------------------------------------------------------------------------------|--------------|------------------|---------------------|-----------|
| Dissolved Wet Chemistry                                 |                 |           |               |                    |                                                                                                                |              |                  |                     |           |
| Batch: B9D1505<br>Blank (B9D1505-BLK1)                  | < 0.002         |           |               |                    |                                                                                                                |              | 04/45/0040       | A1 N1               |           |
| Orthophosphate, as P                                    | < 0.002         | mg/L      |               |                    |                                                                                                                |              | 04/15/2019       | ALN                 | U         |
| LCS (B9D1505-BS1)<br>Orthophosphate, as P               |                 |           | 102           | 90-110             |                                                                                                                |              | 04/15/2019       | ALN                 |           |
| Duplicate (B9D1505-DUP1) Sour<br>Orthophosphate, as P   | ce ID: 9WE      | 30321-01  |               |                    | 0.990                                                                                                          | 10           | 04/15/2019       | ALN                 |           |
| Matrix Spike (B9D1505-MS1) Sou<br>Orthophosphate, as P  | urce ID: 9V     | VB0321-01 | 105           | 90-110             | anan karan kar |              | 04/15/2019       | ALN                 |           |
| Matrix Spike Dup (B9D1505-MSD1)<br>Orthophosphate, as P | Source          | ID: 9WB03 | 21-01<br>104  | 90-110             | 0.347                                                                                                          | 10           | 04/15/2019       | ALN                 |           |
|                                                         |                 |           |               |                    |                                                                                                                |              |                  |                     |           |



|                                | Method                                                                    |            | %        | Recovery |        | RPD   | Date       | Analyst  |           |
|--------------------------------|---------------------------------------------------------------------------|------------|----------|----------|--------|-------|------------|----------|-----------|
| Analyte Name                   | Blank                                                                     | Units      | Recovery | Limits   | RPD    | Limit | Analyzed   | Initials | Qualifier |
| Total Metals                   |                                                                           |            |          |          |        |       |            |          |           |
| Batch: B9D1519                 |                                                                           |            |          |          |        |       |            |          |           |
| Blank (B9D1519-BLK1)           |                                                                           |            |          |          |        |       |            |          |           |
| Arsenic                        | < 5.72                                                                    | ug/L       |          |          |        |       | 04/16/2019 | AMO      | U         |
| Cadmium                        | < 1                                                                       | ug/L       |          |          |        |       | 04/16/2019 | AMO      | U         |
| Calcium                        | < 0.05                                                                    | mg/L       |          |          |        |       | 04/16/2019 | AMO      | U         |
| Lead                           | < 6.94                                                                    | ug/L       |          |          |        |       | 04/16/2019 | AMO      | U         |
| Magnesium                      | < 50                                                                      | ug/L       |          |          |        |       | 04/16/2019 | AMO      | U         |
| Phosphorus as P                | < 0.006                                                                   | mg/L       |          |          |        |       | 04/16/2019 | AMO      | U         |
| LCS (B9D1519-BS1)              |                                                                           |            |          |          |        |       |            |          |           |
| Arsenic                        |                                                                           |            | 99.5     | 85-115   |        |       | 04/16/2019 | AMO      |           |
| Cadmium                        |                                                                           |            | 104      | 85-115   |        |       | 04/16/2019 | AMO      |           |
| Calcium                        |                                                                           |            | 96.7     | 85-115   |        |       | 04/16/2019 | AMO      |           |
| Lead                           |                                                                           |            | 103      | 85-115   |        |       | 04/16/2019 | AMO      |           |
| Magnesium                      |                                                                           |            | 99.5     | 85-115   |        |       | 04/16/2019 | AMO      |           |
| Phosphorus as P                |                                                                           |            | 106      | 85-115   |        |       | 04/16/2019 | AMO      |           |
|                                | rce ID: 9AC                                                               | 0014-01    |          |          |        |       |            |          |           |
| Arsenic                        |                                                                           |            |          |          | NR     | 20    | 04/16/2019 | AMO      | U         |
| Cadmium                        |                                                                           |            |          |          | NR     | 20    | 04/16/2019 | AMO      | U         |
| Calcium                        |                                                                           |            |          |          | 0.205  | 20    | 04/16/2019 | AMO      | U         |
| Lead                           |                                                                           |            |          |          | NR     | 20    | 04/16/2019 | AMO      | U         |
| Magnesium                      |                                                                           |            |          |          | 0.153  | 20    | 04/16/2019 | AMO      |           |
| Phosphorus as P                | a i Thu Phil and P do Bair dal mile and a del control end end end end end |            |          | ***      | 0.175  | 20    | 04/16/2019 | AMO      |           |
| 1 1 1                          | ource ID: 9A                                                              | C0014-01   | 100      |          |        |       |            |          |           |
| Arsenic                        |                                                                           |            | 106      | 70-130   |        |       | 04/16/2019 | AMO      |           |
| Cadmium                        |                                                                           |            | 105      | 70-130   |        |       | 04/16/2019 | AMO      |           |
| Calcium                        |                                                                           |            | 97.9     | 70-130   |        |       | 04/16/2019 | AMO      |           |
| Lead                           |                                                                           |            | 111      | 70-130   |        |       | 04/16/2019 | AMO      |           |
| Magnesium                      |                                                                           |            | 102      | 70-130   |        |       | 04/16/2019 | AMO      |           |
| Phosphorus as P                |                                                                           |            | 116      | 70-130   |        |       | 04/16/2019 | AMO      |           |
| Matrix Spike Dup (B9D1519-MSD1 | ) Source                                                                  | ID: 9AC001 |          |          |        |       |            |          |           |
| Arsenic                        |                                                                           |            | 106      | 70-130   | 0.0878 | 20    | 04/16/2019 | AMO      |           |
| Cadmium                        |                                                                           |            | 106      | 70-130   | 0.137  | 20    | 04/16/2019 | AMO      |           |
| Calcium                        |                                                                           |            | 97.8     | 70-130   | 0.118  | 20    | 04/16/2019 | AMO      |           |
| Lead                           |                                                                           |            | 108      | 70-130   | 2.49   | 20    | 04/16/2019 | AMO      |           |
| Magnesium                      |                                                                           |            | 103      | 70-130   | 1.15   | 20    | 04/16/2019 | AMO      |           |
| Phosphorus as P                |                                                                           |            | 113      | 70-130   | 1.88   | 20    | 04/16/2019 | AMO      |           |



| Analyte Name                           | Method<br>Blank | Units           | %<br>Recovery | Recovery<br>Limits | RPD  | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|----------------------------------------|-----------------|-----------------|---------------|--------------------|------|--------------|------------------|---------------------|-----------|
| Total Metals (Continue                 | ed)             |                 |               |                    |      |              |                  |                     |           |
| Batch: B9D1712<br>Blank (B9D1712-BLK1) |                 |                 |               |                    |      |              |                  |                     |           |
| Mercury                                | < 0.00471       | ug/L            |               |                    |      |              | 04/19/2019       | SAS                 | U         |
| LCS (B9D1712-BS1)<br>Mercury           |                 |                 | 100           | 85-115             |      |              | 04/19/2019       | SAS                 |           |
| Duplicate (B9D1712-DUP1)<br>Mercury    | Source ID: 9AC  | 014-01          |               |                    | 6.39 | 20           | 04/19/2019       | SAS                 |           |
| Duplicate (B9D1712-DUP2)<br>Mercury    | Source ID: 9EP0 | 032-01          |               |                    | NR   | 20           | 04/19/2019       | SAS                 | U         |
| Matrix Spike (B9D1712-MS1)<br>Mercury  | Source ID: 9A   | C0014-01        | 101           | 70-130             |      |              | 04/19/2019       | SAS                 |           |
| Matrix Spike (B9D1712-MS2)<br>Mercury  | Source ID: 9EI  | <b>P0032-01</b> | 97.8          | 70-130             |      |              | 04/19/2019       | SAS                 |           |
| Matrix Spike Dup (B9D1712-M<br>Mercury | MSD1) Source    | ID: 9AC00       | 14-01<br>104  | 70-130             | 2.94 | 20           | 04/19/2019       | SAS                 |           |
| Matrix Spike Dup (B9D1712-M<br>Mercury | MSD2) Source    | ID: 9EP003      | 32-01<br>95.4 | 70-130             | 2.44 | 20           | 04/19/2019       | SAS                 | *****     |



|                             | Method                                               |            | %           | Recovery                                                                |               | RPD      | Date                     | Analyst    | 0 117     |
|-----------------------------|------------------------------------------------------|------------|-------------|-------------------------------------------------------------------------|---------------|----------|--------------------------|------------|-----------|
| Analyte Name                | Blank                                                | Units      | Recovery    | Limits                                                                  | RPD           | Limit    | Analyzed                 | Initials   | Qualifier |
| Dissolved Metals            |                                                      |            |             |                                                                         |               |          |                          |            |           |
| Batch: B9D1617              |                                                      |            |             |                                                                         |               |          |                          |            |           |
| Blank (B9D1617-BLK1)        |                                                      |            |             |                                                                         |               |          |                          |            |           |
| Cadmium                     | < 1                                                  | ug/L       |             |                                                                         |               |          | 04/16/2019               | EDM        | U         |
| Copper                      | < 10                                                 | ug/L       |             |                                                                         |               |          | 04/16/2019               | EDM        | U         |
| Lead                        | < 6.94                                               | ug/L       |             |                                                                         |               |          | 04/16/2019               | EDM        | U         |
| Zinc                        | < 10                                                 | ug/L       |             | ereferanse men and haf also are van also ant blea ble had also ble blea |               |          | 04/16/2019               | EDM        | U         |
| LCS (B9D1617-BS1)           |                                                      |            |             |                                                                         |               |          |                          |            |           |
| Cadmium                     |                                                      |            | 99.4        | 85-115                                                                  |               |          | 04/16/2019               | EDM        |           |
| Copper                      |                                                      |            | 96.0        | 85-115                                                                  |               |          | 04/16/2019               | EDM        |           |
| Lead                        |                                                      |            | 102         | 85-115                                                                  |               |          | 04/16/2019               | EDM        |           |
| Zinc                        |                                                      |            | 98.6        | 85-115                                                                  |               |          | 04/16/2019               | EDM        |           |
|                             | Source ID: 9AC                                       | 0014-01    |             |                                                                         |               |          |                          |            |           |
| Cadmium                     |                                                      |            |             |                                                                         | NR            | 10       | 04/16/2019               | EDM        | U         |
| Copper                      |                                                      |            |             |                                                                         | NR            | 10       | 04/16/2019               | EDM        | U         |
| Lead                        |                                                      |            |             |                                                                         | NR            | 10       | 04/16/2019<br>04/16/2019 | EDM        | U         |
|                             | PARTICLE ( ( ) / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / |            |             |                                                                         | 0.0788        | 10       | 04/16/2019               | EDM        |           |
|                             | Source ID: 9AC                                       | 0014-02    |             |                                                                         |               |          |                          |            |           |
| Cadmium                     |                                                      |            |             |                                                                         | NR            | 10       | 04/16/2019               | EDM        | U         |
| Copper                      |                                                      |            |             |                                                                         | NR            | 10       | 04/16/2019               | EDM        | U<br>U    |
| Lead<br>Zinc                |                                                      |            |             |                                                                         | NR<br>6.18    | 10<br>10 | 04/16/2019<br>04/16/2019 | EDM<br>EDM | 0         |
|                             |                                                      |            |             |                                                                         | 0.10          | 10       | 04/10/2013               |            |           |
| Matrix Spike (B9D1617-MS1)  | Source ID: 9A                                        | C0014-01   | 400         | 70 400                                                                  |               |          | 04/40/0040               |            |           |
| Cadmium                     |                                                      |            | 102         | 70-130                                                                  |               |          | 04/16/2019               | EDM        |           |
| Copper                      |                                                      |            | 107<br>106  | 70-130<br>70-130                                                        |               |          | 04/16/2019<br>04/16/2019 | EDM<br>EDM |           |
| Lead<br>Zinc                |                                                      |            | 99.8        | 70-130                                                                  |               |          | 04/16/2019               | EDM        |           |
|                             |                                                      |            | 00.0        | 10100                                                                   |               |          | 0-110/2010               |            |           |
| Matrix Spike (B9D1617-MS2)  | Source ID: 9A                                        | C0014-02   | 400         | 70.400                                                                  |               |          | 04/46/0040               | EDM        |           |
| Cadmium                     |                                                      |            | 102         | 70-130                                                                  |               |          | 04/16/2019               | EDM        |           |
| Copper                      |                                                      |            | 106<br>105  | 70-130<br>70-130                                                        |               |          | 04/16/2019<br>04/16/2019 | EDM<br>EDM |           |
| Lead<br>Zinc                |                                                      |            | 105         | 70-130                                                                  |               |          | 04/16/2019               | EDM        |           |
|                             |                                                      |            | -           | 10-100                                                                  |               |          | 010/2018                 |            |           |
| Matrix Spike Dup (B9D1617-M | SD1) Source                                          | ID: 9AC001 |             | 70 400                                                                  | 0.000         | 40       | 04/40/0040               |            |           |
| Cadmium                     |                                                      |            | 102         | 70-130                                                                  | 0.288         | 10       | 04/16/2019               | EDM        |           |
| Copper                      |                                                      |            | 99.0        | 70-130                                                                  | 7.54          | 10       | 04/16/2019               | EDM        |           |
| Lead<br>Zinc                |                                                      |            | 104<br>98.8 | 70-130<br>70-130                                                        | 1.74<br>0.723 | 10<br>10 | 04/16/2019<br>04/16/2019 | EDM<br>EDM |           |
|                             |                                                      |            |             | 10-100                                                                  | 0.120         | IV       | 010/2018                 |            |           |
| Matrix Spike Dup (B9D1617-M | SD2) Source                                          | ID: 9AC001 |             | 70 / 00                                                                 | 0.0004        | 40       | 04400045                 |            |           |
| Cadmium                     |                                                      |            | 102         | 70-130                                                                  | 0.0601        | 10       | 04/16/2019               | EDM        |           |
| Copper                      |                                                      |            | 105         | 70-130                                                                  | 0.772         | 10       | 04/16/2019               | EDM        |           |
| Lead                        |                                                      |            | 106         | 70-130                                                                  | 0.627         | 10<br>10 | 04/16/2019               | EDM<br>EDM |           |
| Zinc                        |                                                      |            | 101         | 70-130                                                                  | 0.541         | 10       | 04/16/2019               |            | -         |



#### **Notes and Definitions**

| ltem     | Definition                                                                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------|
| Chlor-01 | The sample exhibited a false positive for the chlorine screen.                                                                 |
| D        | Data reported from a dilution                                                                                                  |
| QC-02    | The RPD is greater than the method acceptance criteria. At least one of the values used to calculate the RPD is less than PQL. |
| U        | Analyte included in the analysis, but not detected                                                                             |

#### Method Reference Acronyms

| Colilert | Colilert, IDEXX Laboratories, Inc.                                 |
|----------|--------------------------------------------------------------------|
| EPA      | Manual of Methods for Chemical Analysis of Water and Wastes, USEPA |
| GS       | USGS Techniques of Water-Resources Investigations                  |
| HH       | Hach Spectrophotometer Procedures Manual                           |
| SM       | Standard Methods for the Examination of Water and Wastewater       |
| SW       | Test methods for Evaluating Solid Waste, SW-846                    |
|          |                                                                    |

Tenegon 1Le

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

| Attn: Monica Lowe<br>3775 Adams Street<br>Garden City, Idaho 83714–6418<br>Tel. (208) 387–6391<br>Fax (208) 387–6391<br>Purchase Order:<br>Project:<br>Sampler(s): | a Lowe<br>s Street<br>/, Idaho 83<br>87–6391<br>rder: | 714–6418          |               | 63046445<br>Stormwater-PI<br>Andy Curiton |                           | 5                | · Xitilia | <u>n</u>          |                                             |               | the second se |                                    | 7.005 A93 - n2.02<br>2.245.2 | Colilert    | and the second s |               |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|---------------|-------------------------------------------|---------------------------|------------------|-----------|-------------------|---------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
| Lab#                                                                                                                                                               | Begin<br>Date                                         | End<br>Date       | Begin<br>Time | Time<br>End<br>Time                       | Sample Identification     | Sampler Initials | Water     | Grab<br>Composite | COD - Hsch 800<br>BOD <sup>2</sup> - SM 521 | TSS - SM 2540 | TKN - Perstorn                                                                                                  | Orthophosohate<br>Total As. Cd. Pt | Diss. Cd Cu. Pl              | Coll - IDEX | MS - ssenbrah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NH3 - SM 4500 | Total Container |
| -Hacard-                                                                                                                                                           | 4/13/19                                               | 4/14/19 2337 1033 | 2337          | 1033                                      | 190414 -03-WC             | ABC              | X         | X                 | XX                                          | XX            | Y<br>X                                                                                                          | ,<br>×<br>×                        | XX                           | Y           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X<br>X        | 3               |
| 0,                                                                                                                                                                 | 02 4/13/19 4/14/19 2351                               | 4/14/14           | 1351          | HAD HAD                                   | 190414 - 11 - WC          | 4Bc              | צ         | X                 | ×<br>×                                      | ×<br>×        | ×<br>×                                                                                                          | ×                                  | × ×                          | ×           | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X<br>X        | 5               |
|                                                                                                                                                                    |                                                       |                   |               |                                           |                           |                  |           |                   |                                             |               | _                                                                                                               |                                    |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |                 |
|                                                                                                                                                                    |                                                       |                   |               |                                           |                           |                  |           |                   |                                             |               |                                                                                                                 |                                    |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |
|                                                                                                                                                                    |                                                       |                   |               |                                           |                           |                  |           |                   |                                             |               |                                                                                                                 |                                    |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |
| Relin                                                                                                                                                              | Relinquished by (Sign)                                | r(Sign)           |               | ate & Tir<br>ransfern                     | <b>FIN</b>                |                  |           |                   | Comments/Special Instructions:              | ients/        | pecia                                                                                                           | ll Inst                            | ructio                       | :Su         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                             | R                                                     |                   | 4/17          | 1/14                                      | 1135 Marine K Turste P. 1 | 0+10             |           |                   |                                             |               |                                                                                                                 |                                    |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |
|                                                                                                                                                                    |                                                       |                   |               |                                           |                           |                  |           |                   |                                             | 5             | Z                                                                                                               | a Acourt                           | +                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |
| -000                                                                                                                                                               |                                                       |                   |               |                                           |                           |                  |           |                   |                                             |               |                                                                                                                 |                                    |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/18         | 10/18           |

.

\*Report Date: 06/05/2019 15:07



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

### Samples in this Report

| Lab ID     | Sample       | Sample Description             | Matrix | Qualifiers | Date Sampled | Date Received |
|------------|--------------|--------------------------------|--------|------------|--------------|---------------|
| 9AC0024-01 | ACST1C       | 190516-03-WC                   | Water  |            | 05/16/2019   | 05/17/2019    |
| Comme      | nts:         |                                |        |            |              |               |
|            | No dissolved | parameters. Low sample volume. |        |            |              |               |
| 9AC0024-02 | ACST1C       | 190516-11-WC                   | Water  |            | 05/16/2019   | 05/17/2019    |



### **Analysis Report**

| Location:              | ACST1      | IC         |            |                   |                 | Location Description:        | 190516-03        | 3-WC             |                     |        |
|------------------------|------------|------------|------------|-------------------|-----------------|------------------------------|------------------|------------------|---------------------|--------|
| Date/Time Collected    | I: 05/16/2 | 2019 17:39 | 9 - 05/16/ | 2019 20:22        | 2               |                              |                  |                  |                     |        |
| Lab Number:            | 9AC00      | 24-01      |            |                   |                 | Sample Collector:            | ABC              |                  |                     |        |
| Sample Type:           | Compo      | osite      |            |                   |                 | Sample Matrix:               | Water            |                  |                     |        |
| Analyte Name           | Batch      | Result     | Units      | Adjustec<br>MDL * | l Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual   |
| Wet Chemistry          |            |            |            |                   |                 |                              |                  |                  |                     |        |
| Ammonia, as N          | B9E2905    | 2.67       | mg/L       | 0.0350            | 0.0350          | SM 4500-NH3 D-1997           | 05/29/19         | 5/29/19 9:10     | ASM                 |        |
| BOD5                   | B9E1805    | >185       | mg/L       | 2.00              | 2.00            | SM 5210 B-2001               | 05/18/19         | 5/23/19 8:45     | ALD                 | BOD-01 |
| COD                    | B9E1801    | 543        | mg/L       | 7.00              | 7.00            | SM 5220 D-2017               | 05/18/19         | 5/18/19 10:45    | CJP                 |        |
| TKN                    | B9E2901    | 10.8       | mg/L       | 0.130             | 0.130           | EPA 351.2                    | 05/29/19         | 5/30/19 9:59     | LRF                 |        |
| Total Dissolved Solids | B9E1634    | 282        | mg/L       | 20.0              | 20.0            | SM 2540 C-1997               | 05/17/19         | 5/18/19 8:30     | ASM                 |        |
| Total Suspended Solids | B9E1806    | 111        | mg/L       | 0.900             | 0.900           | SM 2540 D-1997               | 05/18/19         | 5/18/19 11:16    | LRF                 |        |
| Turbidity              | B9E1710    | 20.3       | NTU        | 0.3               | 0.3             | EPA180.1 R2.0 (1993)         | 05/17/19         | 5/17/19 13:22    | ALD                 |        |
| Total Metals           |            |            |            |                   |                 |                              |                  |                  |                     |        |
| Mercury                | B9E2215    | 0.0152     | ug/L       | 4.71E-3           | 4.71E-3         | EPA 245.2                    | 05/23/19         | 5/24/19 9:09     | SAS                 |        |
| Arsenic                | B9E2009    | 5.80       | ug/L       | 5.72              | 5.72            | EPA 200.7                    | 05/20/19         | 5/22/19 17:57    | EDM                 |        |
| Cadmium                | B9E2009    | <1.00      | ug/L       | 1.00              | 1.00            | EPA 200.7                    | 05/20/19         | 5/22/19 17:57    | EDM                 | U      |

| Algenic         | DOLLOUD | 0.00  | ug/L | 0.12    | 0.72    | LI 77 200.7 | 00/20/10 | 0/22/10 17:01 |     |   |
|-----------------|---------|-------|------|---------|---------|-------------|----------|---------------|-----|---|
| Cadmium         | B9E2009 | <1.00 | ug/L | 1.00    | 1.00    | EPA 200.7   | 05/20/19 | 5/22/19 17:57 | EDM | U |
| Calcium         | B9E2009 | 14.1  | mg/L | 0.0500  | 0.0500  | EPA 200.7   | 05/20/19 | 5/22/19 17:57 | EDM |   |
| Lead            | B9E2009 | <6.94 | ug/L | 6.94    | 6.94    | EPA 200.7   | 05/20/19 | 5/22/19 17:57 | EDM | U |
| Magnesium       | B9E2009 | 2550  | ug/L | 50.0    | 50.0    | EPA 200.7   | 05/20/19 | 5/22/19 17:57 | EDM |   |
| Phosphorus as P | B9E2009 | 2.19  | mg/L | 6.00E-3 | 6.00E-3 | EPA 200.7   | 05/20/19 | 5/22/19 17:57 | EDM |   |
| Hardness        | B9E2009 | 45.6  | mg/L | 0.125   | 0.125   | EPA 200.7   | 05/20/19 | 5/22/19 17:57 | EDM |   |
|                 |         |       |      |         |         |             |          |               |     |   |



## **Analysis Report**

| Location:              | ACST       | IC         |          |                   |               | Location Description:        | 190516-11        | I-WC             |                     |      |
|------------------------|------------|------------|----------|-------------------|---------------|------------------------------|------------------|------------------|---------------------|------|
| Date/Time Collected    | d: 05/16/2 | 2019 16:51 | - 05/16/ | 2019 20:31        |               |                              |                  |                  |                     |      |
| Lab Number:            | 9AC00      | 24-02      |          |                   |               | Sample Collector:            | ABC              |                  |                     |      |
| Sample Type:           | Compo      | osite      |          |                   |               | Sample Matrix:               | Water            |                  |                     |      |
| Analyte Name           | Batch      | Result     | Units    | Adjusted<br>MDL * | Method<br>MDL | Analysis Method<br>Reference | Prepared<br>Time | Analysis<br>Time | Analyst<br>Initials | Qual |
| Wet Chemistry          |            |            |          |                   |               |                              |                  |                  |                     |      |
| Ammonia, as N          | B9E2905    | 1.64       | mg/L     | 0.0350            | 0.0350        | SM 4500-NH3 D-1997           | 05/29/19         | 5/29/19 9:20     | ASM                 |      |
| BOD5                   | B9E1805    | 158        | mg/L     | 2.00              | 2.00          | SM 5210 B-2001               | 05/18/19         | 5/23/19 8:52     | ALD                 |      |
| COD                    | B9E1801    | 368        | mg/L     | 7.00              | 7.00          | SM 5220 D-2017               | 05/18/19         | 5/18/19 10:45    | CJP                 |      |
| Nitrate-Nitrite, as N  | B9E3103    | 0.747      | mg/L     | 0.0250            | 0.0250        | EPA 353.2                    | 05/31/19         | 5/31/19 12:16    | SMC                 |      |
| TKN                    | B9E2901    | 7.22       | mg/L     | 0.130             | 0.130         | EPA 351.2                    | 05/29/19         | 5/30/19 10:04    | LRF                 |      |
| Total Dissolved Solids | B9E1634    | 238        | mg/L     | 20.0              | 20.0          | SM 2540 C-1997               | 05/17/19         | 5/18/19 8:30     | ASM                 |      |
| Total Suspended Solids | B9E1707    | 110        | mg/L     | 0.900             | 0.900         | SM 2540 D-1997               | 05/17/19         | 5/17/19 14:23    | CPC                 |      |
| Turbidity              | B9E1710    | 18.9       | NTU      | 0.3               | 0.3           | EPA180.1 R2.0 (1993)         | 05/17/19         | 5/17/19 13:43    | ALD                 |      |
| Dissolved Wet Ch       | emistry    |            |          |                   |               |                              |                  |                  |                     |      |
| Orthophosphate, as P   | B9E1709    | 0.863      | mg/L     | 0.0100            | 2.00E-3       | EPA 365.1                    | 05/17/19         | 5/17/19 12:55    | ALN                 | D    |
| Total Metals           |            |            |          |                   |               |                              |                  |                  |                     |      |
| Mercury                | B9E2215    | 0.0196     | ug/L     | 4.71E-3           | 4.71E-3       | EPA 245.2                    | 05/23/19         | 5/24/19 9:12     | SAS                 |      |
| Arsenic                | B9E2009    | 6.72       | ug/L     | 5.72              | 5.72          | EPA 200.7                    | 05/20/19         | 5/22/19 17:42    | EDM                 |      |
| Cadmium                | B9E2009    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 05/20/19         | 5/22/19 17:42    | EDM                 | U    |
| Calcium                | B9E2009    | 18.3       | mg/L     | 0.0500            | 0.0500        | EPA 200.7                    | 05/20/19         | 5/22/19 17:42    | EDM                 |      |
| Lead                   | B9E2009    | 10.1       | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 05/20/19         | 5/22/19 17:42    | EDM                 |      |
| Magnesium              | B9E2009    | 3920       | ug/L     | 50.0              | 50.0          | EPA 200.7                    | 05/20/19         | 5/22/19 17:42    | EDM                 |      |
| Phosphorus as P        | B9E2009    | 1.49       | mg/L     | 6.00E-3           | 6.00E-3       | EPA 200.7                    | 05/20/19         | 5/22/19 17:42    | EDM                 |      |
| Hardness               | B9E2009    | 61.8       | mg/L     | 0.125             | 0.125         | EPA 200.7                    | 05/20/19         | 5/22/19 17:42    | EDM                 |      |
| Dissolved Metals       |            |            |          |                   |               |                              |                  |                  |                     |      |
| Cadmium                | B9F0312    | <1.00      | ug/L     | 1.00              | 1.00          | EPA 200.7                    | 06/03/19         | 6/3/19 15:44     | EDM                 | U    |
| Copper                 | B9F0312    | 19.5       | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 06/03/19         | 6/3/19 15:44     | EDM                 |      |
| Lead                   | B9F0312    | <6.94      | ug/L     | 6.94              | 6.94          | EPA 200.7                    | 06/03/19         | 6/3/19 15:44     | EDM                 | U    |
| Zinc                   | B9F0312    | 74.3       | ug/L     | 10.0              | 10.0          | EPA 200.7                    | 06/03/19         | 6/3/19 15:44     | EDM                 |      |



| Analyte Name                                       | Method<br>Blank | Units   | %<br>Recovery                                   | Recovery<br>Limits                                                             | RPD                                       | RPD<br>Limit                      | Date<br>Analyzed                                       | Analyst<br>Initials                   | Qualifier                                                                                                        |
|----------------------------------------------------|-----------------|---------|-------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|--------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Wet Chemistry                                      |                 |         |                                                 |                                                                                |                                           |                                   |                                                        |                                       |                                                                                                                  |
| Batch: B9E1634<br>Blank (B9E1634-BLK1)             |                 |         |                                                 |                                                                                |                                           |                                   |                                                        |                                       |                                                                                                                  |
| Total Dissolved Solids                             | < 20            | mg/L    |                                                 |                                                                                |                                           |                                   | 05/16/2019                                             | ASM                                   | U                                                                                                                |
| LCS (B9E1634-BS1)<br>Total Dissolved Solids        |                 |         | 106                                             | 90-110                                                                         |                                           |                                   | 05/16/2019                                             | ASM                                   |                                                                                                                  |
| Duplicate (B9E1634-DUP1)<br>Total Dissolved Solids | Source ID: 9EN  | 0006-02 |                                                 |                                                                                | 1.98                                      | 10                                | 05/16/2019                                             | ASM                                   |                                                                                                                  |
| Batch: B9E1707<br>Blank (B9E1707-BLK1)             |                 |         | 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | MEMORY OF TRANSPORTATION OF TRANSPORTATION OF TRANSPORTATION OF TRANSPORTATION |                                           |                                   |                                                        |                                       | • • •                                                                                                            |
| Total Suspended Solids                             | < 0.9           | mg/L    |                                                 |                                                                                |                                           |                                   | 05/17/2019                                             | CPC                                   | U                                                                                                                |
| LCS (B9E1707-BS1)<br>Total Suspended Solids        |                 |         | 98.0                                            | 90-110                                                                         |                                           |                                   | 05/17/2019                                             | CPC                                   |                                                                                                                  |
| Duplicate (B9E1707-DUP1)<br>Total Suspended Solids | Source ID: 9BB  | 0293-01 |                                                 |                                                                                | 1.03                                      | 20                                | 05/17/2019                                             | CPC                                   |                                                                                                                  |
| Batch: B9E1710<br>Blank (B9E1710-BLK1)             |                 |         |                                                 |                                                                                |                                           | andarda (arthreadana)ar)arthreada | 10-13-13-13-13-14-14-14-14-14-14-14-14-14-14-14-14-14- | 9494949494949494949494949494949494949 |                                                                                                                  |
| Turbidity                                          | < 0.3           | NTU     |                                                 |                                                                                |                                           |                                   | 05/17/2019                                             | ALD                                   | U                                                                                                                |
| LCS (B9E1710-BS1)<br>Turbidity                     |                 |         | 99.3                                            | 90-110                                                                         | GANGAR GAN KAR GAN YAN AR LEY MENER MENER |                                   | 05/17/2019                                             | ALD                                   | Al for f devenues we want and a subsection of the second second second second second second second second second |
| Duplicate (B9E1710-DUP1)<br>Turbidity              | Source ID: 9AC  | 0024-01 |                                                 |                                                                                | 15.8                                      | 25                                | 05/17/2019                                             | ALD                                   |                                                                                                                  |
| Batch: B9E1801<br>Blank (B9E1801-BLK1)             |                 | Le      |                                                 |                                                                                |                                           |                                   |                                                        |                                       | HTTPPE PPEPEDED FERMINE in Construction                                                                          |
| COD                                                | < 7             | mg/L    |                                                 |                                                                                |                                           |                                   | 05/18/2019                                             | CJP                                   | U                                                                                                                |
| LCS (B9E1801-BS1)<br>COD                           |                 |         | 98.3                                            | 90-110                                                                         |                                           |                                   | 05/18/2019                                             | CJP                                   |                                                                                                                  |
| Duplicate (B9E1801-DUP1)<br>COD                    | Source ID: 9AC  | 0024-01 |                                                 | 1464 ( 1474 1475 1477 1477 1477 1477 1477 1477                                 | 1.86                                      | 10                                | 05/18/2019                                             | CJP                                   |                                                                                                                  |



| Analyte Name                                                     | Method<br>Blank | Units    | %<br>Recovery | Recovery<br>Limits                                                                                              | RPD  | RPD<br>Limit                         | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|------------------------------------------------------------------|-----------------|----------|---------------|-----------------------------------------------------------------------------------------------------------------|------|--------------------------------------|------------------|---------------------|-----------|
| Wet Chemistry (Conti                                             | nued)           |          |               |                                                                                                                 |      |                                      |                  |                     |           |
| Batch: B9E1805<br>Blank (B9E1805-BLK1)<br>BOD5                   | < 2             | mg/L     |               |                                                                                                                 |      |                                      | 05/23/2019       | ALD                 | U         |
| LCS (B9E1805-BS1)<br>BOD5                                        |                 |          | 105           | 84.6-115.4                                                                                                      |      |                                      | 05/23/2019       | ALD                 |           |
| LCS (B9E1805-BS2)<br>BOD5                                        |                 |          | 108           | 84.6-115.4                                                                                                      |      |                                      | 05/23/2019       | ALD                 |           |
| Duplicate (B9E1805-DUP1)<br>BOD5                                 | Source ID: 9BB0 | )301-01  |               |                                                                                                                 | 6.35 | 30                                   | 05/23/2019       | ALD                 | D         |
| Batch: B9E1806<br>Blank (B9E1806-BLK1)<br>Total Suspended Solids | < 0.9           | mg/L     |               | and to come of AMA in Al and Minked and Annual A |      |                                      | 05/18/2019       | LRF                 | U         |
| LCS (B9E1806-BS1)<br>Total Suspended Solids                      |                 |          | 98.2          | 90-110                                                                                                          |      |                                      | 05/18/2019       | LRF                 |           |
| Duplicate (B9E1806-DUP1)<br>Total Suspended Solids               | Source ID: 9BB0 | )300-01  |               |                                                                                                                 | 8.70 | 20                                   | 05/18/2019       | LRF                 |           |
| Batch: B9E2901<br>Blank (B9E2901-BLK1)<br>TKN                    | < 0.13          | mg/L     |               |                                                                                                                 |      |                                      | 05/30/2019       | LRF                 | U         |
| Blank (B9E2901-BLK2)<br>TKN                                      | < 0.13          | mg/L     |               |                                                                                                                 |      | 993193474684633434544439792644444979 | 05/30/2019       | LRF                 | U         |
| <b>Blank (B9E2901-BLK3)</b><br>TKN                               | < 0.13          | mg/L     |               |                                                                                                                 |      |                                      | 05/30/2019       | LRF                 | U         |
| LCS (B9E2901-BS1)<br>TKN                                         |                 |          | 99.1          | 80-120                                                                                                          |      |                                      | 05/30/2019       | LRF                 |           |
| LCS (B9E2901-BS2)<br>TKN                                         |                 |          | 101           | 80-120                                                                                                          |      |                                      | 05/30/2019       | LRF                 |           |
| Duplicate (B9E2901-DUP1)<br>TKN                                  | Source ID: 9ACC | 024-01   |               |                                                                                                                 | 1.33 | 20                                   | 05/30/2019       | LRF                 |           |
| Duplicate (B9E2901-DUP2)<br>TKN                                  | Source ID: 9PK0 | 014-03   |               |                                                                                                                 | 9.95 | 20                                   | 05/30/2019       | LRF                 |           |
| Duplicate (B9E2901-DUP3)<br>TKN                                  | Source ID: 9BB0 | 286-01   | ****          |                                                                                                                 | 4.80 | 20                                   | 05/30/2019       | LRF                 | D         |
| Matrix Spike (B9E2901-MS1)<br>TKN                                | Source ID: 9A0  | 0024-01  | 102           | 80-120                                                                                                          |      |                                      | 05/30/2019       | LRF                 |           |
| Matrix Spike (B9E2901-MS2)<br>TKN                                | Source ID: 9Ph  | (0014-03 | 101           | 80-120                                                                                                          |      |                                      | 05/30/2019       | LRF                 |           |
| Matrix Spike (B9E2901-MS4)<br>TKN                                | Source ID: 9W   | Q0023-01 | 95.9          | 80-120                                                                                                          |      |                                      | 05/30/2019       | LRF                 | D         |



|                                                                                                   | Method       |             | %            | Recovery |         | RPD   | Date       | Analyst  |                                                                   |
|---------------------------------------------------------------------------------------------------|--------------|-------------|--------------|----------|---------|-------|------------|----------|-------------------------------------------------------------------|
| Analyte Name                                                                                      | Blank        | Units       | Recovery     | Limits   | RPD     | Limit | Analyzed   | Initials | Qualifier                                                         |
| Wet Chemistry (Continued                                                                          | d)           |             |              |          |         |       |            |          |                                                                   |
| Batch: B9E2901 (Continued)<br>Matrix Spike (B9E2901-MS5) So<br>TKN<br>[Spk] 50mL->100mL; 5mL->25r |              |             | E1<br>103    | 80-120   |         |       | 05/30/2019 | LRF      | D                                                                 |
| Matrix Spike Dup (B9E2901-MSD1<br>TKN                                                             | 1) Source    | ID: 9AC002  | 4-01<br>91.2 | 80-120   | 3.44    | 20    | 05/30/2019 | LRF      |                                                                   |
| Matrix Spike Dup (B9E2901-MSD2<br>TKN                                                             | 2) Source    | ID: 9PK001  | 4-03<br>101  | 80-120   | 8.91E-3 | 20    | 05/30/2019 | LRF      |                                                                   |
| Batch: B9E2905<br>Blank (B9E2905-BLK1)<br>Ammonia, as N                                           | < 0.035      | mg/L        |              |          |         |       | 05/29/2019 | ASM      | U                                                                 |
| Blank (B9E2905-BLK2)<br>Ammonia, as N                                                             | < 0.035      | mg/L        |              |          |         |       | 05/29/2019 | ASM      | U                                                                 |
| LCS (B9E2905-BS1)<br>Ammonia, as N                                                                |              |             | 104          | 90-110   |         |       | 05/29/2019 | ASM      |                                                                   |
| LCS (B9E2905-BS2)<br>Ammonia, as N                                                                |              |             | 110          | 90-110   |         |       | 05/29/2019 | ASM      |                                                                   |
| Duplicate (B9E2905-DUP1) Sou<br>Ammonia, as N                                                     | rce ID: 9W0  | 20023-08    |              |          | 1.45    | 10    | 05/29/2019 | ASM      | Studiet Melden bei kländelt valer nooren det Machen een sam valer |
| Duplicate (B9E2905-DUP2) Sou<br>Ammonia, as N                                                     | rce ID: 9BB  | 0314-01     |              |          | 0.443   | 10    | 05/29/2019 | ASM      |                                                                   |
| Duplicate (B9E2905-DUP3) Sou<br>Ammonia, as N                                                     | rce ID: 9BB  | 0317-01     |              |          | 0.252   | 10    | 05/29/2019 | ASM      |                                                                   |
| Matrix Spike (B9E2905-MS1) Sc<br>Ammonia, as N                                                    | ource ID: 9V | Q0023-08    | 105          | 80-120   |         |       | 05/29/2019 | ASM      |                                                                   |
| Matrix Spike (B9E2905-MS2) Sc<br>Ammonia, as N                                                    | ource ID: 9B | B0314-01    | 108          | 80-120   |         |       | 05/29/2019 | ASM      | 6 (, , , , , , , , , , , , , , , , ,                              |
| Matrix Spike (B9E2905-MS3) Sc<br>Ammonia, as N                                                    | ource ID: 9B | B0317-01    | 115          | 80-120   |         |       | 05/29/2019 | ASM      |                                                                   |
| Matrix Spike Dup (B9E2905-MSD1<br>Ammonia, as N                                                   | I) Source    | ID: 9WQ002  | 23-08<br>101 | 80-120   | 2.46    | 10    | 05/29/2019 | ASM      |                                                                   |
| Matrix Spike Dup (B9E2905-MSD2<br>Ammonia, as N                                                   | 2) Source    | ID: 9BB0314 | 4-01<br>110  | 80-120   | 1.48    | 10    | 05/29/2019 | ASM      |                                                                   |
| Matrix Spike Dup (B9E2905-MSD3<br>Ammonia, as N                                                   | 3) Source    | ID: 9BB031  | 7-01<br>114  | 80-120   | 0.525   | 10    | 05/29/2019 | ASM      |                                                                   |
|                                                                                                   |              |             |              |          |         |       |            |          |                                                                   |



| Analyte Name                                         |        | Method<br>Blank | Units       | %<br>Recovery | Recovery<br>Limits | RPD                                  | RPD<br>Limit                   | Date<br>Analyzed | Analyst<br>Initials | Qualifier                                       |
|------------------------------------------------------|--------|-----------------|-------------|---------------|--------------------|--------------------------------------|--------------------------------|------------------|---------------------|-------------------------------------------------|
| Wet Chemistry (Contin                                | nued)  |                 |             |               |                    |                                      |                                |                  |                     |                                                 |
| Batch: B9E3103<br>Blank (B9E3103-BLK1)               |        |                 |             |               |                    |                                      |                                |                  |                     |                                                 |
| Nitrate-Nitrite, as N                                |        | < 0.025         | mg/L        |               |                    |                                      |                                | 05/31/2019       | SMC                 | U                                               |
| Blank (B9E3103-BLK2)<br>Nitrate-Nitrite, as N        |        | < 0.025         | mg/L        |               |                    |                                      |                                | 05/31/2019       | SMC                 | U                                               |
| LCS (B9E3103-BS1)<br>Nitrate-Nitrite, as N           |        |                 |             | 96.8          | 90-110             |                                      |                                | 05/31/2019       | SMC                 |                                                 |
| LCS (B9E3103-BS2)<br>Nitrate-Nitrite, as N           |        |                 |             | 95.6          | 90-110             |                                      |                                | 05/31/2019       | SMC                 |                                                 |
| Duplicate (B9E3103-DUP1)<br>Nitrate-Nitrite, as N    | Source | e ID: 9AC(      | 0025-02     |               |                    | 0.648                                | 10                             | 05/31/2019       | SMC                 |                                                 |
| Duplicate (B9E3103-DUP2)<br>Nitrate-Nitrite, as N    | Source | e ID: 9BB(      | )286-01     |               |                    | 2.23                                 | 10                             | 05/31/2019       | SMC                 |                                                 |
| Duplicate (B9E3103-DUP3)<br>Nitrate-Nitrite, as N    | Source | e ID: 9PK(      | 014-03      |               |                    | 6.72                                 | 10                             | 05/31/2019       | SMC                 |                                                 |
| Matrix Spike (B9E3103-MS1)<br>Nitrate-Nitrite, as N  | Sour   | ce ID: 9A       | C0025-02    | 99.2          | 90 <b>-1</b> 10    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 511349144(N(NAMBUR(S)(******** | 05/31/2019       | SMC                 |                                                 |
| Matrix Spike (B9E3103-MS2)<br>Nitrate-Nitrite, as N  | Sour   | ce ID: 9BI      | 30286-01    | 97.7          | 90-110             |                                      |                                | 05/31/2019       | SMC                 |                                                 |
| Matrix Spike (B9E3103-MS3)<br>Nitrate-Nitrite, as N  | Sour   | ce ID: 9PI      | <0014-03    | 97.1          | 90-110             |                                      |                                | 05/31/2019       | SMC                 |                                                 |
| Matrix Spike (B9E3103-MS4)<br>Nitrate-Nitrite, as N  | Sour   | ce ID: 9A       | C0030-01    | 96.6          | 90-110             |                                      |                                | 05/31/2019       | SMC                 | a kalan jara kanangkan kalan kanan kanan kala k |
| Matrix Spike Dup (B9E3103-N<br>Nitrate-Nitrite, as N | ASD1)  | Source          | ID: 9AC002  | 5-02<br>97.2  | 90-110             | 0.834                                | 10                             | 05/31/2019       | SMC                 |                                                 |
| Matrix Spike Dup (B9E3103-M<br>Nitrate-Nitrite, as N | ASD2)  | Source          | ID: 9BB0286 | 6-01<br>96.6  | 90-110             | 0.912                                | 10                             | 05/31/2019       | SMC                 |                                                 |
| Matrix Spike Dup (B9E3103-M<br>Nitrate-Nitrite, as N | ASD3)  | Source          | ID: 9PK0014 | 4-03<br>95.6  | 90-110             | 1.34                                 | 10                             | 05/31/2019       | SMC                 |                                                 |



| Analyte Name                                          | Method<br>Blank | Units      | %<br>Recovery | Recovery<br>Limits | RPD    | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|-------------------------------------------------------|-----------------|------------|---------------|--------------------|--------|--------------|------------------|---------------------|-----------|
| <b>Dissolved Wet Chemistry</b>                        | 1               |            |               |                    |        |              |                  |                     |           |
| Batch: B9E1709                                        |                 |            |               |                    |        |              |                  |                     |           |
| Blank (B9E1709-BLK1)<br>Orthophosphate, as P          | < 0.002         | mg/L       |               |                    |        |              | 05/17/2019       | ALN                 | U         |
| LCS (B9E1709-BS1)<br>Orthophosphate, as P             |                 |            | 97.1          | 90-110             |        |              | 05/17/2019       | ALN                 |           |
| Duplicate (B9E1709-DUP1) Sou<br>Orthophosphate, as P  | urce ID: 9BB    | 0294-01    |               |                    | 2.56   | 10           | 05/17/2019       | ALN                 | D         |
| Duplicate (B9E1709-DUP2) Son<br>Orthophosphate, as P  | urce ID: 9BB    | 0293-01    |               |                    | 0.0278 | 10           | 05/17/2019       | ALN                 | D         |
| Matrix Spike (B9E1709-MS1) S<br>Orthophosphate, as P  | Source ID: 9B   | B0294-01   | 99.7          | 90-110             |        |              | 05/17/2019       | ALN                 | D         |
| Matrix Spike (B9E1709-MS2) S<br>Orthophosphate, as P  | Source ID: 9B   | B0293-01   | 103           | 90-110             |        |              | 05/17/2019       | ALN                 | D         |
| Matrix Spike Dup (B9E1709-MSD<br>Orthophosphate, as P | 1) Source       | ID: 9BB029 | 4-01<br>104   | 90-110             | 0.837  | 10           | 05/17/2019       | ALN                 | D         |
| Matrix Spike Dup (B9E1709-MSD<br>Orthophosphate, as P | 2) Source       | ID: 9BB029 | 3-01<br>104   | 90-110             | 0.438  | 10           | 05/17/2019       | ALN                 | D         |
|                                                       |                 |            |               |                    |        |              |                  |                     |           |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

# Quality Control Report (Continued)

| Analyte Name                   | Method<br>Blank | Units     | %<br>Recovery | Recovery<br>Limits | RPD   | RPD<br>Limit | Date<br>Analyzed | Analyst<br>Initials | Qualifier |
|--------------------------------|-----------------|-----------|---------------|--------------------|-------|--------------|------------------|---------------------|-----------|
|                                | Diank           | Units     | Recovery      | Limits             | RPD   | Limit        | Analyzed         | Initials            | Quaimer   |
| Total Metals                   |                 |           |               |                    |       |              |                  |                     |           |
| Batch: B9E2009                 |                 |           |               |                    |       |              |                  |                     |           |
| Blank (B9E2009-BLK1)           |                 |           |               |                    |       |              |                  |                     |           |
| Arsenic                        | < 5.72          | ug/L      |               |                    |       |              | 05/22/2019       | EDM                 | U         |
| Cadmium                        | < 1             | ug/L      |               |                    |       |              | 05/22/2019       | EDM                 | U         |
| Calcium                        | < 0.05          | mg/L      |               |                    |       |              | 05/22/2019       | EDM                 | U         |
| Lead                           | < 6.94          | ug/L      |               |                    |       |              | 05/22/2019       | EDM                 | U         |
| Magnesium                      | < 50            | ug/L      |               |                    |       |              | 05/22/2019       | EDM                 | U         |
| Phosphorus as P                | < 0.006         | mg/L      |               |                    |       |              | 05/22/2019       | EDM                 | U         |
| LCS (B9E2009-BS1)              |                 |           |               |                    |       |              |                  |                     |           |
| Arsenic                        |                 |           | 105           | 85-115             |       |              | 05/22/2019       | EDM                 |           |
| Cadmium                        |                 |           | 102           | 85-115             |       |              | 05/22/2019       | EDM                 |           |
| Calcium                        |                 |           | 102           | 85-115             |       |              | 05/22/2019       | EDM                 |           |
| Lead                           |                 |           | 102           | 85-115             |       |              | 05/22/2019       | EDM                 |           |
| Magnesium                      |                 |           | 104           | 85-115             |       |              | 05/22/2019       | EDM                 |           |
| Phosphorus as P                |                 |           | 106           | 85-115             |       |              | 05/22/2019       | EDM                 |           |
| Duplicate (B9E2009-DUP1) Sou   | rce ID: 9AC(    | 024-01    |               |                    |       |              |                  |                     |           |
| Arsenic                        |                 |           |               |                    | 8.26  | 20           | 05/22/2019       | EDM                 |           |
| Cadmium                        |                 |           |               |                    | NR    | 20           | 05/22/2019       | EDM                 | U         |
| Calcium                        |                 |           |               |                    | 0.264 | 20           | 05/22/2019       | EDM                 |           |
| Lead                           |                 |           |               |                    | NR    | 20           | 05/22/2019       | EDM                 | U         |
| Magnesium                      |                 |           |               |                    | 0.255 | 20           | 05/22/2019       | EDM                 |           |
| Phosphorus as P                |                 |           |               |                    | 0.228 | 20           | 05/22/2019       | EDM                 | ****      |
| Matrix Spike (B9E2009-MS1) Sc  | ource ID: 9A    | 20024-01  |               |                    |       |              |                  |                     |           |
| Arsenic                        |                 |           | 107           | 70-130             |       |              | 05/22/2019       | EDM                 |           |
| Cadmium                        |                 |           | 103           | 70-130             |       |              | 05/22/2019       | EDM                 |           |
| Calcium                        |                 |           | 103           | 70-130             |       |              | 05/22/2019       | EDM                 |           |
| Lead                           |                 |           | 105           | 70-130             |       |              | 05/22/2019       | EDM                 |           |
| Magnesium                      |                 |           | 105           | 70-130             |       |              | 05/22/2019       | EDM                 |           |
| Phosphorus as P                |                 |           | 97.9          | 70-130             |       |              | 05/22/2019       | EDM                 |           |
| Matrix Spike Dup (B9E2009-MSD1 | ) Source        | D: 9AC002 | 4-01          |                    |       |              |                  |                     |           |
| Arsenic                        |                 |           | 107           | 70-130             | 0.452 | 20           | 05/22/2019       | EDM                 |           |
| Cadmium                        |                 |           | 103           | 70-130             | 0.208 | 20           | 05/22/2019       | EDM                 |           |
| Calcium                        |                 |           | 102           | 70-130             | 0.319 | 20           | 05/22/2019       | EDM                 |           |
| Lead                           |                 |           | 106           | 70-130             | 0.772 | 20           | 05/22/2019       | EDM                 |           |
| Magnesium                      |                 |           | 105           | 70-130             | 0.403 | 20           | 05/22/2019       | EDM                 |           |
| Phosphorus as P                |                 |           | 96.0          | 70-130             | 0.357 | 20           | 05/22/2019       | EDM                 |           |



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

# Quality Control Report (Continued)

| Analyte Name                          | Method<br>Blank | Units                                     | %<br>Recovery                                                                                                   | Recovery<br>Limits                                                                                             | RPD          | RPD<br>Limit | Date<br>Analyzed         | Analyst<br>Initials       | Qualifier                                                   |
|---------------------------------------|-----------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------------------|---------------------------|-------------------------------------------------------------|
| Total Metals (Continue                | d)              |                                           |                                                                                                                 |                                                                                                                |              |              | -                        |                           |                                                             |
| Batch: B9E2215                        | ~)              |                                           |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Blank (B9E2215-BLK1)                  |                 |                                           |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Mercury                               | < 0.00471       | ua/L                                      |                                                                                                                 |                                                                                                                |              |              | 05/24/2019               | SAS                       | U                                                           |
| •                                     |                 | -3                                        |                                                                                                                 |                                                                                                                |              |              |                          | ····                      | -                                                           |
| LCS (B9E2215-BS1)                     |                 |                                           | 101                                                                                                             | 85-115                                                                                                         |              |              | 05/24/2019               | SAS                       |                                                             |
| Mercury                               |                 |                                           | 101                                                                                                             | 85-115                                                                                                         |              |              | 03/24/2019               | JAJ                       |                                                             |
| Duplicate (B9E2215-DUP1)              | Source ID: 9AC  | 0025-01                                   |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Mercury                               |                 |                                           | r en san ministration de la complete |                                                                                                                | 10.3         | 20           | 05/24/2019               | SAS                       | NITE CONTRACTOR OF THE OWNER OF THE OWNER OF THE OWNER OF T |
| Duplicate (B9E2215-DUP2)              | Source ID: 9BE  | 80287-01                                  |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Mercury                               |                 |                                           |                                                                                                                 |                                                                                                                | 4.08         | 20           | 05/24/2019               | SAS                       | D                                                           |
| Matrix Spike (B9E2215-MS1)            | Source ID: 94   | C0025-01                                  |                                                                                                                 | 9999 Maran Andrew Provinsi and a same and and and and and and a same and a same and a same and a same a same a |              |              |                          |                           |                                                             |
| Mercury                               |                 |                                           | 99.8                                                                                                            | 70-130                                                                                                         |              |              | 05/24/2019               | SAS                       |                                                             |
| Motrix Spike (P0E2215 MS2)            | Source ID: 9E   | PD0297 01                                 |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Matrix Spike (B9E2215-MS2)<br>Mercury | Source ID. 96   | 550207-01                                 | 99.4                                                                                                            | 70-130                                                                                                         |              |              | 05/24/2019               | SAS                       | D                                                           |
|                                       |                 |                                           |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Matrix Spike Dup (B9E2215-N           | (SD1) Source    | ID: 9AC002                                | 5-01<br>103                                                                                                     | 70 120                                                                                                         | 2.03         | 20           | 05/04/0010               | CAC                       |                                                             |
| Mercury                               |                 |                                           | 103                                                                                                             | 70-130                                                                                                         | 2.03         | 20           | 05/24/2019               | SAS                       |                                                             |
| Matrix Spike Dup (B9E2215-N           | (SD2) Source    | ID: 9BB028                                |                                                                                                                 |                                                                                                                |              |              |                          |                           | _                                                           |
| Mercury                               |                 |                                           | 99.1                                                                                                            | 70-130                                                                                                         | 0.281        | 20           | 05/24/2019               | SAS                       | D                                                           |
| Dissolved Metals                      |                 |                                           |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Batch: B9F0312                        |                 |                                           |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Blank (B9F0312-BLK1)                  |                 |                                           |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Cadmium                               | < 1             | ug/L                                      |                                                                                                                 |                                                                                                                |              |              | 06/03/2019               | EDM                       | U                                                           |
| Copper                                | < 10            | ug/L                                      |                                                                                                                 |                                                                                                                |              |              | 06/03/2019               | EDM                       | U                                                           |
| Lead                                  | < 6.94          | ug/L                                      |                                                                                                                 |                                                                                                                |              |              | 06/03/2019               | EDM                       | U                                                           |
| Zinc                                  | < 10            | ug/L                                      |                                                                                                                 |                                                                                                                |              |              | 06/03/2019               | EDM                       | U                                                           |
| LCS (B9F0312-BS1)                     |                 |                                           |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Cadmium                               |                 |                                           | 101                                                                                                             | 85-115                                                                                                         |              |              | 06/03/2019               | EDM                       |                                                             |
| Copper                                |                 |                                           | 99.8                                                                                                            | 85-115                                                                                                         |              |              | 06/03/2019               | EDM                       |                                                             |
| Lead                                  |                 |                                           | 101                                                                                                             | 85-115                                                                                                         |              |              | 06/03/2019               | EDM                       |                                                             |
| Zinc                                  |                 |                                           | 98.0                                                                                                            | 85-115                                                                                                         |              |              | 06/03/2019               | EDM                       |                                                             |
| Duplicate (B9F0312-DUP1)              | Source ID: 9AC  | 0025-02                                   |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Cadmium                               |                 |                                           |                                                                                                                 |                                                                                                                | NR           | 10           | 06/03/2019               | EDM                       | U                                                           |
| Copper                                |                 |                                           |                                                                                                                 |                                                                                                                | 3.69         | 10           | 06/03/2019               | EDM                       |                                                             |
| Lead                                  |                 |                                           |                                                                                                                 |                                                                                                                | NR           | 10           | 06/03/2019               | EDM                       | U                                                           |
| Zinc                                  |                 | une en e |                                                                                                                 |                                                                                                                | 0.943        | 10           | 06/03/2019               | EDM                       |                                                             |
| Matrix Spike (B9F0312-MS1)            | Source ID: 9A   | C0025-02                                  |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
| Cadmium                               |                 |                                           | 99.6                                                                                                            | 70-130                                                                                                         |              |              | 06/03/2019               | EDM                       |                                                             |
| Copper                                |                 |                                           | 98.8                                                                                                            | 70-130                                                                                                         |              |              | 06/03/2019               | EDM                       |                                                             |
| Lead                                  |                 |                                           | 97.9<br>04 5                                                                                                    | 70-130<br>70-130                                                                                               |              |              | 06/03/2019               | EDM                       |                                                             |
| Zinc                                  |                 |                                           | 94.5                                                                                                            | 10-130                                                                                                         |              |              | 06/03/2019               | EDM                       |                                                             |
| Matrix Spike Dup (B9F0312-N           | ISD1) Source    | ID: 9AC002                                |                                                                                                                 |                                                                                                                |              |              |                          |                           |                                                             |
|                                       |                 |                                           | 99.9                                                                                                            | 70-130                                                                                                         | 0.325        | 10           | 06/03/2019               | EDM                       |                                                             |
| Copper<br>Lead                        |                 |                                           | 91.5<br>99.5                                                                                                    | 70-130<br>70-130                                                                                               | 5.50<br>1.69 | 10<br>10     | 06/03/2019<br>06/03/2019 | EDM<br>EDM                |                                                             |
| Zinc                                  |                 |                                           | 99.5<br>95.6                                                                                                    | 70-130                                                                                                         | 0.517        | 10           | 06/03/2019               | EDM                       |                                                             |
|                                       |                 |                                           |                                                                                                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                        | v.v I /      |              | 00,0012010               | ¥ ¥ ¥ <sup>م</sup> ما عما |                                                             |

The contents of this report apply to the sample(s) analyzed in accordance with the Chain of Custody document. No duplication of this report is allowed, except in its entirety



Boise City Public Works Water Quality Laboratory 11818 Joplin Road Boise, Idaho 83714-1076 Telephone (208) 608-7240 Fax (208) 608-7319

#### **Notes and Definitions**

| ltem   | Definition                                                                           |
|--------|--------------------------------------------------------------------------------------|
| BOD-01 | Dilution scheme was not sufficient to meet method defined oxygen depletion criteria. |
| D      | Data reported from a dilution                                                        |
| U      | Analyte included in the analysis, but not detected                                   |

#### **Method Reference Acronyms**

| Colilert | Colilert, IDEXX Laboratories, Inc.                                 |
|----------|--------------------------------------------------------------------|
| EPA      | Manual of Methods for Chemical Analysis of Water and Wastes, USEPA |
| GS       | USGS Techniques of Water-Resources Investigations                  |
| HH       | Hach Spectrophotometer Procedures Manual                           |
| SM       | Standard Methods for the Examination of Water and Wastewater       |

SW Test methods for Evaluating Solid Waste, SW-846

regan

Janet Finegan-Kelly Water Quality Laboratory Manager

Stephen Quintero or Azubike Emenari QA/QC Coordinator

| Ada County Highway District                                                                                                                   | way Dis              | trict                                                                                                           |                           |             |                       | 1                |                  |        |         | -                                       |                                             |                |                 |                |                   |                   |                |                   |                   |                                |                 |                  |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-----------------------|------------------|------------------|--------|---------|-----------------------------------------|---------------------------------------------|----------------|-----------------|----------------|-------------------|-------------------|----------------|-------------------|-------------------|--------------------------------|-----------------|------------------|---|
| Attn: Monica Lowe                                                                                                                             |                      |                                                                                                                 |                           |             |                       |                  | 21               | Matrix | Type    | -                                       | t                                           | ł              |                 | ł              | +                 |                   |                | ŀ                 | +                 | 1                              | 1               | -                |   |
| 3775 Adams Street<br>Garden City, Idaho 83714–6418<br>Tel. (208) 387–6255<br>Fax (208) 387–6391<br>Purchase Order:<br>Project:<br>Sampler(s): | 3714–6418            |                                                                                                                 | 63046445<br>Stormwater-PI | <           |                       |                  |                  |        |         | ∧ 8                                     | ,                                           | ,              | /               | A              |                   |                   |                |                   |                   | ,                              |                 | ۵-۴4             |   |
| Lab#<br>Date Date Time                                                                                                                        | End                  |                                                                                                                 |                           |             | Sample Identification | aleitini rainme2 | Sampler Initials | Water  | Grab    | Composite<br>BOD <sub>5</sub> - SM 5210 | COD - Hach 8000                             | 0 042 MS - 281 | TDS - SM 2540 C | TP - EPA 200.7 | - etenasoriaorino | Total As. Cd. Pb. | Total Ha - EPA | E. Coli - IDEXX ( | TurbidiuT - EPA 1 | Hardness - SM2<br>Aga- con+con | N 0097 WS - CHN | Total Containers |   |
| 10024-01 5/16/19                                                                                                                              | 5/16/19 5/16/19 1739 | 1739                                                                                                            | 2022                      | - 1/201/1 - | 4-03-WC               | A                | ARC              | 2      | ~       | <u>२</u><br>२                           | X                                           | х<br>У         | ×               | X              | X                 | X                 | 8              |                   | X<br>X            | ×                              | X               | ~                |   |
|                                                                                                                                               | 5/14/19 5/14/19 1651 | 1651                                                                                                            | 2631                      | 1405 1      | 1905-16-11-WC         | ¥                | ABC              | R      | Q       | ×                                       | 8                                           | א<br>2         | ×               | _<br>بر        | ×                 | X<br>X            | ×<br>×         |                   | ×<br>Q            | ×                              | <u>ب</u> ز      | -                |   |
|                                                                                                                                               |                      |                                                                                                                 |                           |             |                       |                  |                  |        |         |                                         |                                             |                |                 |                |                   |                   |                |                   |                   |                                |                 |                  |   |
|                                                                                                                                               |                      |                                                                                                                 |                           |             |                       |                  |                  |        |         |                                         |                                             |                |                 |                |                   |                   |                |                   |                   |                                |                 |                  |   |
|                                                                                                                                               |                      |                                                                                                                 |                           |             |                       |                  |                  |        |         |                                         |                                             |                |                 |                |                   |                   |                |                   |                   |                                | _               |                  |   |
| Relinguished by (sign)                                                                                                                        | V(Sign)              | the second se | Date & Time               | Date & Time | Received by (sign)    | sign)            |                  |        |         | _ ြ ိ                                   | Comments/Special Instructions:              | ents           | /Spi            | scia           |                   | L.                | ti l           | - i               | -1.               | _                              | _               | _                |   |
| J-K                                                                                                                                           |                      |                                                                                                                 | 5/12/19                   | 61/2        |                       | bilkilso         | 0 - 10 - 1       | 1 AL   | hot hot | erroust valume                          | rough .                                     | noter ter      |                 | for ell        | Sel y             | وم ال             | Per            | anelytis plexee   | A A               | 6                              | 24              | 186              | 1 |
|                                                                                                                                               |                      |                                                                                                                 |                           |             |                       |                  | 9AC              | 009    | 10-4000 |                                         | > NO Dissolved parameters; how some volume- | 2,55           | - Al            | pa:            | 25 me             | S                 | 2              | 8                 | ×.                | NON                            | 75              | - Sut            |   |
| coc_wql                                                                                                                                       |                      |                                                                                                                 |                           |             |                       |                  |                  |        |         |                                         |                                             |                |                 |                |                   |                   | Q              | heuw you          |                   | 5                              | 10/18           |                  |   |
|                                                                                                                                               |                      |                                                                                                                 |                           |             |                       |                  |                  |        |         |                                         |                                             |                |                 |                |                   |                   | •              | -                 |                   | į                              |                 |                  |   |

# Appendix C: Americana Subwatershed Monitoring Summary



# Americana Subwatershed Monitoring Summary Report

Prepared for Ada County Highway District January 6, 2020

# **Table of Contents**

| List of Figure | 2S                                      | iii |
|----------------|-----------------------------------------|-----|
| Executive Su   | immary                                  | 1   |
| Section 1: In  | troduction and Background               | 3   |
| Section 2: Ye  | ear One Data Collection                 | 3   |
| 2.1 Monitori   | ng Equipment                            | 4   |
| 2.1.1          | Pressure Transducer Water Level Loggers | 4   |
| 2.1.2          | Flowmeters                              | 5   |
| 2.1.3          | Rain Gauges                             |     |
| 2.2 Monitori   | ng Sites                                | 5   |
|                | 1                                       |     |
| _              |                                         |     |
| AS_1           |                                         |     |
| AS_2           |                                         |     |
| AS_3           |                                         |     |
| AS_4           |                                         | _   |
| AS_5           |                                         |     |
| AS_6           |                                         | 8   |
| Section 3: M   | onitoring and Modeling Results          | 8   |
| 3.1 Correlati  | ons                                     | 9   |
| 3.2 Modeled    | Flows                                   | 9   |
| 3.3 Monitori   | ng Results by Site                      |     |
| Site 14        | l (Outfall)                             |     |
| - (            | Outfall)                                |     |
| _              |                                         |     |
| AS_2           |                                         |     |
| AS_3           |                                         |     |
| AS_4           |                                         |     |
|                |                                         |     |
| AS_6           |                                         |     |
| Section 4: D   | iscussion and WY 2020 Activities        |     |
| 4.1 Alignmer   | nt with Monitoring Objectives           |     |
| Progra         | m Objective 1                           |     |
| Progra         | m Objective 2                           |     |
| 0              | m Objective 3                           |     |
| 4.2 WY 2020    | D Activities                            |     |
| Attachment     | A: Tables                               | A-1 |
| Attachment     | B: Figures                              | B-1 |
|                |                                         |     |

Brown AND Caldwell

# List of Figures

| Figure ES-1. Conceptual layout of monitoring sites2                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1. Installation of level loggers. Pictured left to right: conduit installation for loggers within stormdrain pipe with pinched end located at bottom of pipe; conduit installation with fiberglass rod extending from conduit for easy removal/replacement of level logger for download. |
| Figure 2. Monitoring site locations6                                                                                                                                                                                                                                                            |
| Figure 3. Conceptual layout of monitoring sites7                                                                                                                                                                                                                                                |
| Figures in Attachment B                                                                                                                                                                                                                                                                         |
| Figure 4: Site 14 Map                                                                                                                                                                                                                                                                           |
| Figure 5: AS_7 Map                                                                                                                                                                                                                                                                              |
| Figure 6: AS_1 Map                                                                                                                                                                                                                                                                              |
| Figure 7: AS_2 Map                                                                                                                                                                                                                                                                              |
| Figure 8: AS_3 Map                                                                                                                                                                                                                                                                              |
| Figure 9: AS_4 Map                                                                                                                                                                                                                                                                              |
| Figure 10: AS_5 Map                                                                                                                                                                                                                                                                             |
| Figure 11: AS_6 Map                                                                                                                                                                                                                                                                             |
| Figure 12: Wet Events Hydrograph                                                                                                                                                                                                                                                                |
| Figure 13: Dry Events Hydrograph                                                                                                                                                                                                                                                                |
| Figure 14: Percent Wet Event Flow Contribution                                                                                                                                                                                                                                                  |
| Figure 15: Percent Dry Event Flow Contribution                                                                                                                                                                                                                                                  |



# **Executive Summary**

The Americana subwatershed is the largest urban subwatersheds on the lower Boise River and drains a significant portion of downtown Boise and the north end and foothills residential areas. Connections with natural surface waters, irrigation canals, dewatering from construction activities, utility vaults, and dewatering wells further complicate the profile of stormwater runoff and background non-stormwater flows. Development in downtown Boise and the residential area north of downtown, as well as increasing awareness and concern in the community for water quality, presents an opportunity to change behaviors and implement targeted pollutant reduction activities in the Americana subwatershed.

To capitalize on this opportunity and build upon the stormwater runoff and dry weather, non-stormwater monitoring (flow measurement and analytical sample collection) that have been conducted at the Americana outfall since 2013, Ada County Highway District (ACHD) developed the Americana subwatershed monitoring plan in water year (WY) 2018 with the following objectives:

- Validate assumptions about stormwater flows from individual subcatchments and identify situations where monitoring data does not align with expectations based on the results of the Connectivity Evaluation (Brown and Caldwell, 2015) or the Subwatershed Planning document for the Americana and Main Street subwatersheds (Ecosystem Sciences, 2016).
- Identify sources of wet weather flows as well as non-stormwater dry weather flows that contribute to the flows discharging from the Americana outfall.
- Identify specific areas of the subwatershed where additional controls or changes in management approach are needed.

At the beginning of WY 2019 ACHD began conducting systematic flow monitoring at major nodes within the Americana subwatershed storm drain system. These monitoring sites are represented below in Figure ES-1.



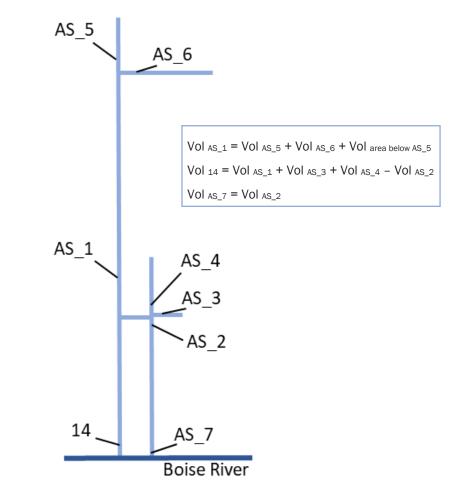
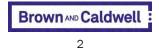




Figure ES-1. Conceptual layout of monitoring sites

Continuous flow monitoring data collected during WY 2019 were used to analyze 19 representative wet weather events and 10 representative dry weather events. The analysis of measured flows together with modeled flows, calculation of flow total correlations between sites, and development of a water balance for the Americana subwatershed led to several conclusions about flows in the subwatershed and provide additional direction for monitoring activities in WY 2020. These conclusions help ACHD better understand how to use the Americana subwatershed model as a predictive tool to inform management decisions by assessing limitations in light of actual observations to describe how they impact model results. Additionally, monitoring results from year one have narrowed down the areas within the subwatershed that contribute most significantly to dry weather flows and have helped to identify and document the timing and nature of dry weather flows.

Activities for WY 2020 include water quality monitoring at a subcatchment monitoring location within the Americana subwatershed and continued flow monitoring. Flow monitoring is planned to continue at some of the WY 2019 locations, and some new locations may be brought online as well to acquire additional data in support of program objectives.



# Section 1: Introduction and Background

The Americana subwatershed is one of the largest urban subwatersheds on the lower Boise River and drains a significant portion of downtown Boise and the north end and foothills residential areas, which results in a complex drainage area. Connections with natural surface waters, irrigation canals, dewatering from construction activities, utility vaults, and dewatering wells further complicate the profile of stormwater runoff and background non-stormwater flows. Stormwater runoff and dry weather, non-stormwater monitoring (flow measurement and analytical sample collection) have been conducted at the Americana outfall since 2013.

The subwatershed drains almost 900 acres of residential and commercial land uses, resulting in stormwater runoff pollutant loads that are often higher than the smaller subwatersheds. Development in downtown Boise and the residential area north of downtown, as well as increasing awareness and concern in the community for water quality, presents an opportunity to change behaviors and implement targeted pollutant reduction activities in the Americana subwatershed. Ada County Highway District (ACHD) has undertaken additional studies and investigations to support decision-making for stormwater management activities that reduce pollutant loads from sources and improve runoff quality in this subwatershed.

In addition to stormwater quality and flow monitoring at the Americana outfall, ACHD developed a subwatershed plan for the Americana subwatershed to prioritize subareas for future green stormwater infrastructure. The subwatershed plan used modeled flow and water quality information to identify and prioritize subareas for future green stormwater infrastructure implementation. ACHD has also analyzed dry weather, non-stormwater flows at the outfall, which has led to documenting a variety of dry weather flow sources that have varying water quality implications.

ACHD developed the Americana subwatershed monitoring plan in water year (WY) 2018 with the following objectives:

- Validate assumptions about stormwater flows from individual subcatchments and identify situations where monitoring data does not align with expectations based on the results of the Connectivity Evaluation (Brown and Caldwell [BC], 2015) or the Subwatershed Planning document for the Americana and Main Street subwatersheds (Ecosystem Sciences, 2016).
- Identify sources of wet weather flows as well as non-stormwater dry weather flows that contribute to the flows discharging from the Americana outfall.
- Identify specific areas of the subwatershed where additional controls or changes in management approach are needed.

At the beginning of WY 2019 ACHD began conducting systematic flow and water quality monitoring at major nodes within the Americana subwatershed storm drain system. This report summarizes data collection efforts and monitoring equipment used during WY 2019, describes monitoring site information and results, and provides conclusions in line with each monitoring objective. A discussion of potential monitoring activities for WY 2020 is also included.

# **Section 2: Year One Data Collection**

Continuous rain data was recorded at two rain gauge sites, and flow data was collected and analyzed from seven individual monitoring sites in the Americana subwatershed, in addition to continued flow and water quality monitoring at the Americana outfall monitoring station. Monitoring data and information from the Americana subwatershed model developed in PCSWWM for the subwatershed plan were used to create a water balance for the Americana drainage area. The water balance and inter-site data comparison were used to check monitored and modeled results against expectations, draw preliminary conclusions about



sources of wet weather and dry weather flow, and start documenting specific areas of the subwatershed where additional controls or changes in management approach might be needed.

### 2.1 Monitoring Equipment

Data acquisition in WY 2019 was accomplished using pressure transducer water level loggers, flowmeters, and rain gauges. Monitoring equipment is described in detail below.

#### 2.1.1 Pressure Transducer Water Level Loggers

Pressure Transducer Water Level Loggers (loggers) are the primary monitoring instrument used to gather data about flows in the Americana subwatershed storm drain system. ACHD has selected HOBO U2OL Water Level Loggers for in-pipe monitoring. The loggers record water depth as absolute pressure (in pounds per square inch) exerted on the sensor as well as temperature. When combined with barometric pressure data in the HOBOware Pro software, the system generates a corresponding water level reading for each temperature and pressure reading.

From the start of data collection in August 2018 through January 2019, barometric pressure data from the National Weather Service Boise Airport was used, but beginning in January 2019 barometric pressure data was collected from another HOBO U20L logger mounted in a protected open-air location at ACHD headquarters, approximately 1.25 miles from the logger sites, to minimize calculation errors. Level data from AS\_1 through AS\_6 were imported into Flowlink Pro software and converted to flow measurements using Manning's equations and each site's individual characteristics (pipe size, material, and slope). The flow data was then imported into DataSight.

The loggers are installed in the storm drain pipes inside a 2-inch diameter steel-lined flexible conduit. The submerged end of the conduit is pinched to a narrow opening that holds the logger back from passing through the end of the conduit while still allowing free movement of water into the conduit for measurement. At each site the conduit is mounted to pipe and vault walls, starting at the bottom of the manhole cover to the measured pipe floor. The logger is secured to a piece of flexible fiberglass rod that is the same length as the conduit. This setup allows the logger to be removed from the conduit and reinserted without confined space entry, as well as ensuring that it is back in position at the bottom of the pipe and is shown in Figure 1.



Figure 1. Installation of level loggers. Pictured left to right: conduit installation for loggers within stormdrain pipe with pinched end located at bottom of pipe; conduit installation with fiberglass rod extending from conduit for easy removal/replacement of level logger for download.



#### **Calibration and Maintenance**

Loggers are gently cleaned during each download to remove any debris or biological growth. Battery life is expected to last 5 years and has not yet become an issue.

#### 2.1.2 Flowmeters

Hach and ISCO flowmeters have been used at some Americana subwatershed monitoring sites on a case-bycase basis. The flowmeters are used to record level, velocity, flow, and, in the case of ISCO flowmeters, also temperature and diagnostic information. The flowmeter consists of a probe that is mounted to the invert of the pipe by means of a mounting band. The instrument includes both a bubbler depth sensor (Hach) or pressure transducer (ISCO) and an acoustic Doppler velocity sensor. The sensors work together to measure the depth and velocity, respectively, in order to estimate the flow of water through the pipe using the pipe geometry via the area-velocity calculation.

A Hach flowmeter is permanently installed at Site 14 as part of the stormwater outfall monitoring program. Other locations of flowmeter installations to date have been AS\_1 and AS\_7, with the purpose of level/flow validation of level logger data.

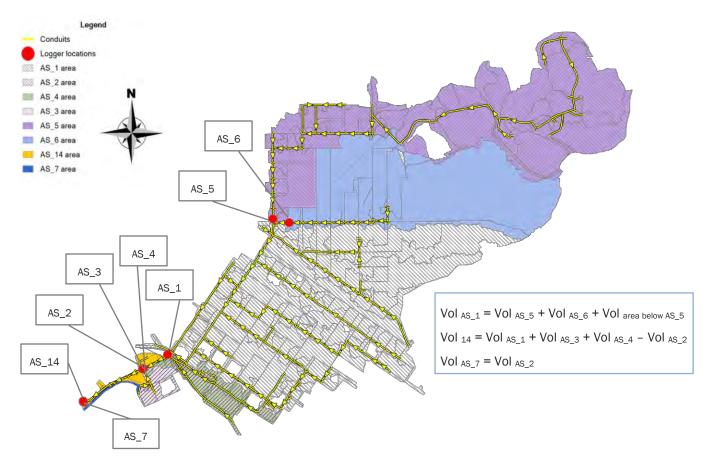
#### **Calibration and Maintenance**

Routine calibration and maintenance of flowmeters has been performed as described in the Stormwater Outfall Monitoring Plan.

#### 2.1.3 Rain Gauges

ACHD currently maintains two rain gauge sites representative of the Americana subwatershed. The rain gauges are deployed to collect continuous precipitation data throughout the water year. The program uses tipping-bucket style rain gauges that measure rainfall depths to 0.01-inch increments. Both rain gauge sites are equipped with HOBO event data loggers. Both a primary and a backup data logger were used to record tip measurements.

The data collected on the rain gauge data loggers were downloaded to a portable laptop computer on a regular monthly basis by ACHD personnel. The data was compared to the National Weather Service rainfall data and used to identify geographic variations, revise estimates of runoff coefficients, and analyze and evaluate the stormwater quality data.


#### **Calibration and Maintenance**

ACHD has inspected, maintained, and downloaded the rain gauges on a monthly basis. Any conditions requiring troubleshooting have been performed by ACHD, and any data gaps or periods of questionable data were identified by ACHD.

### 2.2 Monitoring Sites

Eight level/flow monitoring sites were used during WY 2019, including the Americana outfall monitoring station. Figure 2 is a map of the Americana subwatershed showing locations and subcatchments for each monitoring site. The figure also explains the contributing areas, in terms of flow volume, monitored at sites AS\_1, AS\_7, and Site 14. Detailed figures showing the specific subcatchment represented by each monitoring site are included in Attachment B.





#### Figure 2. Monitoring site locations

Figure 2 shows the locations of the monitoring sites in relation to each other using a conceptual layout of the storm drain system in the Americana subwatershed.





Figure 3. Conceptual layout of monitoring sites

Table 1 provides pertinent information for each of the monitoring locations within the subwatershed including monitoring equipment information, land use information, and construction details necessary for measuring and calculating in-pipe level and flow. Brief descriptions of each site are given below to outline the instrumentation, site-to-site relationships, and any unique flow conditions present.

#### Site 14

Site 14 is the Americana outfall monitoring station used in the stormwater outfall monitoring program. It is equipped with a Hach Sigma 950 flowmeter. The Site 14 subcatchment (Figure 4, attached) includes the entirety of subcatchments AS\_1, AS\_5, and AS\_6 and accepts a portion of the flow from AS\_3 and AS\_4.

### AS\_7

Site AS\_7 (Figure 5, attached) is a secondary outfall to Site 14, with a connection between storm drain pipes at the junction of AS\_2, AS\_3, and AS\_4. The subcatchment includes the entirety of AS\_3 and AS\_4; however, a portion of flow from those subcatchments flows through the pipe connection and continues to Site 14. AS\_7 is equipped with an ISCO 2150 Flowmeter that was installed on January 11, 2019 to measure level, velocity, flow, temperature, and velocity signal diagnostic information.



### AS\_1

AS\_1 (Figure 6, attached) includes the entirety of AS\_5 and AS\_6 along with most of the downtown area of the Americana subwatershed. AS\_1 is outfitted with a HOBO level logger and an ISCO 2150 Flowmeter installed October 25, 2019.

### AS\_2

AS\_2 (Figure 7, attached) contains the subcatchments AS\_3 and AS\_4 and is downstream of the pipe connection with the Site 14 storm drain pipe. It is outfitted with a HOBO level logger that measures level and temperature.

### AS\_3

The AS\_3 subcatchment (Figure 8, attached) accounts for a small subcatchment piped in just above the pipe connection between AS\_7 and Site 14. It is outfitted with a HOBO logger that measures level and temperature.

### AS\_4

The AS\_4 subcatchment (Figure 9, attached) includes a small subcatchment located just upstream of the conduit connection between AS\_7 and Site 14. A HOBO logger is installed at this location and measures level and temperature.

#### AS\_5

AS\_5 is the farthest north subcatchment (Figure 10, attached) and is contained within the subcatchments AS\_1 and Site 14. A HOBO level logger is installed to measure level and temperature.

#### AS\_6

The AS\_6 subcatchment (Figure 11, attached) includes a large portion of the north end residential area. A HOBO level logger is installed to measure level and temperature.

# **Section 3: Monitoring and Modeling Results**

From the continuous monitoring conducted during WY 2019, 19 representative wet weather events with rainfall totals over 0.1 inch were selected for analysis. Figure 12 is a hydrograph of WY 2019, that identifies the wet weather events used for analysis. Analysis included comparing measured flows with modeled flows, calculating flow value correlations between sites, and developing a water balance for the Americana subwatershed as a whole. Dry weather analysis was conducted on 10 representative events during WY 2019. Figure 13 is a hydrograph of WY 2019, that identifies the dry weather events used for analysis.

Representativeness for wet weather events was judged as those events with precipitation that fell as rain only (no snow) and were separated from the previous wet weather event by at least 6 hours with no precipitation. Representativeness criteria applied to both wet and dry flow events included absence of data gaps during the event, absence of surcharge conditions at the outfall monitoring sites, and lack of any obviously wrong measurements. This section describes monitoring results and analysis. Section 4 provides a discussion of implications of monitoring results in the context of the monitoring program objectives.

Flow totals from measured and modeled wet weather and measured dry weather events are summarized in Tables 2 and 3, respectively. These values were used to calculate percentage of the total flow from each site during each wet and dry weather event and are included in Tables 4 and 5. Table 4 also contains the modeled percentage of total flow for each site for wet weather events.



Representing measured volumes as percent of total flow measured at each site is helpful for understanding the water balance for the Americana subwatershed. The water balance is an important tool for efficiently validating flow measurements (using known flow volumes to calculate a related unknown flow volume) and informing management decisions (magnitude of flow or pollutant load in comparison to other subcatchments). Using the calculated flow percentages, the total flow leaving the Americana subwatershed is represented as the sum of flows at Site 14 and AS\_7.

In theory, measured flow from AS\_1, AS\_3, and AS\_4 should add up to nearly 100 percent because they are so near the outfalls. Tables 2 and 3 show that the sum of both wet and dry weather flows measured at AS\_1, AS\_3, and AS\_4 consistently add up to far less than 100 percent. This is indicative of a problem with measurements or calculations at one or more monitoring site described in more detail in Section 3.3.

## 3.1 Correlations

Using a second degree Line of Best Fit, correlations are calculated between sites help to identify whether the data discrepancies are likely due to equipment malfunction or to errors in flow calculation variables, such as pipe slope, in-pipe level offset, or barometric pressure correction. Correlations of flow values between sites are listed below. Values above 0.8 are considered to have strong correlation. When strong correlations exist and flow percentages do not balance out, results are indicative of an issue with flow calculation variables rather than measurement accuracy of the monitoring equipment.

Correlation to AS\_1:

AS 5: 0.939 Wet: 0.856 Dry

AS\_6: 0.857 Wet; 0.995 Dry

#### Correlation to Site 14:

- AS\_1: 0.992 Wet; 0.836 Dry
- AS\_3: 0.990 Wet; 0.929 Dry
- AS\_4: 0.968 Wet; 0.921 Dry
- AS\_5: 0.935 Wet; 0.873 Dry
- AS\_6: 0.867 Wet; 0.558 Dry
- AS\_7: 0.949 Wet; 0.883 Dry

# 3.2 Modeled Flows

PCSWMM was used to model flows during wet weather events, using the model design generated for the Americana Subwatershed Plan with rain data only. For most events modeled, total flows were significantly lower than measured total flows over the 19 analyzed wet events. This difference is likely attributable to three primary sources of error:

- Lack of dry weather flow influence adjustment (for those sites with consistent dry weather flow).
- Additional unmapped drainage area associated with Hulls Gulch storm flow.
- Hydrograph generation methods (source of total runoff for each storm event) in the model do not always line up well with effects of rainfall intensities on runoff volumes for individual subcatchments. Effects of canopy cover and changes in impervious area connectivity with varying intensity rainfall are examples of complicating factors in runoff prediction.

While flow totals are lower, the hydrograph shape, timing, and proportions of total flow are still similar, meaning the model is still useful for evaluating and estimating conditions within the subwatershed. It also means that the model could provide even more utility in the future with calibration, enabling its application in estimating stormwater discharges to other areas within the National Pollutant Discharge Elimination



### Correlation to Site 7:

- AS\_3: 0.964 Wet; 0.870 Dry
- AS\_4: 0.960 Wet; 0.970 Dry

System Permit area. Table 4 demonstrates the proportionality of modeled flows versus measured flows in that the flow percentage for each subcatchment is similar.

Results from flow data processing and analysis after the end of WY 2019 indicates that sites AS\_1, AS\_5, AS\_6, AS\_7, and Site 14 are producing high accuracy data. Sites AS\_2, AS\_3, and AS\_4 have recorded level data, but as explained below within the results of each site, there are currently errors in flow calculations.

## 3.3 Monitoring Results by Site

A site-by-site discussion of measured and modeled values is included below. Flow totals refer to the total flow from all 19 representative wet weather events or all 10 dry weather events used in this analysis. Water balance relationships are discussed in several site result summaries below. Tables 6 and 7 include water balance calculations for wet weather and dry weather flows, respectively. The water balance relationships are based on current understanding of the storm drain system in the Americana subwatershed, and the results are based on the data collected during WY 2019, with the limitations described below. Implications of results are discussed in Section 4.

#### Site 14 (Outfall)

The mean percentage of measured wet weather flow that Site 14 discharges for the entire Americana subwatershed is 82 percent (5.1 million cubic feet [cf]). The mean percentage of dry weather flow discharging from Site 14 is 95 percent (6.7 million cf). Flow measurements at Site 14 do not take into consideration level measurement error due to a faulty bubbler unit, which affected all flow measurements during WY 2019. Flow rates recorded by the flowmeter during this time were likely between 20 and 40 percent lower than the actual flow values. However, due to the long record of flow measurement at this location, historical flows may be used to generate and apply a velocity-level rating curve to correct measurements.

Modeled results are significantly less than measured results (2.7 million cf). Modeled results do not take into account the non-stormwater background flow that is still present during measured wet weather events, which contributes to the discrepancy between measured and modeled flow totals.

### AS\_7 (Outfall)

The mean percentage of wet weather flow that the AS\_7 outfall discharges for the entirety of Americana subwatershed is 18 percent, which totals 1.13 million cf. The mean percentage of dry weather flow discharging from AS\_7 is 5 percent, totaling 286,173 cf.

When comparing wet event flow totals from AS\_7 to AS\_14, the correlation between the two has an  $R^2$  of 0.949. Dry weather total flows correlated with an  $R^2$  of 0.883 and instantaneous dry flow values correlated with an  $R^2$  of 0.973.

Modeled flows for this location are consistent when compared to measured flows, with the exception of the February 20, 2019, event, which had a lower modeled flow volume caused by the large difference of rain measured at the two rain gauge locations and how those measurements are spatially associated to subcatchments.

### AS\_1

Flow measurements at AS\_1 account for a mean percentage of wet event flow totals of 40 percent, or 2.39 million cf, and a mean dry event flow total of 63 percent, or 4.04 million cf.

When comparing wet event flow totals from AS\_1 to Site 14, the correlation between the two has an  $R^2$  of 0.992. Dry weather total flows correlated with an  $R^2$  of 0.836. This latter correlation, along with the flow



totals for these sites during dry events later in the year, indicates that there is variability in dry weather flows introduced below the AS\_1 area that are likely related to human activities.

Dry weather flow at this site has been confirmed to include flows from Hulls Gulch, Boise City Canal overflow, and a discharge from the geothermal system in downtown Boise.

Modeled results at this location make up the majority of flow modeled for Site 14, as expected. Modeled flow totals from AS\_1 often exceed measured flows, which usually occurs during longer or more intense rain events.

AS\_1 level and subsequent flow measurements for WY 2019 were corrected at the end of the water year based on measurements from a flowmeter temporarily installed at the site. The results reported for all WY 2019 events represent these corrected values.

#### AS\_2

Measured flows at AS\_2 were consistently lower than expected given the close proximity to the AS\_7 outfall. This error is most likely due to the complicated geometry of the AS\_2 pipe junction as well as turbulent conditions in the connected vault upstream. For analytical purposes, AS\_2 flows are presumed to equal those of AS\_7, and so results from AS\_2 are not included in tables.

### AS\_3

Turbulent flow conditions caused by the pipe geometry and larger flows from AS\_4 into the vault below AS\_3 resulted in low quality and unreliable level data collection at this site. However, since AS\_3 and AS\_4 are the only contributing areas to this junction, the flow from AS\_3 can be calculated from a water balance equation.

The water balance for the Americana subwatershed dictates the following flow volume relationship to AS\_3:

AS\_3 volume = Site 14 volume + AS\_7 volume - AS\_1 volume - AS\_4 volume

AS\_3, as measured, contributes an average total flow of 4 percent during wet events, totaling 235,253 cf. Dry weather contributions averaged 2 percent, or 129,293 cf.

When comparing wet event flow totals from AS\_3 to Site 14, the correlation between the two has an R<sup>2</sup> of 0.990, and the dry event correlation has an R<sup>2</sup> of 0.925. Compared to AS\_7, wet event flows correlate with an R<sup>2</sup> of 0.964, and dry event flows correlate with an R<sup>2</sup> of 0.87. The strength of these correlations, particularly the stronger dry weather correlation with Site 14, indicate a strong tie between AS\_3 and Site 14 during lower flow rates through the connecting pipe. However, as explained above, flows from AS\_4 interfere with accurate measurement of flows from AS\_3, so while the correlations between both outfalls are strong, they may not be accurate, as flow totals for AS\_3 are likely lower than measured.

Modeled flows attribute a lower volume of flow from the AS\_3 subcatchment and show it contributing a smaller portion to the flow modeled at AS\_7.

### AS\_4

AS\_4, as measured, contributed a mean percentage of wet event total flow of 7 percent totaling 421,132 million cf, and dry flow event totals averaged 2 percent, or 125,824.

When comparing wet event flow totals from AS\_4 to Site 14, the correlation between the two has an R<sup>2</sup> of 0.968. Dry event flows correlate with an R<sup>2</sup> of 0.921. Compared to AS\_7, AS\_4 correlates during wet events with an R<sup>2</sup> of 0.960, and dry event flows correlate with an R<sup>2</sup> of 0.970. Although the strength of these correlations show a strong tie to both outfalls, and a stronger tie to AS\_7, lower flows may not have been recorded, as explained below.



The water balance indicates that measured flows from AS\_4 are most likely lower than actual conditions. While modeled flows for AS\_4 were on average 26 percent smaller than measured flows, they make up a larger portion of modeled flows at AS\_7 than measured flows. Given that there is a significant flow deficit in the water balance that originates from the AS\_3 and AS\_4 subcatchments, it is likely that a large portion of that flow comes from AS\_4; however, the actual amount is unknown at this time.

### AS\_5

AS\_5 makes up a portion of the AS\_1 subcatchment. The subcatchment monitored by AS\_5 contributes an average wet event flow of 5 percent, totaling 343,445 cf, and dry event flows contribute 7 percent of dry weather flows, totaling 268,863 cf.

Dry weather flow at this site has been confirmed to include flows from Hulls Gulch. With no other known sources of dry weather flow in this subcatchment, measurements at AS\_5 are a good representation of the amount of flow entering the Americana subwatershed from Hulls Gulch.

Modeled results for AS\_5 were significantly lower than measured flow, most likely due to the lack of dry weather flows in the model and the possible increased contributing area associated with Hulls Gulch. This supposition is supported by the fact that the largest discrepancies between modeled and measured flows occur during the longest duration events.

AS\_5 level and subsequent flow measurements for WY 2019 were corrected at the end of the water year based on correlations with AS\_1 and corrections made to values at that site. The results reported for all WY 2019 events represent these corrected values.

### AS\_6

Similar to AS\_5, AS\_6 represents another discrete portion of the AS\_1 subcatchment. The mean percentage of wet weather flow that AS\_6 discharges for the entirety of the Americana subwatershed is 1 percent, totaling 82,335 cf, and the mean percentage of dry weather flow discharging from AS\_6 is 0.25 percent, or 21,906 cf.

Measured wet weather flow totals correlated with Site 14 with an R<sup>2</sup> of 0.873, and dry event flows correlated much weaker with an R<sup>2</sup> of 0.558. When compared to AS\_1, the wet flow resulted in an R<sup>2</sup> of 0.857 and the dry flow had an R<sup>2</sup> of 0.995. This comparison indicates that AS\_6 contributes almost no dry weather flow, and similar to AS\_1, highlights that there is variability in dry weather flows originating below the AS\_1 area that are likely related to human activities.

Modeled flows are consistently lower than measured flows at AS\_6, which is likely due to the difference in hydrograph generation methods, including runoff coefficient accounting for storage in a subcatchment with a large amount of pervious area and canopy cover.

# Section 4: Discussion and WY 2020 Activities

Flow analysis was performed on two separate types of flow events: wet weather and dry weather. This analysis allowed for the evaluation of the relationships between discrete subcatchments in the Americana subwatershed regarding stormwater runoff volumes and background, non-stormwater flow inputs. This section provides a summary of how results and conclusions from year one of this monitoring program align with the objectives of the Americana subwatershed monitoring program. This section also provides a list of potential activities for consideration in WY 2020.



## 4.1 Alignment with Monitoring Objectives

Conclusions related to each monitoring objective are described below.

#### Program Objective 1

Validate assumptions about stormwater flows from individual subcatchments and identify situations where monitoring data does not align with expectations based on the results of the Connectivity Evaluation (BC 2015) or the Subwatershed Planning document for the Americana and Main Street subwatersheds (Ecosystem Sciences 2016).

These conclusions help ACHD better understand how to use the model as a predictive tool to inform management decisions by assessing limitations in light of actual observations to describe how they impact model results.

- From measured results, the AS\_3 and AS\_4 areas combined contribute significantly less runoff than expected. When comparing measured flows to those calculated from a water balance, 34 percent of total flow is unaccounted for from AS\_3 + AS\_4. This deficiency is illustrated by Figure 14, which depicts the percentage of total monitored flow that each subcatchment contributes during wet weather events.
- Flow to the AS\_7 outfall is also more significant than previously believed, yielding 18 percent of measured total flow during wet weather on average. Higher discharge from AS\_7 is associated with more intense rainfall. This discharge is likely because less overall flow is diverted through the pipe connection between the AS\_7 and Site 14 storm drain pipes.
- The discrepancy between modeled flows and measured flows is often high in the residential portions of the subwatershed, in which modeled flows are underestimated.

#### **Program Objective 2**

Identify sources of wet weather flows as well as non-stormwater dry weather flows that contribute to the flows discharging from the Americana outfall.

Monitoring results from year one have narrowed down the areas within the subwatershed that contribute most significantly to dry weather flows and have helped to identify and document the timing and nature of dry weather flows.

- Dry weather flows measured at AS\_5 were confirmed to originate from a piped connection that allows a portion of flow from Hulls Gulch to enter the Americana subwatershed.
- A portion of dry weather flow measured at AS\_1 was identified as a discharge from the geothermal system in downtown Boise.
- Elevated background flows contributing significant volume were identified following multiple wet weather events in April, May, and June at all sites except AS\_5 and AS\_6. Hydrograph geometry for the events (sudden rises and drop-offs) align with human activities such as turning on a pump or opening a headgate. Specific sources of these flows have not been identified.
- Significant elevated dry weather flow from August 20, 2019, to September 6, 2019, occurs in all subcatchments except for AS\_5 and AS\_6 and is attributed to human activities as indicated by a sudden rise and fall in the hydrographs.
- More dry weather contributions originate within the AS\_3 and AS\_4 subcatchments than originally presumed.
- Over half of the dry weather flows measured originate in the downtown area above AS\_1 and below AS\_5 and AS\_6.



#### **Program Objective 3**

Identify specific areas of the subwatershed where additional controls or changes in management approach are needed.

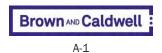
Results from WY 2019 primarily contribute to the dry weather screening and illicit discharge detection and elimination programs. The addition of water quality monitoring and continued flow monitoring in WY 2020 is anticipated to provide more information in support of this objective.

- Data collected in WY 2019 has provided the foundation for identifying future monitoring locations most likely to yield usable and useful water quality data.
- WY 2019 has identified the timing, amount, and general source areas of non-stormwater flows that may be tracked, identified, documented, and mitigated if necessary.

## 4.2 Proposed WY 2020 Activities

WY 2020 presents the opportunity to potentially implement modifications to monitoring activities, as practicable, to acquire additional information to improve the quality of data already collected, additional data collected, and representativeness of the hydrologic/hydraulic model. Correlations between sites indicate the homogeneity of the data recorded between them, and the nature of their relationship in regard to dry and wet weather flows. As future data comes in to correct level/flow data calculations, the correlations can then be applied to correlated nodes to a certain degree and help remove error from the water balance in cases where direct flow validation has not yet or cannot be measured. These correlations have been used to identify flow discrepancies for AS\_1 and AS\_5 and aid in their error adjustments. Efforts to improve the quality of data and the representativeness of the model could include the following:

- Conduct a temporary installation of a flowmeter in the AS\_4 monitoring location.
  - AS\_4 is not currently producing reliable data. Data from a flowmeter installed at this location would provide data necessary to develop a rating curve for measured level data. A rating curve would allow for correcting all previous and future flow data. These corrected flow calculations allow AS\_3 to be calculated using the water balance.
- Survey the inverts/pipe slopes for the AS\_2, AS\_3, AS\_4 junction and the conduit connection to the Site 14 outfall pipe.
  - Correctly measured inverts/slopes for this location also allow another avenue for AS\_4 flow calculation adjustment through Manning's equation.
  - The PCSWMM model currently does not account for the connection between the AS\_7 and Site 14
    pipes and therefore cannot accurately be calibrated with measured outfall data. Survey information
    would allow the mapping and modeling of this connection and calibrate the model with the longest
    existing flow and analytical data set that exists for Site 14.
- Remove level loggers from AS\_3 and AS\_2.
  - These sites are currently not providing reliable measurements. These loggers could be moved to another area of the subwatershed.
- Replace the ISCO flowmeter at AS\_7 with a level logger.
  - A significantly robust flow/level dataset now exists for AS\_7, from which a rating curve could be applied to level measurements for reliable flow data collection with less effort.
- Begin water quality monitoring.
  - Flow data from WY 2019 can be used to inform decisions regarding suitable water quality monitoring locations within the Americana subwatershed.




- Isolate non stormwater background flows for subtraction from wet weather event totals.
  - Measured wet weather flows also include non-stormwater background flow, which, especially during smaller storm events, skews measured wet weather flow data high. Analytical tools such as PCSWMM can be used to analyze trends in non-stormwater flows and subtract non-stormwater flows from wet weather event totals. This exercise would remove a significant source of error when comparing measured flows to modeled flows.
- Calibrate the model to known measured flows.
  - Models can be refined as more data are made available for the areas they are made to represent.
     Calibrating the model to measured flows at high-quality data sites allows for more accurate flow predictions and pollutant loading predictions within each subcatchment.



# **Attachment A: Tables**

Table 1: Monitoring Site Information
Table 2: Total Flow: Wet Events
Table 3: Total Flow: Dry Events
Table 4: Percent of Total Flow: Wet Events
Table 5: Percent of Total Flow: Dry Events
Table 6: Wet Events Water Balance
Table 7: Dry Events Water Balance



Americana Subwatershed Report

|                          |                           |                       |                            | Т                                                                 | able 1. Monitori      | ng Site Information                |                |                                    |                         |                    |
|--------------------------|---------------------------|-----------------------|----------------------------|-------------------------------------------------------------------|-----------------------|------------------------------------|----------------|------------------------------------|-------------------------|--------------------|
| Monitoring<br>Program ID | Location Name             | Total Area<br>(acres) | Impervious<br>Area (acres) | Primary Land Uses                                                 | Pipe Diameter<br>(in) | Manning's Roughness<br>Coefficient | Pipe Slope (%) | Instrument Type and ID             | Deploy start date       | Deploy End<br>Date |
| Site 14                  | Americana                 | 915                   | 291                        | Commerical,<br>Residential (Medium),<br>Residential (Low)         | 48                    | 0.015                              | 0.0001         | Hach Sigma 900 Flowmeter           | 10/1/2013               | NA                 |
| AS_1                     | 16th and Front St.        | 869                   | 255                        | Residential (Medium),<br>Residential (High),<br>Commerical        | 42                    | 0.015                              | 0.0001         | HOBO Logger<br>2150 ISCO Flowmeter | 8/10/2018<br>10/25/2019 | NA<br>NA           |
| AS_2                     | Americana and River South | 39                    | 28                         | Commercial,<br>Public ROW                                         | 42                    | 0.015                              | 0.0001         | HOBO Logger                        | 8/10/2018               | NA                 |
| AS_3                     | Americana and River East  | 10                    | 5                          | Commercial,<br>Residential (Medium)<br>Residential (High)         | 16                    | 0.015                              | 0.0001         | HOBO Logger                        | 8/10/2018               | NA                 |
| AS_4                     | Americana and River St.   | 29                    | 23                         | Commerical,<br>Public ROW                                         | 42                    | 0.015                              | 0.0001         | HOBO Logger                        | 8/10/2018               | NA                 |
| AS_5                     | 15th and Resseguie        | 289                   | 49                         | Residential (Medium),<br>Residential (Low),<br>Public ROW         | 30                    | 0.015                              | 0.0001         | HOBO Logger                        | 8/10/2018               | NA                 |
| AS_6                     | 14th and Resseguie        | 206                   | 23                         | Residential (Medium),<br>Residential (Low),<br>Residential (High) | 22                    | 0.024                              | 0.0001         | HOBO Logger                        | 8/17/2018               | NA                 |
| AS_7                     | Americana East            | 40                    | 30                         | Commerical,<br>Public ROW                                         | 42                    | 0.015                              | 0.0001         | ISCO 2150 Flowmeter                | 1/11/2019               | NA                 |

|                  |                     |                    |                                |                               |                                       |                         |                                    |                         | Table 2. Total F                   | low: Wet Events         | ;                     |                         |                       |                         |                       |                         |                                    |                               |                             |
|------------------|---------------------|--------------------|--------------------------------|-------------------------------|---------------------------------------|-------------------------|------------------------------------|-------------------------|------------------------------------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------|------------------------------------|-------------------------------|-----------------------------|
| Date             | Duration<br>(hours) | Total Rain<br>(in) | Mean Rain<br>Intensity (in/hr) | Site 14<br>(ft <sup>3</sup> ) | Site 14<br>modeled (ft <sup>3</sup> ) | AS_1 (ft <sup>3</sup> ) | AS_1 modeled<br>(ft <sup>3</sup> ) | AS_3 (ft <sup>3</sup> ) | AS_3 modeled<br>(ft <sup>3</sup> ) | AS_4 (ft <sup>3</sup> ) | AS_4 modeled<br>(ft³) | AS_5 (ft <sup>3</sup> ) | AS_5 modeled<br>(ft³) | AS_6 (ft <sup>3</sup> ) | AS_6 modeled<br>(ft³) | AS_7 (ft <sup>3</sup> ) | AS_7 modeled<br>(ft <sup>3</sup> ) | Total Flow (ft <sup>3</sup> ) | Total modeled<br>flow (ft³) |
| 2/2/2019         | 16.4                | 0.89               | 0.05                           | 452,900                       | 450,000                               | 204,900                 | 436,500                            | 22,630                  | 11,930                             | 47,240                  | 51,950                | 37,990                  | 12,750                | 14,280                  | 2,147                 | 141,500                 | 65,950                             | 594,400                       | 516,000                     |
| 2/4/2019         | 24.7                | 0.24               | 0.01                           | 208,500                       | 64,040                                | 111,300                 | 64,530                             | 8,831                   | 1,641                              | 11,430                  | 7,182                 | 6,292                   | 4,390                 | 1,439                   | 1,003                 | 37,690                  | 8,556                              | 246,190                       | 72,600                      |
| 2/13/2019        | 43.4                | 0.92               | 0.02                           | 715,600                       | 372,500                               | 326,500                 | 362,100                            | 32,860                  | 9,878                              | 53,170                  | 42,670                | 38,810                  | 12,750                | 11,760                  | 3,454                 | 165,800                 | 54,310                             | 881,400                       | 426,800                     |
| 2/20/2019        | 11.2                | 0.17               | 0.01                           | 107,900                       | 9,433                                 | 52,800                  | 9,275                              | 4,444                   | 89                                 | 5,691                   | 289                   | 1,471                   | 4,227                 | 182                     | 631                   | 19,650                  | 441                                | 127,550                       | 9,874                       |
| 2/24/2019        | 17.7                | 0.22               | 0.01                           | 208,500                       | 49,920                                | 102,200                 | 49,610                             | 9,073                   | 1,323                              | 13,160                  | 5,588                 | 6,990                   | 2,817                 | 1,882                   | 899                   | 41,680                  | 6,979                              | 250,180                       | 56,890                      |
| 2/25/2019        | 15.5                | 0.13               | 0.01                           | 149,800                       | 21,530                                | 76,080                  | 21,200                             | 5,897                   | 533                                | 7,912                   | 2,172                 | 5,214                   | 1,807                 | 871                     | 806                   | 26,540                  | 2,741                              | 176,340                       | 24,270                      |
| 2/27/2019        | 11.3                | 0.65               | 0.06                           | 371,300                       | 355,400                               | 166,300                 | 340,700                            | 17,440                  | 10,630                             | 36,080                  | 45,950                | 33,280                  | 8,754                 | 10,940                  | 977                   | 111,700                 | 59,190                             | 483,000                       | 414,600                     |
| 3/12/2019        | 4.8                 | 0.11               | 0.02                           | 63,660                        | 35,580                                | 31,250                  | 34,270                             | 3,022                   | 888                                | 4,829                   | 3,868                 | 3,214                   | 1,651                 | 492                     | 369                   | 14,500                  | 5,001                              | 78,160                        | 40,580                      |
| 3/24/2019        | 14.1                | 0.51               | 0.04                           | 326,000                       | 251,800                               | 148,600                 | 241,500                            | 15,140                  | 6,634                              | 31,870                  | 28,770                | 28,430                  | 7,267                 | 7,164                   | 1,344                 | 90,280                  | 36,990                             | 416,280                       | 288,700                     |
| 3/27/2019        | 12.9                | 0.42               | 0.03                           | 295,600                       | 179,100                               | 140,500                 | 175,200                            | 14,370                  | 4,694                              | 29,790                  | 20,600                | 27,120                  | 6,285                 | 6,754                   | 1,050                 | 24,750                  | 25,760                             | 320,350                       | 204,900                     |
| 4/2/2019         | 8.6                 | 0.11               | 0.01                           | 94,580                        | 26,950                                | 48,960                  | 26,110                             | 4,575                   | 651                                | 6,388                   | 2,896                 | 5,956                   | 1,836                 | 364                     | 501                   | 16,600                  | 3,673                              | 111,180                       | 30,620                      |
| 4/5/2019         | 12.3                | 0.13               | 0.01                           | 146,200                       | 39,330                                | 77,720                  | 38,520                             | 7,276                   | 989                                | 11,270                  | 4,327                 | 10,890                  | 2,019                 | 1,257                   | 451                   | 29,120                  | 5,402                              | 175,320                       | 44,730                      |
| 4/6/2019         | 9.3                 | 0.09               | 0.01                           | 110,100                       | 15,980                                | 54,340                  | 17,530                             | 4,956                   | 462                                | 6,958                   | 2,011                 | 7,315                   | 1,228                 | 522                     | 395                   | 18,030                  | 2,236                              | 128,130                       | 18,220                      |
| 4/7/2019         | 17.5                | 0.09               | 0.01                           | 188,500                       | 13,140                                | 97,180                  | 12,850                             | 8,529                   | 323                                | 11,700                  | 1,158                 | 12,740                  | 1,698                 | 702                     | 537                   | 29,500                  | 1,540                              | 218,000                       | 14,680                      |
| 4/8/2019         | 37.3                | 0.58               | 0.02                           | 667,300                       | 202,900                               | 325,600                 | 200,500                            | 33,430                  | 5,339                              | 57,820                  | 23,050                | 54,020                  | 9,325                 | 9,535                   | 1,889                 | 154,400                 | 28,690                             | 821,700                       | 231,600                     |
| 4/13/2019        | 33.2                | 0.54               | 0.02                           | 607,200                       | 221,500                               | 286,200                 | 213,600                            | 30,390                  | 5,772                              | 53,750                  | 24,990                | 41,210                  | 7,911                 | 7,718                   | 1,663                 | 147,100                 | 31,980                             | 754,300                       | 253,500                     |
| 5/28/2019        | 5.0                 | 0.24               | 0.05                           | 101,400                       | 76,340                                | 49,010                  | 72,350                             | 4,572                   | 1,792                              | 15,400                  | 8,058                 | 13,430                  | 4,128                 | 4,271                   | 294                   | 30,950                  | 10,370                             | 132,350                       | 86,710                      |
| 8/9/2019         | 5.0                 | 0.15               | 0.03                           | 27,810                        | 122,500                               | 17,180                  | 119,400                            | 1,820                   | 3,438                              | 3,854                   | 14,790                | 784                     | 468                   | 25                      | 221                   | 11,450                  | 18,690                             | 39,260                        | 141,200                     |
| 9/16/2019        | 13.9                | 0.40               | 0.03                           | 245,400                       | 190,300                               | 69,420                  | 184,500                            | 5,998                   | 5,542                              | 12,820                  | 23,230                | 8,289                   | 5,730                 | 2,177                   | 954                   | 23,280                  | 31,440                             | 268,680                       | 221,800                     |
| Total            | 314                 | 6.58               | -                              | 5,088,250                     | 2,698,243                             | 2,386,040               | 2,620,245                          | 235,253                 | 72,549                             | 421,132                 | 313,549               | 343,445                 | 97,041                | 82,335                  | 19,585                | 1,134,520               | 399,939                            | 6,222,770                     | 3,098,274                   |
| Total difference |                     |                    |                                |                               | 2,390,007                             |                         | (234,205)                          |                         | 162,704                            |                         | 107,583               |                         | 246,403               |                         | 62,750                |                         | 734,582                            |                               | 3,124,496                   |

Notes

<sup>1</sup> Rain values for events were calculated by spatially-weighting each rain gauge measurement for the subcatchment represented and generating an average total.

|           |                     |                            |                         | Table 3. Tota           | al Flow: Dry Events     | 5                       |                         |                         |                               |
|-----------|---------------------|----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------------|
| Date      | Duration<br>(hours) | Site 14 (ft <sup>3</sup> ) | AS_1 (ft <sup>3</sup> ) | AS_3 (ft <sup>3</sup> ) | AS_4 (ft <sup>3</sup> ) | AS_5 (ft <sup>3</sup> ) | AS_6 (ft <sup>3</sup> ) | AS_7 (ft <sup>3</sup> ) | Total Flow (ft <sup>3</sup> ) |
| 3/14/2019 | 192.3               | 1,112,000                  | 661,700                 | 36,270                  | 35,340                  | 53,660                  | 1,495                   | 79,340                  | 1,191,340                     |
| 3/24/2019 | 30.2                | 216,700                    | 123,700                 | 8,658                   | 9,774                   | 16,430                  | 206                     | 22,790                  | 239,490                       |
| 3/29/2019 | 103.4               | 910,200                    | 501,100                 | 40,130                  | 50,630                  | 67,070                  | 1,076                   | 141,600                 | 1,051,800                     |
| 4/3/2019  | 27.5                | 217,300                    | 124,700                 | 9,338                   | 11,180                  | 16,130                  | 302                     | 27,660                  | 244,960                       |
| 5/23/2019 | 21.7                | 64,930                     | 50,550                  | 2,014                   | 1,502                   | 9,096                   | 171                     | 3,557                   | 68,487                        |
| 5/24/2019 | 8.9                 | 21,500                     | 19,790                  | 615                     | 373                     | 3,749                   | 59                      | 993                     | 22,493                        |
| 5/29/2019 | 20.2                | 62,120                     | 41,570                  | 1,138                   | 920                     | 5,268                   | 162                     | 1,150                   | 63,270                        |
| 6/7/2019  | 126.5               | 277,500                    | 202,700                 | 1,992                   | 575                     | 10,460                  | 974                     | 141                     | 277,641                       |
| 6/13/2019 | 1,348.8             | 1,827,000                  | 1,735,000               | 25,010                  | 14,550                  | 70,520                  | 17,460                  | 4,024                   | 1,831,024                     |
| 9/21/2019 | 593.4               | 1,948,000                  | 581,500                 | 4,128                   | 980                     | 16,480                  | -                       | 4,918                   | 1,952,918                     |
| Total     | 2,473               | 6,657,250                  | 4,042,310               | 129,293                 | 125,824                 | 268,863                 | 21,906                  | 286,173                 | 6,943,423                     |

|           |                     |         |                    |      |                 | Table 4 | . Percent of To | tal Flow: Wet | Events          |      |                 |      |                 |      |                 |
|-----------|---------------------|---------|--------------------|------|-----------------|---------|-----------------|---------------|-----------------|------|-----------------|------|-----------------|------|-----------------|
| Date      | Duration<br>(hours) | Site 14 | Site 14<br>Modeled | AS_1 | AS_1<br>Modeled | AS_3    | AS_3<br>Modeled | AS_4          | AS_4<br>Modeled | AS_5 | AS_5<br>Modeled | AS_6 | AS_6<br>Modeled | AS_7 | AS_7<br>Modeled |
| 2/2/2019  | 16.4                | 76%     | 87%                | 34%  | 85%             | 4%      | 2%              | 8%            | 10%             | 6%   | 2%              | 2%   | 0%              | 24%  | 13%             |
| 2/4/2019  | 24.7                | 85%     | 88%                | 45%  | 89%             | 4%      | 2%              | 5%            | 10%             | 3%   | 6%              | 1%   | 1%              | 15%  | 12%             |
| 2/13/2019 | 43.4                | 81%     | 87%                | 37%  | 85%             | 4%      | 2%              | 6%            | 10%             | 4%   | 3%              | 1%   | 1%              | 19%  | 13%             |
| 2/20/2019 | 11.2                | 85%     | 96%                | 41%  | 94%             | 3%      | 1%              | 4%            | 3%              | 1%   | 43%             | 0%   | 6%              | 15%  | 4%              |
| 2/24/2019 | 17.7                | 83%     | 88%                | 41%  | 87%             | 4%      | 2%              | 5%            | 10%             | 3%   | 5%              | 1%   | 2%              | 17%  | 12%             |
| 2/25/2019 | 15.5                | 85%     | 89%                | 43%  | 87%             | 3%      | 2%              | 4%            | 9%              | 3%   | 7%              | 0%   | 3%              | 15%  | 11%             |
| 2/27/2019 | 11.3                | 77%     | 86%                | 34%  | 82%             | 4%      | 3%              | 7%            | 11%             | 7%   | 2%              | 2%   | 0%              | 23%  | 14%             |
| 3/12/2019 | 4.8                 | 81%     | 88%                | 40%  | 84%             | 4%      | 2%              | 6%            | 10%             | 4%   | 4%              | 1%   | 1%              | 19%  | 12%             |
| 3/24/2019 | 14.1                | 78%     | 87%                | 36%  | 84%             | 4%      | 2%              | 8%            | 10%             | 7%   | 3%              | 2%   | 0%              | 22%  | 13%             |
| 3/27/2019 | 12.9                | 92%     | 87%                | 44%  | 86%             | 4%      | 2%              | 9%            | 10%             | 8%   | 3%              | 2%   | 1%              | 8%   | 13%             |
| 4/2/2019  | 8.6                 | 85%     | 88%                | 44%  | 85%             | 4%      | 2%              | 6%            | 9%              | 5%   | 6%              | 0%   | 2%              | 15%  | 12%             |
| 4/5/2019  | 12.3                | 83%     | 88%                | 44%  | 86%             | 4%      | 2%              | 6%            | 10%             | 6%   | 5%              | 1%   | 1%              | 17%  | 12%             |
| 4/6/2019  | 9.3                 | 86%     | 88%                | 42%  | 96%             | 4%      | 3%              | 5%            | 11%             | 6%   | 7%              | 0%   | 2%              | 14%  | 12%             |
| 4/7/2019  | 17.5                | 86%     | 90%                | 45%  | 88%             | 4%      | 2%              | 5%            | 8%              | 6%   | 12%             | 0%   | 4%              | 14%  | 10%             |
| 4/8/2019  | 37.3                | 81%     | 88%                | 40%  | 87%             | 4%      | 2%              | 7%            | 10%             | 7%   | 4%              | 1%   | 1%              | 19%  | 12%             |
| 4/13/2019 | 33.2                | 80%     | 87%                | 38%  | 84%             | 4%      | 2%              | 7%            | 10%             | 5%   | 3%              | 1%   | 1%              | 20%  | 13%             |
| 5/28/2019 | 5.0                 | 77%     | 88%                | 37%  | 83%             | 3%      | 2%              | 12%           | 9%              | 10%  | 5%              | 3%   | 0%              | 23%  | 12%             |
| 8/9/2019  | 5.0                 | 71%     | 87%                | 44%  | 85%             | 5%      | 2%              | 10%           | 10%             | 2%   | 0%              | 0%   | 0%              | 29%  | 13%             |
| 9/16/2019 | 13.9                | 91%     | 86%                | 26%  | 83%             | 2%      | 2%              | 5%            | 10%             | 3%   | 3%              | 1%   | 0%              | 9%   | 14%             |
| Ме        | an                  | 82%     | 88%                | 40%  | 86%             | 4%      | 2%              | 7%            | 9%              | 5%   | 6%              | 1%   | 1%              | 18%  | 12%             |

|           |                     | Tab     | le 5. Percen | t of Total Flo | w: Dry Events | ;    |       |      |
|-----------|---------------------|---------|--------------|----------------|---------------|------|-------|------|
| Date      | Duration<br>(hours) | Site 14 | AS_1         | AS_3           | AS_4          | AS_5 | AS_6  | AS_7 |
| 3/14/2019 | 192.3               | 93%     | 56%          | 3%             | 3%            | 5%   | 0%    | 7%   |
| 3/24/2019 | 30.2                | 90%     | 52%          | 4%             | 4%            | 7%   | 0%    | 10%  |
| 3/29/2019 | 103.4               | 87%     | 48%          | 4%             | 5%            | 6%   | 0%    | 13%  |
| 4/3/2019  | 27.5                | 89%     | 51%          | 4%             | 5%            | 7%   | 0%    | 11%  |
| 5/23/2019 | 21.7                | 95%     | 74%          | 3%             | 2%            | 13%  | 0%    | 5%   |
| 5/24/2019 | 8.9                 | 96%     | 88%          | 3%             | 2%            | 17%  | 0%    | 4%   |
| 5/29/2019 | 20.2                | 98%     | 66%          | 2%             | 1%            | 8%   | 0%    | 2%   |
| 6/7/2019  | 126.5               | 100%    | 73%          | 1%             | 0%            | 4%   | 0%    | 0%   |
| 6/13/2019 | 1,348.8             | 100%    | 95%          | 1%             | 1%            | 4%   | 1%    | 0%   |
| 9/21/2019 | 593.4               | 100%    | 30%          | 0%             | 0%            | 1%   | 0%    | 0%   |
| Mean      | 247.3               | 95%     | 63%          | 2%             | 2%            | 7%   | 0.25% | 5%   |

| Table 6. Wet Events Water Balance |                     |                                  |            |     |                                     |                                   |                                    |       |                |               |      |
|-----------------------------------|---------------------|----------------------------------|------------|-----|-------------------------------------|-----------------------------------|------------------------------------|-------|----------------|---------------|------|
| Date                              | Duration<br>(hours) | Total Flow<br>(ft <sup>3</sup> ) |            | Τ   | otal Flow (ft <sup>3</sup> )   Perc | Percent of<br>Site 14 - AS_1 Flow | Total Flow Defici<br>Percent Total | • • • |                |               |      |
|                                   |                     |                                  | Site 14-AS | 5_1 | (Site 14-AS_1)-<br>(AS-3+AS_4-AS_7) |                                   | AS_3+AS_4-AS_7                     |       | AS_3+AS_4-AS_7 | AS_3 and AS_4 |      |
| 2/2/2019                          | 16.43               | 594,400                          | 248,300    | 42% | 36,990                              | 6%                                | 211,300                            | 36%   | 85%            | 36,990        | 6%   |
| 2/4/2019                          | 24.67               | 246,190                          | 96,940     | 39% | 38,990                              | 16%                               | 57,950                             | 24%   | 60%            | 38,990        | 16%  |
| 2/13/2019                         | 43.43               | 881,400                          | 388,700    | 44% | 136,900                             | 16%                               | 251,800                            | 29%   | 65%            | 136,900       | 16%  |
| 2/20/2019                         | 11.15               | 127,550                          | 54,150     | 42% | 24,360                              | 19%                               | 29,790                             | 23%   | 55%            | 24,360        | 19%  |
| 2/24/2019                         | 17.65               | 250,180                          | 105,300    | 42% | 41,360                              | 17%                               | 63,910                             | 26%   | 61%            | 41,360        | 17%  |
| 2/25/2019                         | 15.53               | 176,340                          | 73,180     | 41% | 32,830                              | 19%                               | 40,350                             | 23%   | 55%            | 32,830        | 19%  |
| 2/27/2019                         | 11.33               | 483,000                          | 205,000    | 42% | 39,840                              | 8%                                | 165,200                            | 34%   | 81%            | 39,840        | 8%   |
| 3/12/2019                         | 4.77                | 78,160                           | 31,750     | 41% | 9,406                               | 12%                               | 22,350                             | 29%   | 70%            | 9,406         | 12%  |
| 3/24/2019                         | 14.13               | 416,280                          | 177,400    | 43% | 40,080                              | 10%                               | 137,300                            | 33%   | 77%            | 40,080        | 10%  |
| 3/27/2019                         | 12.9                | 320,350                          | 153,500    | 48% | 86,050                              | 27%                               | 61,600                             | 19%   | 40%            | 86,050        | 27%  |
| 4/2/2019                          | 8.58                | 111,180                          | 44,920     | 40% | 17,360                              | 16%                               | 27,560                             | 25%   | 61%            | 17,360        | 16%  |
| 4/5/2019                          | 12.33               | 175,320                          | 67,730     | 39% | 20,070                              | 11%                               | 47,670                             | 27%   | 70%            | 20,070        | 11%  |
| 4/6/2019                          | 9.33                | 128,130                          | 55,010     | 43% | 25,070                              | 20%                               | 29,940                             | 23%   | 54%            | 25,070        | 20%  |
| 4/7/2019                          | 17.5                | 218,000                          | 89,930     | 41% | 40,200                              | 18%                               | 49,730                             | 23%   | 55%            | 40,200        | 18%  |
| 4/8/2019                          | 37.25               | 821,700                          | 341,400    | 42% | 95,720                              | 12%                               | 245,600                            | 30%   | 72%            | 95,720        | 12%  |
| 4/13/2019                         | 33.17               | 754,300                          | 319,700    | 42% | 88,510                              | 12%                               | 231,200                            | 31%   | 72%            | 88,510        | 12%  |
| 5/28/2019                         | 5                   | 132,350                          | 51,600     | 39% | 683                                 | 1%                                | 50,920                             | 38%   | 99%            | 683           | 1%   |
| 8/9/2019                          | 5                   | 39,260                           | 10,550     | 27% | -6,575                              | -17%                              | 17,120                             | 44%   | 162%           | (6,575)       | -17% |
| 9/16/2019                         | 13.92               | 268,680                          | 175,500    | 65% | 133,400                             | 50%                               | 42,100                             | 16%   | 24%            | 133,400       | 50%  |
| Mean                              | 16.53               | 327,514                          | 141,608    | 42% | 47,434                              | 14%                               | 93,863                             | 28%   | 69%            | 47,434        | 14%  |

| Table 7. Dry Events Water Balance |                     |                                                  |            |     |                                     |     |                    |     |                                   |                                                  |     |
|-----------------------------------|---------------------|--------------------------------------------------|------------|-----|-------------------------------------|-----|--------------------|-----|-----------------------------------|--------------------------------------------------|-----|
| Date                              | Duration<br>(hours) | Total Flow (ft <sup>3</sup> )/Percent Total Flow |            |     |                                     |     |                    |     | Percent of Site 14 -<br>AS_1 Flow | Total Flow Deficit<br>(ft <sup>3</sup> )/Percent |     |
| Date                              |                     | Total Flow                                       | Site 14-AS | _1  | (Site 14-AS_1)-<br>(AS-3+AS_4-AS_7) |     | AS_3+AS_4-<br>AS_7 |     | AS_3+AS_4-AS_7                    | AS_3 and AS_4                                    |     |
| 3/14/2019                         | 192.25              | 1,191,340                                        | 449,800    | 42% | 298,800                             | 25% | 151,000            | 13% | 34%                               | 298,800                                          | 25% |
| 3/24/2019                         | 30.17               | 239,490                                          | 92,950     | 39% | 51,730                              | 22% | 41,220             | 17% | 44%                               | 51,730                                           | 22% |
| 3/29/2019                         | 103.42              | 1,051,800                                        | 409,200    | 44% | 304,600                             | 29% | 276,600            | 26% | 68%                               | 304,600                                          | 29% |
| 4/3/2019                          | 27.5                | 244,960                                          | 92,350     | 42% | 44,180                              | 18% | 48,170             | 20% | 52%                               | 44,180                                           | 18% |
| 5/23/2019                         | 21.67               | 68,487                                           | 14,030     | 42% | 6,962                               | 10% | 7,073              | 10% | 50%                               | 6,962                                            | 10% |
| 5/24/2019                         | 8.92                | 22,493                                           | 1,443      | 41% | -537                                | -2% | 1,980              | 9%  | 137%                              | -537                                             | -2% |
| 5/29/2019                         | 20.17               | 63,270                                           | 20,130     | 42% | 16,920                              | 27% | 3,209              | 5%  | 16%                               | 16,920                                           | 27% |
| 6/7/2019                          | 126.5               | 277,641                                          | 72,260     | 41% | 69,580                              | 25% | 2,705              | 1%  | 4%                                | 69,580                                           | 25% |
| 6/13/2019                         | 1348.83             | 1,831,024                                        | 91,950     | 43% | 48,380                              | 3%  | 43,580             | 2%  | 47%                               | 48,380                                           | 3%  |
| 9/21/2019                         | 593.42              | 1,952,918                                        | 1,366,000  | 48% | 1,356,000                           | 69% | 10,030             | 1%  | 1%                                | 1,356,000                                        | 69% |
| Mean                              | 247.285             | 694,342                                          | 261,011    | 42% | 219,661                             | 23% | 58,557             | 10% | 45%                               | 219,661                                          | 23% |

# **Attachment B: Figures**

- Figure 4: Site 14 Map
- Figure 5: AS\_7 Map
- Figure 6: AS\_1 Map
- Figure 7: AS\_2 Map
- Figure 8: AS\_3 Map
- Figure 9: AS\_4 Map
- Figure 10: AS\_5 Map
- Figure 11: AS\_6 Map
- Figure 12: Wet Events Hydrograph
- Figure 13: Dry Events Hydrograph
- Figure 14: Percent Wet Event Flow Contribution
- Figure 15: Percent Dry Event Flow Contribution



Figure 4. Site 14 Map

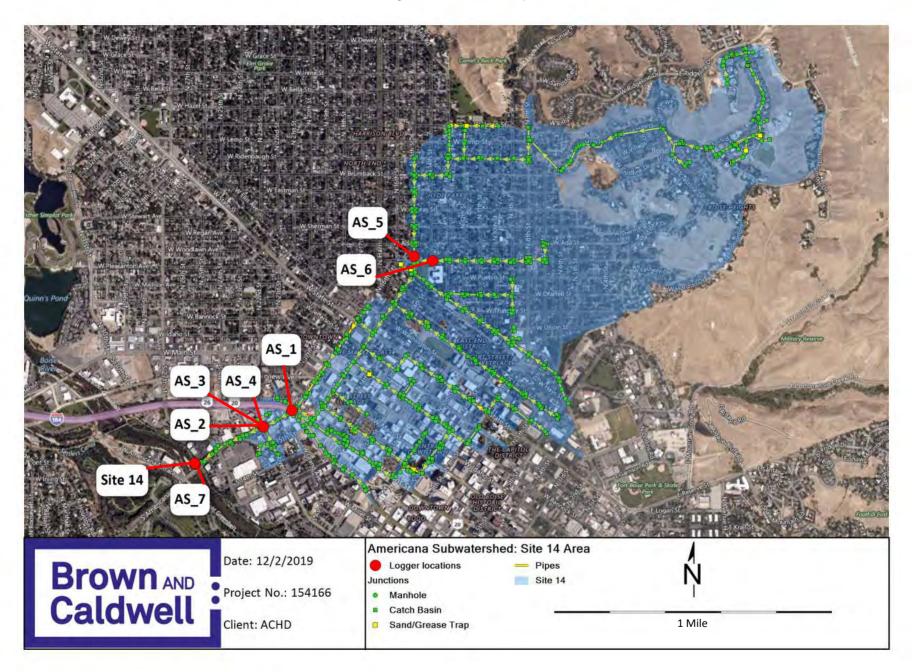



Figure 5. AS\_7 Map

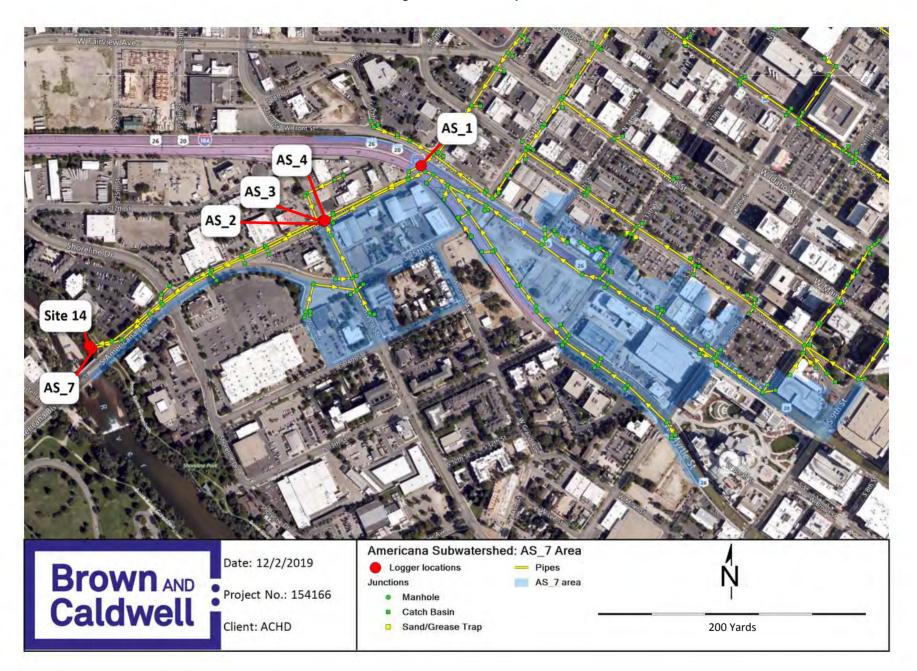



Figure 6. AS\_1 Map

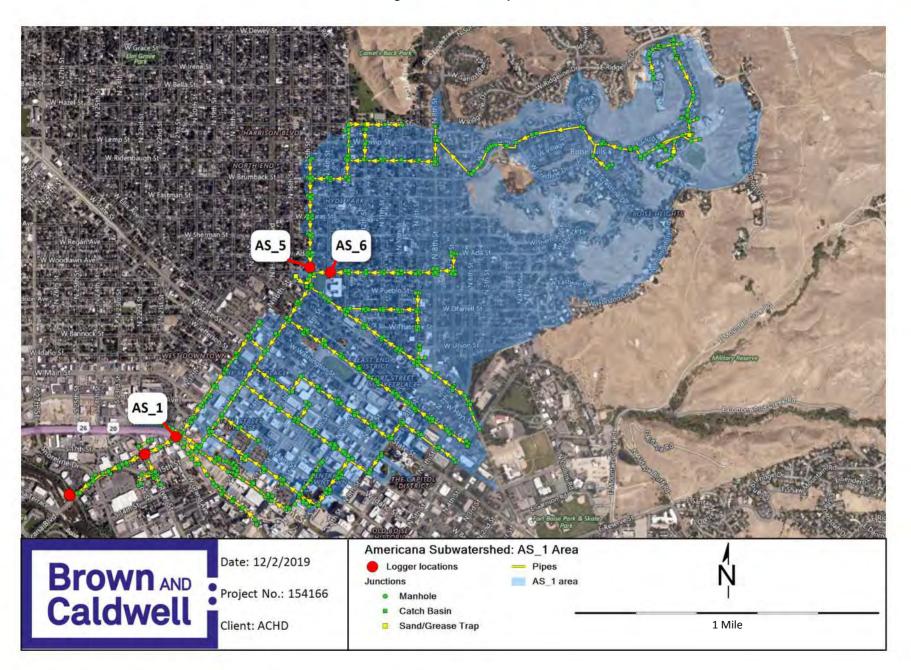



Figure 7. AS\_2 Map

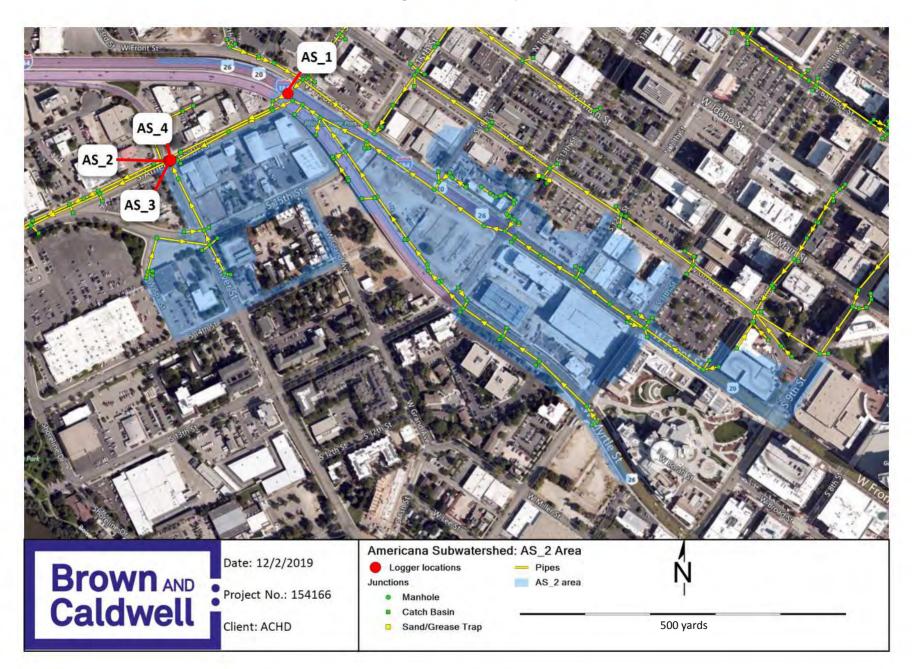



Figure 8. AS\_3 Map



Figure 9. AS\_4 Map

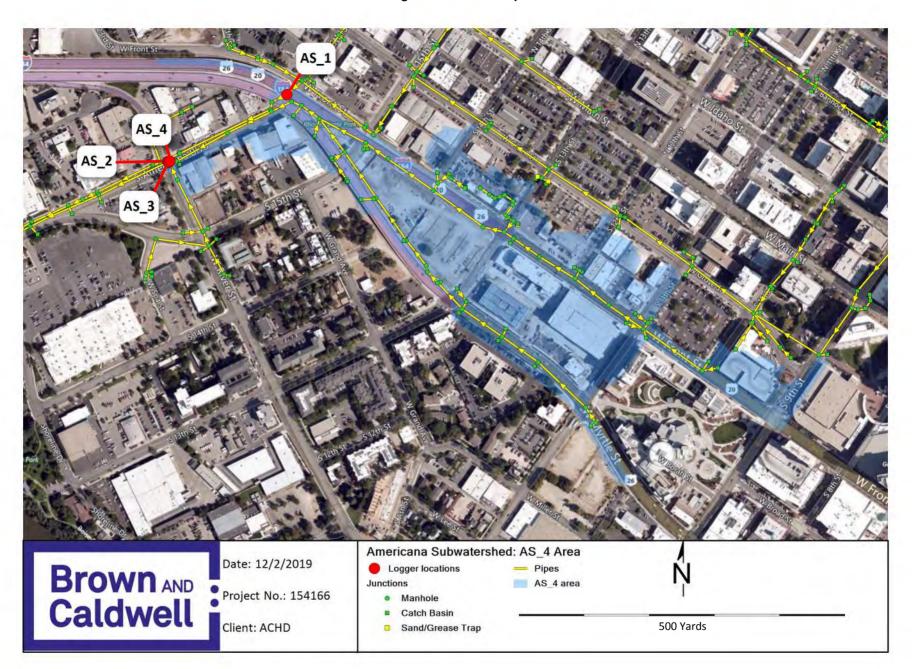



Figure 10. AS\_5 Map

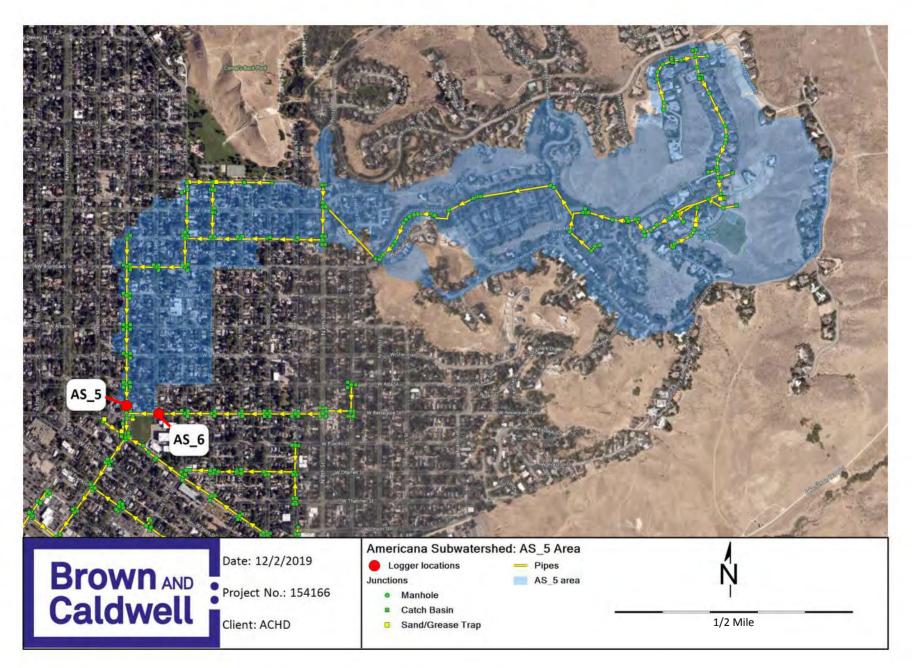



Figure 11. AS\_6 Map

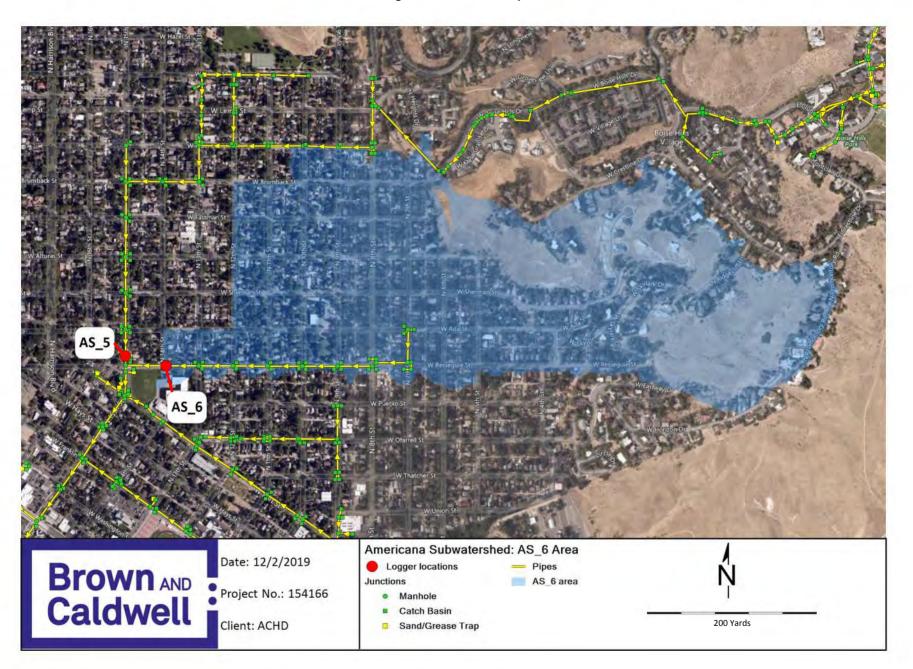



Figure 12: Wet Events Hydrograph

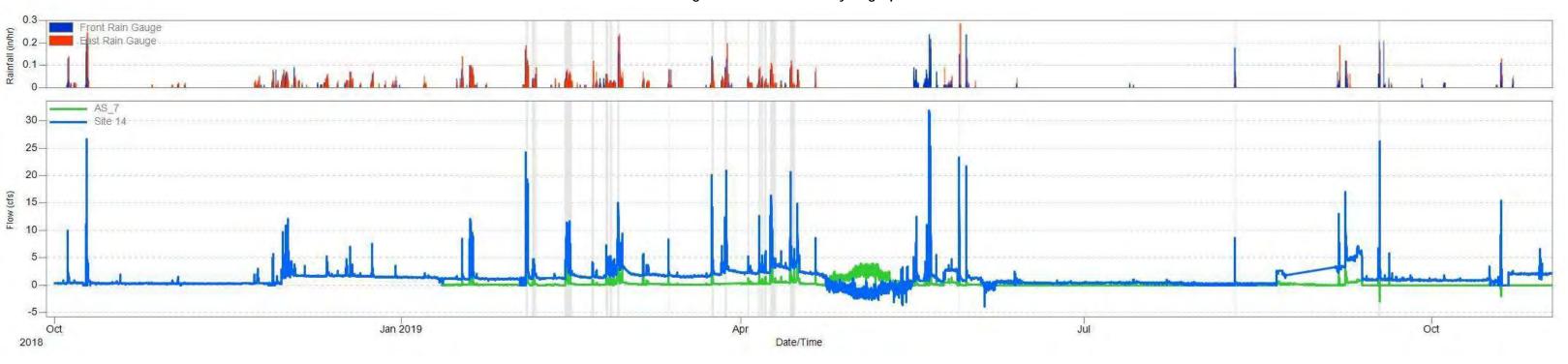



Figure 13: Dry Events Hydrograph

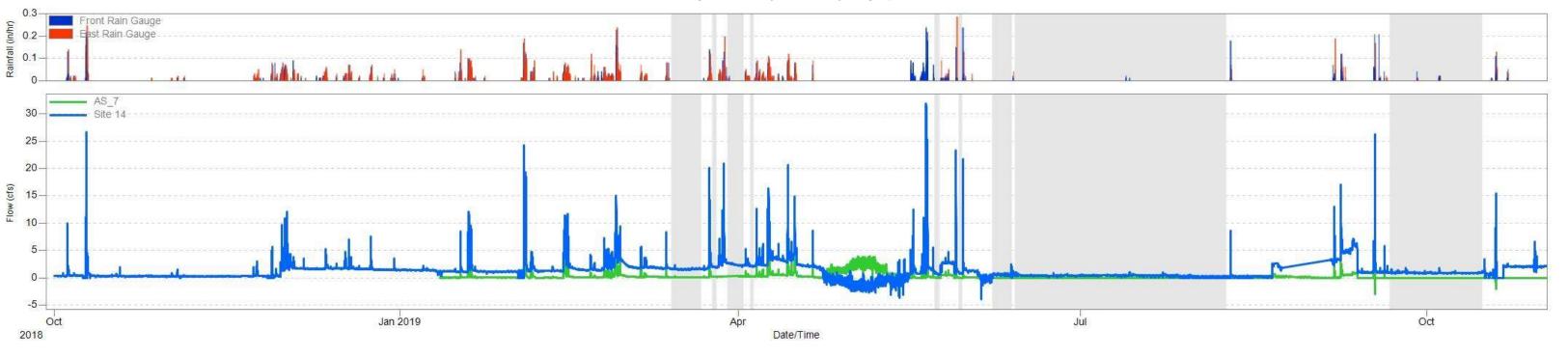



Figure 14. Percent Wet Event Flow Contribution

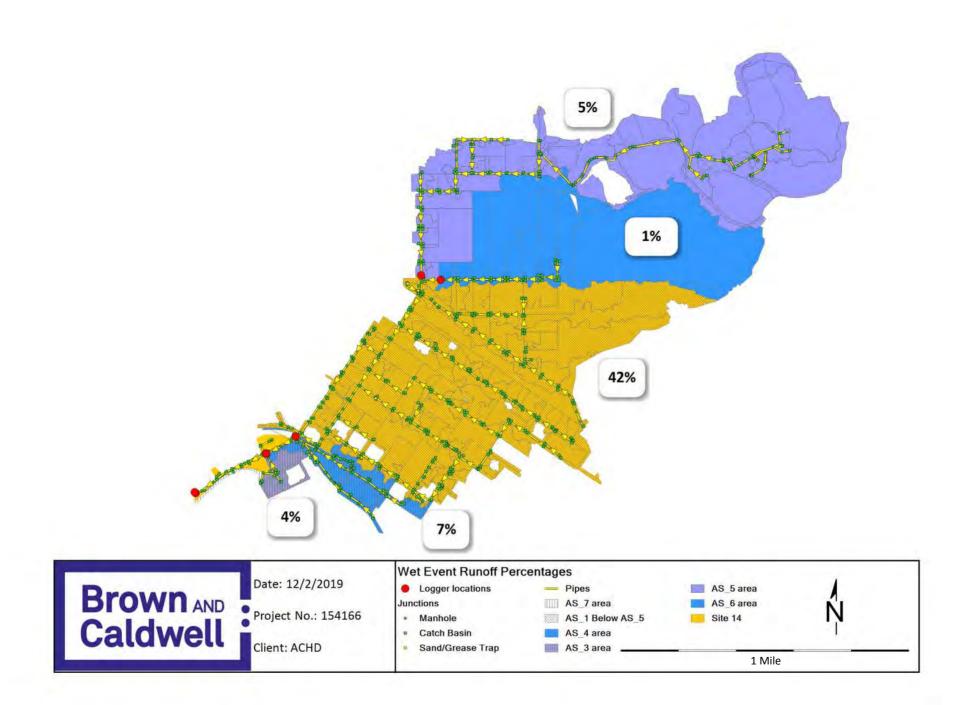
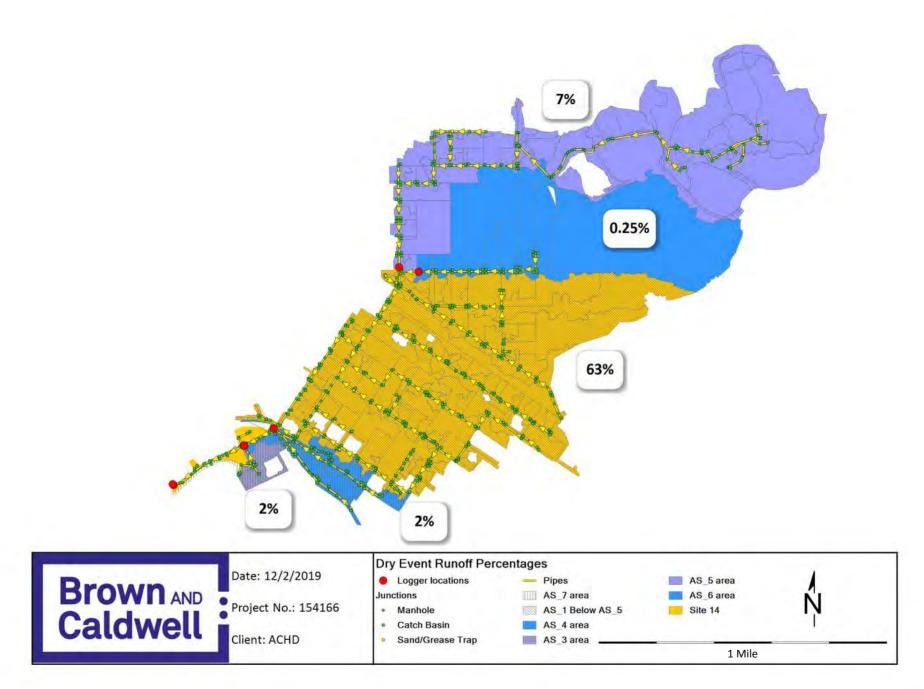




Figure 15. Percent Dry Event Flow Contribution

